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Abstract: Global warming is making extreme wave events more intense and frequent. Hence, the 
importance of monitoring the sea state for marine risk assessment and mitigation is increasing day-
by-day. In this work, we exploit the ubiquitous seismic noise generated by energy transfer from the 
ocean to the solid earth (called microseisms) to infer the sea wave height data provided by hindcast 
maps. To this aim, we use a combined approach based on statistical analysis and machine learning. 
In particular, a random forest model shows very promising results in the spatial and temporal 
reconstruction of sea wave height by microseisms. The observed dependence of input importance 
from the distance sea grid cell-seismic station suggests how the reliable monitoring of the sea state 
in a wide area by microseisms needs data recorded by dense networks, comprising stations evenly 
distributed along the coastlines. 
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1. Introduction 

The monitoring of sea state is a fundamental task for economic activities in coastal areas, such 
as transportation, tourism, and design of infrastructures, e.g., [1,2]. In particular, the importance of 
monitoring sea wave height for marine risk assessment and mitigation is increasing day-by-day. This 
is partially due to global warming that is making sea waves stronger and, hence, the extreme wave 
events more intense and frequent [3]. 

Among the different instruments used to monitor the sea state, e.g., [4], wave buoys can be 
currently considered the most used and reliable instruments for in situ measurements of the offshore 
and coastal wave climate. However, they show serious drawbacks because of the high costs of both 
installation and maintenance and the permissions needed for their installation [5]. Other useful tools 
to monitor the sea state are remote sensing instruments such as radar altimeters and synthetic 
aperture radar, providing data from large marine areas. Despite their good spatial coverage, they 
suffer from limited temporal resolution [6–8]. An important improvement in sea state monitoring is 
represented by high-frequency (HF) radar measurements, providing directional wave spectra at a 
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high temporal resolution, with a spatial resolution that depends on both bandwidth and antenna 
[5,9,10]. 

Finally, seismic signals recorded by seismometers can also be used as a sea “wavemeter” [11]. 
Indeed, ocean gravity waves cause pressure fluctuations that transfer energy from the ocean to the 
solid earth, generating a seismic noise called “microseisms,” e.g., [12]. Based on both spectral content 
and source mechanism, it is possible to distinguish two main types of microseism: primary and 
secondary. The former, also called “single-frequency” microseisms, shares the same spectral content 
as ocean waves (0.05–0.077 Hz; e.g., [13]) and is likely generated by interactions of ocean waves with 
the sloping seafloor and/or by ocean waves breaking/shoaling against the shoreline, e.g., [14]. The 
latter, also known as “double-frequency” microseisms, is characterized by most energy in the band 
0.1–0.2 Hz, e.g., [13], shows higher amplitude than the primary microseism, and its source is 
associated with interactions of waves of the same frequency travelling in opposite directions, e.g., 
[15,16]. Finally, a short-period secondary microseism, exhibiting a frequency content between 0.2 and 
0.4 Hz, e.g., [13], can also be identified. Its source is generally related to local wave–wave interactions 
[17,18]. 

On the basis of its source mechanism, microseisms have been used as a proxy of the sea state. 
For instance, it has been used to reconstruct the spatial and temporal distribution of sea ice around 
Antarctica [19]; but, above all, the relationship between microseism amplitude and sea wave height 
has been explored. For instance, [20] made use of seismic and buoy data acquired in California to 
empirically derive site-specific seismic-to-wave transfer functions, allowing reliable estimations of 
ocean wave height to be obtained from broadband seismometer data. [21] presented the first 
numerical model of seismic noise, allowing all the classes of sea states to be reproduced, which give 
rise to significant seismic noise levels. By comparing seismic data and sea wave height recorded by 
buoys near the Ligurian coast (Italy), [22,23] calibrated empirical equations allowing microseism 
energy to be turned into sea wave height. 

In this paper, by both statistical and machine learning approaches, we will explore the 
relationship between microseism amplitude, recorded by seismic stations located in Eastern Sicily 
(Italy), and the sea wave height in the Ionian Sea, Tyrrhenian Sea, and Sicily Channel. Following the 
idea by [2], the latter data have been provided by hindcast maps, which show several advantages 
with respect to other measured data, such as high spatial resolution, widespread coverage on large 
areas, and temporal continuity of the information (hindcast maps are always available, as they are 
not affected by instrument breakage). In particular, we will try to answer the question of whether, 
and to what extent, it is possible to reconstruct the spatial distribution of sea wave height by using 
microseisms recorded at distinct stations and in different frequency bands. 

2. Materials and Methods 

2.1. Data 

To analyze microseisms, seismic signals recorded by the vertical component of six stations, 
located close to the Eastern Sicilian coast and belonging to the seismic permanent network run by 
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania (INGV-OE), 
were used (Figure 1 and Table 1). The seismometers equipping these stations are broadband three-
component Trillium 40 s (NanometricsTM). The digitizers, acquiring at a sampling rate of 100 Hz, are 
Trident (NanometricsTM). 

In particular, the time interval 2010–2017, offering a very good data continuity in most of the 
considered stations, was chosen.  
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Figure 1. Map of a portion of the Mediterranean Sea, showing bathymetry (data from 
http://marine.copernicus.eu/) and the location of the six seismic stations used in this work (black dots 
and labels). The inset in the right upper corner shows the digital elevation model of Eastern Sicily, 
with the location of the seismic stations. 

Table 1. Coordinates of the seismic stations used in this work. 

Station Name Longitude Latitude Altitude (m a.s.l.) 
MSRU 15.5083 38.2638 401 

AIO 15.2278 37.9689 715 
EFIU 15.2101 37.7897 98 
EPOZ 15.1885 37.6718 119 
HAGA 15.1552 37.2853 126 
HLNI 14.872 37.3485 147 

As for the sea data, the “MEDSEA_HINDCAST_WAV_006_012” product, shared by the 
Copernicus Marine Environment Monitoring Service (CMEMS) http://marine.copernicus.eu/, was 
used. Such a product is the hindcast product of the Mediterranean Sea Waves forecasting system, 
based on the third-generation wave model WAM Cycle 4.5.4 [24]. In particular, the hourly significant 
wave height data of a portion of the Mediterranean Sea (shown in Figure 1) at 1/24° horizontal 
resolution was extracted and used to make comparisons to the microseism. To speed up the 
computation, one grid cell every two in both the east–west and north–south directions was taken into 
account for the analyses performed in this work. The significant wave height is defined in terms of 
moments of the omnidirectional spectrum, S(f), where f is the frequency. The nth moment of the 
spectrum is defined as 

mn = 𝑓 𝑆 𝑓  𝑑𝑓. (1) 

Wave height is defined as follows: 

Hs = 4 𝑚 . (2) 

It is demonstrated that Hs is approximately equal to the average of the highest one-third of the 
waves. 

2.2. Spectral and Amplitude Analysis 

To characterize the spectral content of the seismic signals recorded by the vertical component of 
the six considered stations, the short-time Fourier transform was carried out as follows: (i) The signal 
was divided into 81.92 s long non-overlapping windows and a spectrum was computed for each 
window; (ii) a daily spectrum was calculated by applying Welch’s overlapped segment averaging 
estimator [25] on all the spectra of the same day; (iii) finally, all the daily spectra were gathered and 
visualized as a spectrogram (Figure 2a–f). In addition, a single spectrum was computed for each 
station as the median of all the daily spectra (Figure 2g–l). 
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Figure 2. (a–f) Spectrograms of the seismic signal recorded by the vertical component of the six 
considered stations. (g–l) Median spectra of the seismic signal recorded by the vertical component of 
the six considered stations. Arrows and labels in (g–l) indicate the spectral peaks corresponding to 
short-period secondary microseisms (SPSM), secondary microseisms (SM) and primary microseisms 
(PM). 

The time variability of the microseism amplitude was investigated by calculating the hourly 
root-mean-square (RMS) amplitude of the seismic signal filtered in different frequency bands: (i) 
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0.050–0.077, (ii) 0.1–0.2, (iii) 0.2–0.4, (iv) 0.025–0.050, (v) 0.4–0.8, and (vi) 0.05–0.4 Hz. In particular, the 
band (i) corresponds to the primary microseism, (ii) to the secondary microseism, (iii) to the short-
period secondary microseism, (iv) has a frequency lower than the primary microseism, (v) is 
characterized by a frequency higher than the short-period secondary microseism, and, finally, (vi) 
comprises primary, secondary, and short-period secondary microseisms. Bands (iv) and (v) have 
been introduced to verify the presence of sea dynamics-related seismic signals at frequencies different 
from the classical primary, secondary, and short-period secondary microseism bands. In Figure 3, the 
variation over time of the seismic RMS amplitude in band (vi) is shown. 

 
Figure 3. RMS amplitudes of the seismic signal recorded by the vertical component of the six 
considered stations (a: AIO; b: EFIU; c: EPOZ; d: HAGA; e: HLNI; f: MSRU), and filtered in the band 
0.05–0.4 Hz, comprising short-period secondary, secondary, and primary microseisms. 

2.3. Correlation Analysis 

Following the idea of several authors, e.g., [26–29], maps showing the spatial variability of 
correlation coefficients, computed between the time series of seismic RMS amplitudes and the time 
series of significant wave height, obtained in each grid cell of the hindcast maps, were calculated. As 
such time series should correlate well at or near the source region of the microseism [28], this analysis 
provides an idea of the location of the main sources of microseisms recorded by the considered 
seismic stations.  

Following [28,19], in place of using the more common Pearson correlation coefficient, we made 
use of the Spearman correlation coefficient. The former should be applied to explore the linear 
dependence between normally distributed parameters. As both significant wave height and seismic 
RMS amplitude do not have a normal distribution, as well as their relationship is likely nonlinear 
[27,28], the Spearman correlation coefficient was preferred. In addition, unlike the Pearson 
correlation coefficient, the Spearman correlation coefficient is less affected by outliers. The Spearman 
correlation coefficient, defined as a nonparametric measure of rank correlation, can be computed as 
follows [28]: 
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𝜌 = 1 − ∑ ,  (3) 

where di is the difference between the ranks of the two parameters and n is the number of 
observations. As both seismic RMS amplitudes and significant wave heights are characterized by a 
sampling period of 1 h (much longer than any physically possible delays between the two time series), 
a simple zero-lag correlation was computed. Each considered time series of seismic RMS amplitude 
and significant wave height has a duration of 8 years and an hourly sampling period, thus totaling 
to ~70,000 samples per series. As for the spatial resolution, 101 × 251 grid cells belonging to the 
hindcast maps (corresponding to 25,351 correlation coefficients computed for each station and each 
frequency band) were taken into account. 

The correlation maps between significant wave height and seismic RMS amplitudes, computed 
at distinct seismic stations and different frequency bands, are shown in Figure 4. Furthermore, in 
order to highlight relationships between the correlation coefficient and distance from the station 
recording the microseism to the sea grid cell providing the significant wave height data, cross-plots 
showing the distance in the x-axis and the correlation coefficient in the y-axis were obtained (Figure 
5). 

 
Figure 4. Maps of a portion of the Mediterranean Sea, showing the spatial distribution of Spearman’s 
correlation coefficient computed between significant sea wave height and seismic RMS amplitudes, 
calculated on the vertical component of the six considered stations and filtered in different frequency 
bands (see plot titles). The black dots indicate the locations of the considered stations. 
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Figure 5. Cross-plots showing the relationship between Spearman’s correlation coefficient, computed 
between significant sea wave height and seismic RMS amplitudes at different frequency bands (see 
plot titles), and the distance between the seismic station and the sea grid cell. 

2.4. Machine Learning 

In order to explore the possibility of predicting the spatial distribution of sea wave height by 
microseisms, the random forest (RF) technique was applied. RF is a supervised machine learning 
technique, capable of both classification and regression, making use of an ensemble of decision trees 
to allow for superior performance and lower sensitivity to over-fitting compared to single classifiers 
[30,31]. RF has had several applications in geoscience, such as data-driven modeling of mineral 
prospectivity [32], lithological classification of underexplored areas by geophysical and remote 
sensing data [33], and atmospheric chemistry transport models [34]. 

We tried to link the microseisms recorded by different seismic stations in distinct frequency 
bands to the spatial distribution of significant wave height. In particular, we trained a regression 
model by using the seismic RMS amplitude time series as an input and the temporally corresponding 
hindcast maps of significant wave height as the output. To avoid overfitting problems in building the 
model, we applied the following method divided into three main steps: (a) Training; (b) validation; 
(c) testing. 

First, to evaluate the capability of generalization of the final model [35], we deleted from the 8 
year long time series (2010–2017) two consecutive months of data (November–December 2017), 
reserving them for the final test. Then, by using the remaining data, a k-fold cross-validation 
technique was applied to evaluate the spatial variability of the model predicting capability. Such a 
technique consists of [31]:  

1. Dividing the original input dataset into two complementary subsets;  
2. building a model on one subset (called the “training set”) (step a);  
3. validating the model performance on the other subset (“validation set”) (step b);  
4. repeating (i–iii) “k” times, selecting different time intervals as the training set and validation set 

each time.  
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In the applied k-fold cross-validation, the input dataset was partitioned into 10 distinct and 
complementary pairs of training and validation sets (k = 10). The parameters computed to evaluate 
the predicting capability of the model were: (i) The mean absolute error (MAE) between the hindcast 
significant sea wave height and the predicted one; (ii) the mean absolute percentage error (MAPE), 
given by the MAE divided by the mean value of sea wave height in the considered sea grid cell, 
multiplied by 100. The maps shown in Figure 6 exhibit the space distribution of the average values 
of MAE and MAPE, obtained by the 10-fold cross-validation technique, together with the space 
distribution of the mean significant wave height.  

 
Figure 6. Spatial distribution of (a) mean absolute error (MAE), (b) mean absolute percentage error 
(MAPE), and (c) mean significant wave height computed during the interval 2010–2017. The black 
dots with labels “a,” “b,” and “c” indicate the locations of the grid cells, which the cross-plots in Figure 
7 are referred to. 

The final model was trained with the whole dataset January 2010–October 2017 and tested on 
the test set November–December 2017 (step (c) “testing”). In particular, comparisons between 
hindcast maps and predicted maps were carried out (three days are reported in Figure 8 as examples). 
Moreover, the cross-plots of hindcast significant wave height versus the predicted significant wave 
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height for three grid cells located nearby the coastlines of the Sicily Channel (Figure 7a), Ionian Sea 
(Figure 7b), and Tyrrhenian Sea (Figure 7c) (see Figure 6 for the locations of the three grid cells) were 
also obtained.  

 
Figure 7. Scatter plots showing the hindcast significant wave height versus the predicted significant 
wave height from January 2010 to October 2017 for three grid cells, whose locations are indicated in 
Figure 6. The red dashed line in (a–c) is the y = x line. The value of the determination coefficient (R2) 
is also reported in the plots. 

 
Figure 8. (a–c) Hindcast maps of significant sea wave height, (d–f) predicted maps of significant sea 
wave height based on microseism data, and (g–i) corresponding spatial distribution of the prediction 
error, computed as the difference between the predicted maps and the hindcast maps, during three 
selected time intervals: (a,d,g) 03/11/2017 01:00, (b,e,h) 28/12/2017 17:00, and (c,f,i) 29/12/2017 05:00. 

Finally, the RF technique also provides an index of input importance (indicated in %), which is 
shown by the histograms of Figure 9a–c. Aggregation through summation of the input importance 
was also carried out to rank the microseism bands (Figure 9d–f) and the seismic station (Figure 9g–i) 
for significant wave height reconstruction purposes. 
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Figure 9. (a–c) Index of importance of all the inputs taken into account for the three grid cells labelled 
“a,” “b,” and “c” in Figure 6, respectively. (d–f) Aggregation through summation of the input 
importance allowing the ranking of the frequency bands for three grid cells labelled “a,” “b,” and “c” 
in Figure 6, respectively. (g–i) Aggregation through summation of the input importance allowing the 
ranking of seismic stations for three grid cells labelled “a,” “b,” and “c” in Figure 6, respectively. 

3. Results 

Concerning the spectral analysis, it is worth noting that in most of the considered stations (EPOZ 
is the only exception), it is possible to clearly distinguish three peaks in the spectra, corresponding to 
primary, secondary, and short-period secondary microseisms (PM, SM, and SPSM, respectively, in 
Figure 2g–l). Furthermore, as observed in the seismic recordings around the world, e.g., [36], the 
spectral analysis of the microseism acquired in Eastern Sicily shows that most of the energy is 
recorded in the secondary and short-period secondary microseism bands, while the primary 
microseism exhibits a much weaker spectral amplitude (Figure 2). In particular, the short-period 
secondary microseism peak is the strongest among the three in all the considered stations (Figure 2g–
l). With the exception of AIO station, high values of spectral amplitude can also be observed at 
frequencies above the short-period secondary microseism band (>0.4 Hz). In addition, in both 
spectrograms and RMS amplitude time series, it is possible to observe a seasonal modulation with 
maxima during the winters and minima during the summers (Figures 2a–f and 3).  

As for the correlation maps, variable Spearman correlation values were obtained at the different 
stations and frequency bands. In particular, in agreement with [29], the highest correlation values (up 
to 0.8) were observed in the short-period secondary microseism band (0.2–0.4 Hz), and successively 
(up to 0.7) in the highest considered frequency band (0.4–0.8 Hz) (Figures 4 and 5). The primary 
microseism band (0.05–0.077 Hz), as well as the lower frequency band (0.025–0.05 Hz), show very 
low correlation values (up to 0.3). Intermediate correlation values were computed in the secondary 
microseism band (0.1–0.2 Hz). Finally, high values of correlation are also observed in the band 
comprising primary, secondary, and short-period secondary microseisms (0.05–0.4 Hz). In addition, 
Figure 5 clearly shows a decrease in the correlation values with increasing distance from the station 
recording the microseism to the sea grid cell providing the significant wave height data.  

Furthermore, it is evident how the spatial distribution of correlation is affected by the station 
location (Figure 4). Indeed, the correlation maps, obtained by the microseism recorded by the 
northernmost station (MSRU), exhibit the highest correlation values in the Tyrrhenian Sea. On the 
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other hand, the southernmost stations (HLNI and HAGA) show the highest correlation values in both 
the Ionian Sea and Sicily Channel.  

Regarding the machine learning analysis, as suggested by the spatial distribution of MAE and 
MAPE (Figure 6), by the cross-plots of hindcast significant wave height versus the predicted 
significant wave height (Figure 7) and by the comparisons between hindcast maps and predicted 
maps (Figure 8), promising results have been obtained. In particular, it is evident how the lowest 
values of MAE and MAPE were obtained in the Mediterranean portion closest to Sicily and then to 
the seismic stations providing the microseism information. In particular, the areas with low values of 
MAE (down to ~0.1 m) mainly coincide with the coastlines of Sicily (especially the Ionian and 
Tyrrhenian coastlines), as well as with the southernmost part of the Tyrrhenian Sea (Figure 6a), which 
is also characterized by very low mean values of significant wave height (Figure 6c). On the other 
hand, the areas with the lowest MAPE (minimum values equal to ~25%) comprise the southernmost 
part of the Tyrrhenian Sea, a part of the Ionian Sea and Sicily channel (Figure 6b). 

The estimated aggregated importance of the different frequency bands in the three considered 
points nearby the Sicilian coastlines (see black dots with labels “a,” “b,” and “c” in Figure 6) reflects 
the results obtained by the correlation analysis (Figure 9d–f). Indeed, the frequency band with the 
highest importance in the sea state prediction is the one characterized by the highest Spearman 
correlation coefficient, that is, the short-period secondary microseism band (0.2–0.4 Hz; Figure 9d–f). 
Furthermore, the values of aggregated importance of the stations generally exhibit a dependence on 
the distance of the considered sea point from the station providing microseism data (Figure 9g–i). 
This is especially evident for points “b” and “c.” As for the former, the stations with the highest 
importance are those closest to such a point, HAGA, EPOZ, and HLNI (Figure 9h). Regarding point 
“c,” the station showing the highest importance is that closest to the Tyrrhenian coastline, MSRU 
(Figure 9i). 

4. Discussion 

Spectra of the microseism recorded by stations installed in Eastern Sicily show very high 
amplitudes of the short-period secondary microseism (Figure 2). This can be due to the fact that the 
considered stations are very close to the sea coastlines (maximum distance equal to ~19 km for HLNI) 
and, hence, record well the short-period secondary microseism, whose sources are linked to local sea 
state and wave activity, and influenced by local winds, e.g., [17,18]. According to [17], the clear split 
between the spectral peaks of short-period secondary microseisms and secondary microseisms, 
observed in most of the computed spectra (Figure 2g–l), is a common feature for stations located 
nearby the shoreline.  

Spectral analysis also shows relatively high amplitudes at frequencies above the short-period 
secondary microseism band (Figure 2g–l). As indicated by the high correlation values with the sea 
wave height (Figures 4 and 5), such high seismic amplitudes at high frequencies (>0.4 Hz) can be 
related to energy transfer from the hydrosphere/atmosphere to the solid earth. According to previous 
studies, e.g., [37,38], such a high-frequency microseism could be related to wind-driven ocean waves 
breaking on the shoreline. In any case, we cannot exclude in this band (>0.4 Hz) small contributions 
from anthropogenic seismic noise, as well as from the continuous volcanic tremors recorded at the 
seismic stations located on or nearby the Etna volcano edifice (such as EPOZ and EFIU) and 
characterized by a frequency band 0.5–5.0 Hz [39]. 

Seasonal modulation, identified in both spectrograms and seismic RMS amplitude time series 
(Figures 2a–f and 3), has been observed in all the areas worldwide with temperate latitudes, e.g., 
[40,41], and is due to the more efficient energy transfer from the sea to the solid earth in winters, 
when the seas are stormier. Areas located close to the Equator, as well as regions at very high 
latitudes, do not show such a pattern: In the former, noise amplitude is mostly stable over the year, 
e.g., [41], while in the latter, the microseism seasonal modulation is different, as during the winters 
the oceanic waves cannot efficiently excite seismic energy because of the sea ice, e.g., [42,19]. 

By gathering all the information provided by the correlation maps (Figures 4 and 5), it can be 
inferred that the microseisms recorded by the considered stations are mostly generated by sources 
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located close to the stations, and then to the Eastern Sicilian coastlines. This was expected for the 
short-period secondary and partially for primary microseisms. Indeed, the former is characterized by 
high frequencies and then by quick attenuation with distance, e.g., [17]. As for the latter, shallow 
water conditions are necessary for primary microseism generation: Focusing on primary microseisms 
at the low frequency of 0.05 Hz and following the Airy linear wave theory, most primary microseism 
generations should take place at water depths less than ~150 m, e.g., [17,12].  

However, as also stated by [43], it must be underlined that the correlation analysis (i) shows only 
the dominant source areas over the entire analyzed time period 2010–2017, (ii) has no temporal 
resolution, and (iii) is characterized by a limited space resolution of 1/24°. Hence, we cannot rule out 
the possibility that part of the recorded microseism is generated in open sea far away from the Sicilian 
coasts. This could be the case for part of the secondary microseism, whose source can partially be 
associated with wave–wave interaction mechanisms in the deep ocean, e.g., [44,45], assuming that 
losses from both scattering and transfer to the solid earth are not too effective [46]. In addition, [47] 
have recently shown that primary microseisms at low frequency (~0.05 Hz) can have source regions 
located nearby coastlines thousands of kilometers away from the seismic stations. 

Machine learning analysis shows promising results in the spatial reconstruction of sea state in 
terms of significant wave height by microseism. Indeed, low values of both MAE (down to ~0.1 m) 
and MAPE (down to ~25%) were computed in a portion of the Mediterranean Sea close to Sicily and 
then to the seismic stations providing microseism information (Figure 6a,b). This finding, together 
with the observed dependence of both Spearman’s correlation coefficient (Figure 5) and input 
importance (Figure 9h,i) from the distance sea grid cell-seismic station, suggests that a reliable 
reconstruction of the sea state in a wide area needs microseism data recorded by dense networks, 
comprising stations evenly distributed along the coastlines. By doing so, microseisms can become a 
very useful tool for significant wave height monitoring, even as effective as other instruments 
routinely used for that purpose. Indeed, seismic stations have lower costs of both installation and 
maintenance with respect to wave buoys. In addition, seismic signals are acquired continuously with 
a sampling rate from tens to hundreds of Hz, and then have a much higher temporal resolution than 
radar altimeters and synthetic aperture radar. As for the spatial resolution, it depends on the number 
of the stations, installed nearby the coastlines.  

Finally, a further advantage of the seismic signals is represented by the fact that, in most cases, 
it is not necessary to install a seismic network specifically for microseism monitoring, but it is possible 
to make use of the broadband stations today installed worldwide to monitor seismic and volcanic 
activities.  

In the future, effort will be taken in the reconstruction of wave directional information, which is 
essential in the overall description of the sea state. 

5. Conclusions 

We analyzed the microseism recorded by seismic stations, located close to the Eastern Sicily 
coastlines, and quantitatively compared it to significant wave height data, provided by the hindcast 
maps, by using both statistical and machine learning approaches. These are the main findings: 

• Short-period secondary microseisms showed the highest amplitude values among the 
considered frequency bands. In addition, high seismic amplitudes were observed at frequencies 
above the short-period secondary microseism band (0.4–0.8 Hz), likely related to energy transfer 
from the hydrosphere/atmosphere to the solid earth. 

• Seasonal modulations of microseism amplitudes, due to the more efficient energy transfer from 
the sea to the solid earth in winters, when the seas are stormier, were identified. 

• Correlation analysis suggests how the microseism recorded by the considered stations is mostly 
generated by sources located close to the stations, and then to the Eastern Sicilian coastlines. 

• Machine learning analysis shows promising results in the spatial reconstruction of sea state in 
terms of significant wave height by microseism data. In the future, a reliable reconstruction of 
the sea state in wide areas will need microseism data recorded by dense networks, comprising 
stations evenly distributed along the coastlines. 
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