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Abstract: Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation 
of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone 
disease is a common manifestation observed in MM patients and represents the most severe cause 
of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of 
MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with 
defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the 
present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, 
on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce 
differentiation of human monocytes into OCs and to inhibit the expression of OC markers when 
added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation 
of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in 
combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling 
in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set 
of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) 
receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that 
PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. 
In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing 
osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling 
pathway activation, thus, representing a promising therapeutic option to improve the complex 
pathological condition of MM patients. 
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1. Introduction 

Multiple myeloma (MM) is a clonal B-cell malignancy characterized by accumulation of clonal 
plasma cells (PCs) in the bone marrow (BM), leading to bone loss and BM failure [1,2]. Pathogenetic 
mechanisms of MM bone loss are closely linked to MM PCs and osteoclasts (OCs) hyperactivity 
coupled with defective osteoblasts (OBs), which are unable to counteract bone resorption [3]. 
However, the molecular mechanisms underlying bone lesion in MM are still a matter of debate. 
Therefore, understanding the biological significance of this process would help in developing 
therapeutic strategies to control bone loss in MM patients. Recently, several inducers of bone lesion 
have been identified as targets for treating osteolytic complications, in addition to current treatments, 
including nitrogen-containing bisphosphonates and RANKL inhibitors [4]. Unfortunately, treatment 
with RANKL inhibitors can cause severe adverse effects, such as increased risk of infection, joint and 
muscle pain, uncontrolled serum calcium, osteonecrosis, and allergic reactions [5,6]. Furthermore, 
previous studies suggest that malignant PCs might themselves alter the cellular composition of the 
bone [7]. Indeed, PCs promote an osteoclastogenic effect by both exerting bone destruction and, 
throughout the recruitment, causing differentiation and activation of OC progenitors within the BM. 
In this scenario, the identification of proteasome as an essential machinery by which tumor cells 
regulate primary cellular processes, led to the introduction of proteasome inhibitors (PIs) as a 
breakthrough treatment for MM, in the clinical practice [8,9]. During osteoclastic differentiation, the 
binding of RANKL to RANK on the surface of osteoclast precursors activates NF-𝜅B promoting 
osteoclast maturation and bone resorption [10]. Several authors demonstrated that bortezomib was 
able to inhibit NF-κB activation in osteoclasts, thus reducing osteoclastic differentiation and bone 
resorption [11–13]. To this regard, we have recently demonstrated that the proteasome inhibitor 
Bortezomib, commonly used to treat MM, inhibited osteoclastic differentiation by modulating the 
chitinase family genes [14]. We also observed that Bortezomib was able to inhibit osteoclast 
differentiation, thus, supporting the indication of Bortezomib in osteolytic MM [14]. Moreover, the 
increased bone resorption in MM patients is caused by impaired osteoblast differentiation. Several 
evidences suggest that MM cells interrupt several important signaling pathways such as the 
RANKL/OPG axis, which plays a key role in bone remodeling [15]. In such a context, PIs are able to 
significantly reduce RANKL expression levels, even if OPG were found to be not modulated by PIs 
treatment. Such a phenomenon induces a significant reduction of the RANKL/OPG ratio, thus, 
inhibiting MM bone disease [15]. 

Recently Ixazomib, an orally administrable third-generation PI, has been approved in the US 
and Europe, which has increased the therapeutic options for treating MM patients [16]. Previously 
reported evidences highlighted the molecular mechanisms underlying the activity of proteasome 
inhibitors as suppressors of osteoclastogenesis, thus, further supporting the therapeutic application 
of such agents in osteolytic MM [17,18]. Given the clinical importance of combined therapeutic 
approaches to reduce bone resorption in MM, we sought to investigate the role of PIs as concomitant 
suppressors of osteoclastogenesis and promoters of osteoblastogenesis. In this context, a crucial role 
in osteoblastogenesis is played by sonic hedgehog (SHH) signaling pathway [19]. SHH is a highly 
conserved pathway involved in patterning and morphogenesis of many organs in vertebrates [19] 
regulating OB differentiation and morphological transition [20–22]. SHH signaling is based on a 12-
transmembrane protein SHH receptor Patched1 (PTCH1) that represses the 7-transmembrane protein 
Smoothened (SMO); following binding to its ligand SHH, PTCH1 is internalized and the SMO 
repression is alleviated, thus, inducing a complex and potent activation of the GLI-Kruppel family 
members (GLI1, GLI2, and GLI3) acting as transcription activators/repressors [23–25]. In particular, 
such cellular cascade is known as canonical SHH signaling pathway. Vice versa, non-canonical SHH 
signaling pathway does not rely on GLI-induced transcription modulation [26].  
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This study aimed at investigating the role of Ixazomib in modulating osteogenesis-related genes 
throughout SHH signaling pathway activation in the precursors of OCs and OBs, thus, further 
expanding the knowledge of the therapeutic effects of currently used compounds, as a treatment for 
MM patients with osteolytic complications.  

2. Results 

2.1. Ixazomib Inhibits Osteoclastogenesis in Human Monocytes (MCs) Cultures under OC Differentiation 
Protocol 

In order to evaluate a potential effect of Ixazomib as inhibitor of osteoclastogenesis, we analyzed 
in vitro, the effects of Ixazomib in human monocyte (MCs) cultures, using a conventional 
osteoclastogenic differentiation protocol [10]. We first assessed the mRNA levels of osteoclastogenic 
differentiation markers, analyzing the TNF receptor superfamily member 11a (RANK), which is an 
essential mediator for osteoclast, and we found a strong upregulation in the OC medium exposed 
cultures (5.32 ± 0.1, mean ± SEM, p-value < 0.001 vs. control, Figure 1A). This increase was not 
observed in MCs treated with Ixazomib alone (1.31 ± 0.1, mean ± SEM, p-value = 0.14, Figure 1A), but 
Ixazomib was able to revert RANK increase in MCs exposed to the OC medium (2.38 ± 0.4, mean ± 
SEM, p-value = 0.286 vs. control, p-value = 0.003 vs. OC medium, Figure 1A). Similar effects were 
observed while analyzing the lysosomal cysteine proteinase involved in bone remodeling and 
resorption cathepsin K (CTSK), and in the matrix metallopeptidase 9 (MMP9) mRNA. Indeed, MCs 
showed a significant increase of CTSK (4.40 ± 0.4, mean ± SEM, p-value < 0.001 vs. control, Figure 1B) 
and MMP9 (5.66 ± 0.8, mean ± SEM, p-value < 0.001 vs. control, Figure 1C) in the OC medium. 
Conversely, Ixazomib treatment under differentiating conditions was able to significantly reduce 
CTSK levels (2.34 ± 0.4, mean ± SEM, p-value = 0.002 vs. OC medium, Figure 1B) and MMP9 levels 
(3.26 ± 0.5, mean ± SEM, p-value = 0.019 vs. OC medium, Figure 1C), as compared to the OC-medium-
exposed MCs. We finally analyzed the level of the chitinase 3 like 1 (CHI3L1), which plays a crucial 
role in inflammation, tissue remodeling and in OC differentiation process. Consistently, we observed 
that the OC medium significantly increased the level of CHI3L1 (2.41 ± 0.2, mean ± SEM, p-value < 
0.001 vs. control, Figure 1D), whereas Ixazomib alone was not able to induce upregulation of these 
markers in MCs, compared to the control cultures (2.34 ± 0.4, mean ± SEM, p-value = 0.9503 vs. control, 
Figure 1D). Interestingly, Ixazomib treatment in the OC medium condition inhibits the induction of 
the CHI3L1 gene expression (2.34 ± 0.4, mean ± SEM, p-value = 9503 vs. OC medium, p-value < 0.001 
vs. OC medium Figure 1D). We further assessed the morphological pattern of MCs exposed to OC 
medium (Figure 1E), finding a characteristic morphological change at 21 days post differentiation 
induction (Figure 1E). Human MCs cells were differentiated into bona fide osteoclasts exhibiting 
significantly increased cell size and polynucleated cell bodies (Figure 1E). As expected, Ixazomib 
treated MCs under standard culture conditions did not show any detectable osteoclast-like structure 
(Figure 1E). Ixazomib in the cotreatment with OC differentiation medium was able to fully revert the 
osteoclastogenesis process, with undetectable polynucleated cells and osteoclast-like cells (Figure 
1E). Finally, we analyzed the chitinase 1 (CHIT1) enzymatic activity, observing a significant reduction 
in the Ixazomib-treated OC-medium-exposed cultures (Figure 1F).  
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Figure 1. Ixazomib inhibits osteoclastogenesis in human monocyte (MCs) cultures under osteoclast 
(OC) differentiation protocol. qRT-PCR analysis of mRNA levels of the osteoclastogenic markers 
RANK (A), CTSK (B), MMP9 (C) and CHI3L1 (D) in MC cultures exposed to the OC medium, MCs 
treated with Ixazomib, and MCs exposed to the OC medium and treated with Ixazomib. 
Representative pictures of control MCs, MCs exposed to OC medium, MCs treated with Ixazomib 
and MCs exposed to the OC medium treated with Ixazomib (1 nM). DAPI (blue); PHALLOIDIN 
(green); scale bar: 50 μm (E). CHIT1 enzymatic activity in MC cultures exposed to the OC medium, 
MCs treated with Ixazomib, and MCs exposed to the OC medium and treated with Ixazomib (F). OC 
medium—osteoclastogenic medium. * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001 vs. 
control or between groups. 

2.2. Ixazomib Stimulates Osteoblastogenic Differentiation of Human Mesenchymal Stem Cells (MSCs) 

Given the role of Ixazomib as a robust suppressor of osteoclastogenesis on MCs, we sought to 
analyze the potential role of Ixazomib as a modulator of osteoblastogenesis on MSCs. To do so, we 
used the HS-5 (mesenchymal stroma cells, MSCs) cell line [27,28] and cultures were subjected to a 21 
days differentiation protocol with the osteoblastogenic (OB) medium and the key markers of OBs 
were analyzed. Ixazomib treated control cultures and OB-medium-exposed cultures treated with 
Ixazomib were also included in the analysis. As expected, the MSC-cultures-exposed OB medium 
showed significantly increased mRNA levels of Bone morphogenetic protein 2 (BMP2) vs. the control 
MSCs (3.43 ± 0.2, mean ± SEM, p-value = 0.017 vs. control, Figure 2A). Notably, the Ixazomib treatment 
alone was able to significantly increase BMP2 mRNA levels in standard MSC culture conditions (3.66 
± 0.3, mean ± SEM, p-value = 0.013 vs. control, Figure 2A). Importantly, Ixazomib exerts a synergistic 
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effect when delivered in cotreatment with the OB medium (p-value < 0.001 vs. OB medium and p-
value < 0.001 vs. Ixazomib alone), increasing the levels of BMP2 mRNA of about 11 folds, as compared 
to the control cultures (10.87 ± 0.9, mean ± SEM, p-value < 0.001 vs. control, Figure 2A). We then 
analyzed the mRNA levels of two additional genes, the RUNX family transcription factor 2 (RUNX2), 
which is an essential OBs regulatory factor, and the secreted protein acidic and cysteine rich (SPARC), 
which encodes for a matrix-associated protein required for bone calcification.  

 
Figure 2. Ixazomib stimulates osteoblastogenic differentiation of human mesenchymal stem cells 
(MSCs). (A–C) qRT-PCR analysis of mRNA levels of the osteogenic markers BMP2 (A), RUNX2 (B), 
and SPARC (C) in MSC cultures exposed to the OB medium, MSCs treated with Ixazomib, and MSCs 
exposed to the OB medium and treated with Ixazomib. (D) Representative pictures of Alizarin red 
staining in control MSCs, MSCs exposed to the OB medium, MSCs treated with Ixazomib, and MSCs 
exposed to the OB medium treated with Ixazomib. Scale bar: 50 μm. OB medium—osteoblastogenic 
medium. * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001 vs. control or between groups. 

Both these markers were upregulated in the OB medium exposed MSC cultures (RUNX2: 7.19 ± 
0.6, mean ± SEM, p-value < 0.001 vs. control; SPARC: 3.86 ± 0.4, mean ± SEM, p-value = 0.003 vs. 
control, Figure 2B,C). Notably, Ixazomib exposition for 21 days was sufficient to significantly increase 
both RUNX2 (3.37 ± 0.3, mean ± SEM, p-value = 0.012 vs. control, Figure 2B) and SPARC (8.21 ± 0.6, 
mean ± SEM, p-value < 0.001 vs. control, Figure 2C) mRNA levels. RUNX2 and SPARC were also 
found to be significantly upregulated in MSCs under the osteoblastogenic differentiation condition 
cotreated with Ixazomib (RUNX2: 11.41 ± 0.9, mean ± SEM, p-value < 0.001 vs. control; SPARC: 6.92 
± 0.7, mean ± SEM, p-value < 0.001 vs. control, Figure 2B,C). 

We finally analyzed the potential of Ixazomib alone and in cotreatment with the OB medium to 
induce calcium deposits in MSC cultures. As shown in Figure 2D, a strong Alizarin red staining was 
detected in the OB-medium-exposed MSCs at 21 days of cultures. Of note, MSC cultures treated with 
Ixazomib or exposed to the osteoblastogenic differentiation protocol and cotreated with Ixazomib 
showed a clear accumulation of calcium deposits (Figure 2D). 
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2.3. Ixazomib, but Not Bortezomib, Binds Smoothened (SMO) Receptor in Human Mesenchymal Stem Cells 
(MSCs) 

Several evidences pinpointed a crucial role of SHH signaling in controlling cell fate, 
proliferation, and stem cells differentiation [29–32]. As such, we moved to study a potential 
mechanistic relation between Ixazomib-induced osteoblastogenesis stimulation and SHH signaling. 
Therefore, we compared the ability of Ixazomib and Bortezomib to bind and to stabilize SMO, the 
effector of the SHH intracellular signaling. Cellular thermal shift assay (CETSA) confirmed that 
Ixazomib, but not Bortezomib, was able to stabilize the SMO protein (Figure 3A,B), thus, suggesting 
that Ixazomib might act as an SMO ligand. 

 
Figure 3. Ixazomib, but not Bortezomib, binds Smoothened (SMO) receptor in human mesenchymal 
stem cells (MSCs). (A) Representative blot of SMO analyzed by Cellular Thermal Shift Assay (CETSA) 
in MSCs protein content control and exposed to Ixazomib at 68 °C, 72 °C, 76 °C, and 80 °C. (B) 
Representative blot of SMO analyzed by CETSA in MSCs protein content control and exposed to 
Bortezomib at 68 °C, 72 °C, 76 °C, and 80 °C. (C,D) qRT-PCR analysis of mRNA levels of PTCH1 (C) 
and SMO (D) in MSC cultures exposed to the OB medium, MSCs treated with Ixazomib, and MSCs 
exposed to the OB medium and treated with Ixazomib. OB medium—osteoblastogenic medium. * p-
value < 0.05, ** p-value < 0.01 and *** p-value < 0.001 vs. control or between groups. 
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These results were further confirmed by qRT-PCR analysis on PTCH1 and G protein-coupled 
receptor SMO mRNA levels. Besides confirming a significant role of the SHH signaling during 
osteoblastogenesis (PTCH1: 3.85 ± 0.4, mean FC ± SEM, p-value < 0.001 vs. control; SMO: 2.65 ± 0.3, 
mean FC ± SEM, p-value = 0.003 vs. control; Figure 3C,D), we found that Ixazomib alone was able to 
significantly increase PTCH1 (4.87 ± 0.3, mean FC ± SEM, p-value < 0.001 vs. control, Figure 3C) and 
SMO (7.70 ± 0.3, p-value < 0.001 vs. control, Figure 3D) mRNA levels. Of note, the OB medium and 
Ixazomib, when in cotreatment, significantly increased the mRNA levels of both markers (PTCH1: 
6.07 ± 0.3, mean FC ± SEM, p-value < 0.001 vs. control; SMO: 5.57 ± 0.5, mean FC ± SEM, p-value < 
0.001 vs. control; Figure 3C,D). 

2.4. Ixazomib Activates the Canonical GLI1-Dependent Sonic Hedgehog Signaling Pathway in MSCs 
inducing Osteoblastogenic Differentiation 

We then investigated the differentiation profile of MSCs upon exposition to osteoblastogenic 
differentiation and Ixazomib treatment. We first assessed the expression of BMP2 in MSCs via 
immunofluorescence, finding a strong BMP2 upregulation and the characteristic morphological 
changes of differentiated MSCs, as compared to the untreated control cultures (Figure 4). We 
confirmed that the Ixazomib treatment was sufficient to induce a differentiation towards an OB 
phenotype in human MSCs (Figure 4). In order to assess the potential activation of the SHH pathway, 
we also analyzed the expression of the transcription factor GLI1, activated by canonical SMO-
dependent SHH signaling.  

 
Figure 4. Ixazomib activates canonical GLI1-dependent Sonic Hedgehog (SHH) signaling pathway in 
MSCs inducing osteoblastogenic differentiation. Representative pictures of BMP2 (green) and GLI1 
(red) immunostaining in control MSCs, MSCs exposed to the OB medium, MSCs treated with 
Ixazomib and MSCs exposed to the OB medium treated with Ixazomib. Scale bar: 25 μm. OB 
medium—osteoblastogenic medium. 
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We found a robust nuclear translocation of GLI1 in differentiated human MSCs that were BMP2 
positive (Figure 4), thus, indicating that the SHH pathway plays a key role in modulating stem cell 
fate and in inducing an osteoblastogenic differentiation. Of note, GLI1 was found to be extranuclear 
in undifferentiated human MSCs and treatment with Ixazomib was able to induce a SMO-dependent 
nuclear translocation of GLI1 (Figure 4). 

2.5. MSCs Activates GLI1-Dependent SHH Signaling in OPM2 Cells 

Given the evidences on the key role of canonical SHH signaling in modulating the fate of MSCs 
and differentiation, we established an in vitro coculture system using human MSCs and multiple 
myeloma cells.  

We first assessed the nuclear translocation of GLI1 in H929 and OPM2 pre- and post-culture in 
the same well as that of the MSCs. We found that human H929 cells showed an increased nuclear 
localization of GLI1 and that the coculture with MSCs did not significantly alter the GLI1 
translocation (Figure 5A,B). Importantly, OPM2 cells displayed a relatively low GLI1 activation 
(Figure 5C) that was observed upon same-well coculture with MSCs (Figure 5C,D). Concomitantly, 
we analyzed GLI1 activation on MSCs in control and post-cocultures with PCs. We found that both 
H929 and OPM2 cells (i.e., CD138 positive cells) were able to suppress the SHH signaling pathway 
on MSCs (i.e., CD90 positive cells, Figure 6A,B). These evidences support the hypothesis that 
myeloma cell lines reduce the SHH signaling pathway on MSCs, thus, inhibiting osteoblastogenic 
differentiation. 

 
Figure 5. HS5 activates GLI1-dependent SHH signaling in OPM2 cells. (A,B) Representative pictures 
of H929 cells control and H929 cells cocultured with HS5 (A) and quantification of percentage of H929 
cells expressing high nuclear GLI1 levels (D). (C,D) Representative pictures of OPM2 cells control and 
OPM2 cells cocultured with HS5 (C) and quantification of percentage of OPM2 cells expressing high 
nuclear GLI1 levels (D). Scale bar: 25 μm. * p-value < 0.05 vs. OPM2 control. 
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Figure 6. H929 and OPM2 cocultured with HS5 cells suppress nuclear GLI1 translocation. (A) 
Representative pictures of HS5 cells control, HS5 cells cocultured with H929 cells, and HS5 cells 
cocultured with OPM2 cells; cells were stained for GLI1 (red), CD138 (white, i.e., H929 or OPM2), and 
CD90 (green, i.e., HS5). (B) Quantification of percentage of HS5 cells (i.e., CD90 positive cells) 
expressing high nuclear GLI1 levels. Scale bar: 25 μm. * p-value < 0.05 and *** p-value < 0.001 vs. HS5 
control. 

3. Discussion 

Osteolytic bone disease is a central hallmark of MM, which severely impacts quality of life in 
patients [33,34]. PIs, such as Bortezomib, represent the cornerstones for combinatorial treatment of 
MM, and have shown significant effects in reducing bone resorption and promoting bone remodeling 
[9,35]. Such an effect has been proposed to be linked to the activity on nuclear factor kB (NF-kB) 
pathway and downregulation of CHIT1, CHI3L1, and MMP9, which are involved in both 
osteoclastogenesis and OC functioning [14]. Particularly, Bortezomib induces the stabilization of NF-
kB antagonist I-kB and AP-1 transcription factors c-Fos and c-Jun, resulting in a reduction of 
osteoclast differentiation. Moreover, CHI3L1 has been shown to be targeted by Bortezomib and, 
besides being proposed as a prognostic marker for osteolytic complication in MM patients, it is a 
crucial modulator of mature OCs activity [14]. Given the increased therapeutic potential of third-
generation PIs, we focused our attention on Ixazomib-induced effects on osteoclastogenesis and 
osteoblastogenesis. In this work we showed that Ixazomib was able to modulate the osteogenic and 
osteoclastic differentiation in vitro. Our data were in line with previously reported evidences on 
Bortezomib. We found that Ixazomib was able to inhibit the osteoclastogenic differentiation markers, 
such as RANK, MMP9, CTSK, and CHI3L1. Moreover, we observed a lower enzymatic activity of 
CHIT1 in MCs exposed to the OC medium and treated with Ixazomib. Such an effect might be linked 
to the Ixazomib inhibition on NF-kB and to a lower level of extracellular CHIT1 protein [14]. Indeed, 
Ixazomib strongly inhibits the differentiation of OCs from monocytes, thus, suggesting that 
therapeutic efficacy induced by Ixazomib benefits from the modulation of osteolytic cell populations.  

In order to evaluate the impact of Ixazomib on the potential osteogenic effects and the 
underlying molecular players involved in this scenario, we sought to modulate MSCs fate and 
differentiation upon osteogenic commitment. Interestingly, we found that Ixazomib treatment was 
able to activate key molecular regulators that pushed MSC differentiation, such as RUNX2, BMP2, 
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and SPARC. Consistently, preclinical studies showed that clinically relevant concentrations of 
Ixazomib promote OB differentiation and inhibit OC formation in ex vivo experiments [36]. 
Furthermore, Yang et al., showed that Ixazomib was able to stimulate the parathyroid hormone 
(PTHR) inducing β-catenin signaling regulating the PTHR in OBs, which favors anabolic PTH action 
in bone [17,37]. Indeed, Wnt/β-catenin signaling pathway has been demonstrated to be activated by 
Ixazomib via β-catenin signaling via the cAMP/PKA-dependent pathway [37]. Notably, such 
evidences have also been previously reported for bortezomib and carfilzomib in Saos2 cells [38,39]. 
Our data suggest a potential mechanism in the modulation of bone remodeling mediated by 
Ixazomib treatment in vitro. Compelling evidences reported SHH signaling as crucial regulator of 
osteogenesis, at both, the embryonic stage and in adulthood, particularly to maintain bone mass [40–
42]. Pharmacological and genetic modulation of PTCH1 has shown that disruption of SMO repression 
enhances osteoblastogenesis and osteoclastogenesis [40]. We tested the hypothesis that PIs might 
directly interact with the effector of SHH pathway SMO. Our evidences collectively demonstrate that 
Ixazomib, but not Bortezomib, was able to bind and activate SMO, leading to GLI1 nuclear 
translocation in MSCs and canonical SHH signaling pathway activation. This phenomenon was 
sufficient to induce a differentiation towards an OB phenotype, also in MSCs not exposed to 
differentiation media, and was synergistically effective when delivered in the MSCs under 
differentiation protocol. Interestingly, experimental evidences suggest that osteoblastogenesis 
activation was directly modulated by SMO activation and GLIs-induced signaling [41,43]. In 
particular, it has been proposed that different levels of modulation on the SHH signaling might 
significantly affect differentiation of precursor cells, as a full ablation of the signal showed dominance 
of bone resorption over bone formation, while partial or pharmacological modulation of the SHH 
pathway showed the opposite effects [41]. Moreover, our data and previously reported evidences 
suggest that PIs act as repressors of OC differentiation, also by their activity on other crucial pathways 
involved in cell fate determination [14]. Recent findings demonstrated that inhibition of SHH 
signaling using cyclopamine, an SMO antagonist, reduces osteoblastogenesis, and that knocking 
down PTCH1, which suppresses SMO activity, was beneficial for OCs differentiation. 

The large body of evidences suggesting a crucial role of the SHH signaling in oncogenesis of B-
cell malignancies and the potential of Ixazomib to induce SHH signaling, prompted us to assess the 
PCs–MSCs crosstalk leading to a reduction of osteoblastogenesis in MM patients. As for concerns 
about a possible link between these observations and SHH signaling, we demonstrated that PCs acts 
as GLI1 suppressors on MSCs, thus, reducing the potential of MSCs to differentiate in OBs. To this 
regard, previous reports highlighted a positive SHH autocrine loop on PCs, increasing their potential 
to spontaneously overcome stress conditions and apoptosis also protecting PCs from therapeutic 
approaches [44]. The SHH–GLI1–BLC-2 axis was found to inhibit PCs apoptosis, thus, reducing this 
activation might lead to sensitization against therapy [45]. In this context, the relative number 
proportion of PCs compared to endogenous MSCs plays a major role. Indeed, it is known that PCs 
outnumber MSCs in the MM microenvironment, therefore, our experimental conditions were set up 
to recapitulate this phenomenon resembling different cell interactions. MSCs, as other precursor cells, 
produced high amount of SHH that is intended for both autocrine stimulation and to communicate 
with bystander cell populations. In MM, a representative ratio between MSCs and PCs is about 
1/100’000–1/1’000’000 [46,47]. This leads to a substantial deprivation of endogenous SHH stimulation 
on MSCs, thus, bending the differentiation of MSCs and reducing osteoblastogenesis [48,49]. As such, 
several groups have suggested stromal-derived SHH as a minor player in MM pathogenesis, even if 
further investigations are needed to better dissect this mechanisms [44,48]. Our data suggest that the 
axis between myeloma cell lines (i.e., H929 and OPM2) and MSCs leads to a suppression of the SHH 
signaling pathway in MSCs, thus, probably reducing the endogenous potential to compensate for 
osteolytic complications of MM. Ixazomib enhances in vitro MSCs differentiation into mature OBs 
and reduces osteoclastogenesis, paving the way for potential application of third-generation PIs in 
osteolytic complications of MM. 
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4. Materials and Methods  

4.1. Cell Lines and Cultures 

Human monocytes (MCs) were isolated, after informed consent, from fresh buffy coat of healthy 
volunteers provided by the Transfusional Centre “Garibaldi” Hospital, Catania, S. 
ImmunoHaematology and Transfusional Medicine. MCs were then purified from the 
lymphomonocytic population by positive isolation, using magnetic beads coated with goat anti-
mouse CD14+ IgG (cat. No. 130-050-201, Miltenyi Biotec GmbH, Bologna, Italy). MCs, identified as 
CD14+ and CD11c+ cells, showed a purity greater than 90% MCs isolated from PBMCs were cultured 
at a density of 5 × 105 cells/cm2 in 24-well culture plates in MC mediums (2 mM gluta.mine, 10% FBS, 
1% of P/S (Invitrogen, Milan, Italy) in conditioned Iscove's Modified Dulbecco's Media (IMDM) and 
cultured under standard culture conditions.  

Human H929 and OPM2 cell lines were obtained from American Type Culture Collection 
(Manassas, VA, USA). Cells were maintained in a PCs medium (2 mM glutamine, 10% FBS, 1% of P/S 
in RPMI medium), at a humidified 37 °C incubator providing 5% CO2.  

4.2. In Vitro Osteoclastogenic Differentiation 

For in vitro osteoclastogenic differentiation, MCs were cultured in the OC medium [5 ng/mL 
rhRANK ligand (PeproTech. European Headquarters PeproTech, London, UK), 20 ng/mL rhM-CSF 
(PeproTech), 2 mM glutamine, 10% FBS, 1% of P/S in conditioned IMDM] for 21 days. A total of 10 
nM of Ixazomib (MLN9708) was added to the cultures for 21 days. The medium was replaced every 
3 days.  

4.3. In Vitro Osteoblastogenic Differentiation 

Human HS-5 (MSCs) cell lines were cultured in the MSCs medium (10% fetal bovine serum 
(FBS), 1% of P/S (Invitrogen, Milan, Italy) in DMEM medium) [50,51]. Cells were plated at a final 
density of 5 × 105 cells/cm2 and cultured either under standard culture conditions or exposed to 
osteoblastogenesis differentiation with OB medium for 21 days. A total of 10 nM of Ixazomib was 
added to the cultures at day 0, for the following 21 days. 

4.4. Immunofluorescence 

For immunofluorescence analysis, samples of paraformaldehyde (PFA)-fixed cells were 
incubated with blocking solution (10% normal goat serum (NGS), 0.1% Triton ×100 in PBS), for 1 h at 
room temperature [52]. Samples were then incubated overnight at 4 °C with the following primary 
antibody—rabbit anti-GLI1 (Afbcam Cambridge, UK), Cat# ab49314, RRID: AB_880198, 1:1000), 
mouse anti-BMP2 (Abcam Cambridge, UK, Cat# ab6285, RRID: AB_305401, 1:1000), mouse anti-
CD138 (Abcam, Cat# ab34164, RRID: AB_778207, 1:1000), and rat anti-CD90 (Abcam, Cat# ab3105, 
RRID: AB_2287350, 1:1000). 

The following day, samples were washed three times in 0.1% Triton X100 in PBS and then 
incubated for 1 h at room temperature with the appropriate combination of fluorescence conjugated 
secondary antibodies—goat polyclonal anti-mouse (Alexa Fluor 488, Thermo Fisher Scientific-Life 
Technologies, Monza Italy cat. No. A-11001, RRID: AB_2534069, 1:1000 or Alexa Fluor 546, Innovative 
Research (Thermo Fisher Scientific-Life Technologies, Monza, Italy) Cat. No. A21045, RRID: 
AB_1500928, 1:1000), goat polyclonal anti-rabbit (Alexa Fluor 488, Molecular Probes (Thermo Fisher 
Scientific-Life Technologies, Monza, Italy) Cat. No. A-11008, RRID: AB_143165, 1:1000 or Alexa Fluor 
564, Molecular Probes Cat. No. A-11010, RRID: AB_143156, 1:1000), and goat polyclonal anti-rat 
(Alexa Fluor 647, Thermo Fisher Scientific Cat. No. A21247, RRID: AB_141778, 1:1000). Nuclei were 
counterstained with 4’,6-diamidino-2-phenylindole (DAPI, 1:1000, Cat# D1306, Invitrogen) for 5 min, 
at room temperature. Slices were mounted with fluorescent mounting medium Permafluor (Thermo 
Fisher Scientific) and digital images were acquired using a Leica DM IRB (Leica Microsystem, 
Buccinasco, Milan, Italy) fluorescence microscope or a Leica TCS SP8 confocal microscope.  
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Phalloidin staining on the MCs was performed using Alexa Fluor 488 Phalloidin (Thermo Fisher 
Scientific Cat. No. A12379, RRID: AB_2759222, 1:200), incubated for 20 min at room temperature. 
Samples were then washed in 0.1% Triton X-100 in PBS and nuclei were counterstained with DAPI 
(1:1000) for 5 min, at room temperature. Slices were mounted and acquired as described above. For 
quantification of GLI1 and DAPI colocalization, nuclear ROIs were segmented and the corresponding 
GLI1 fluorescence intensity was quantified using ImageJ analysis software. 

4.5. Alizarin Red Staining 

Mineralization was determined using Alizarin Red S (Sigma, Milan, Italy) staining and phase-
contrast microscopy, at 21 days of culture. Cells were incubated with 2% alizarin red with pH 4.2 for 
10 minutes, subsequently washed with distilled water, and then observed with phase-contrast 
microscopy to examine cell morphology and to verify the presence of mineralized nodules. 

4.6. CETSA 

CETSA was used to investigate the target engagement of Ixazomib and Bortezomib (Velcade), 
as described previously [53–55]. Cells were suspended in PBS, at a final density of 5 × 106 cells/mL, 
lysed via ultrasonication on ice, and treated with vehicle, 1 μM of Ixazomib or 1 μM Bortezomib for 
1 h at 37 °C. The cell suspension was divided in 4 aliquots of 100 μL and heated for 3.5 min at 68, 72, 
76, or 80 °C, respectively. Samples were centrifuged at 15,000 × g for 20 min at 4 °C to separate the 
stable and denatured proteins, and supernatants were then collected and mixed with 4× Laemmli 
loading buffer and 10% β-mercaptoethanol, and incubated at 95 °C for 5 min. Proteins were separated 
on 4%–20% Tris-glycine acrylamide gels (Thermo Scientific) and transferred to nitrocellulose 
membranes. Membranes were incubated for 1 h at room temperature with Odyssey blocking buffer 
solution, and then overnight at 4 °C with rabbit anti-SMO antibody (Abcam, Cat# ab72130, RRID: 
AB_1270802, 1:1000). After washes in 0.1% tween-20 in PBS, membranes were incubated for 1 h at 
room temperature with the secondary antibody (goat polyclonal anti-rabbit IRDye 680RD; LI-COR 
Biosciences, Cat# 926-68171, RRID: AB_10956389, 1:10,000). All antibodies were diluted in Odyssey 
blocking buffer solution. Proteins bands were imaged using an Odyssey Infrared Imaging Scanner 
(LI-COR Biosciences, Milan, Italy) and compared to the vehicle-treated controls. 

4.7. qRT-PCR  

After RNA extraction and reverse transcription, samples were analyzed for expression of BMP2, 
RUNX2, SPARC, RANK, CTSK, MMP9, and CHI3L1 mRNA. Their expression was assessed by using 
7900HT Fast Real-Time PCR System and TaqMan Universal PCR Master Mix (ThermoFisher, Monza, 
Italy). For each sample, the relative expression level of each studied mRNA was normalized using 
GAPDH as the invariant control.  

4.8. Statistical Analysis 

All statistics were performed using GraphPad Prism (version 5.00 for Mac, GraphPad Software, 
San Diego, CA, USA). Data were tested for normality using a D’Agostino and Pearson omnibus 
normality test and subsequently assessed for homogeneity of variance. Data that passed both tests 
were further analyzed by two-tailed unpaired Student’s t-test for comparison of n = 2 groups. 
Comparisons of n > 2 groups were performed using a one-way ANOVA and Holm–Sidak’s multiple 
comparisons test. For all statistical tests, p-values < 0.05 were considered statistically significant; p-
values are reported within the figure legends. 

5. Conclusions 

In conclusion, we found that Ixazomib was able to decrease osteoclastogenesis in MCs and 
concomitantly also increased MSCs osteogenic differentiation, throughout the activation of 
SMO/GLI1-dependent SHH signaling pathway. The relative importance of SHH signaling pathway 
in bone remodeling still need to be further investigated, to dissect the contribution of such a pathway 
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in the pleiotropic mechanism of action of PIs in MM-derived cell lines. Moreover, our in vitro 
evidences uncover a novel axis between PCs and MSCs that leads to the suppression of the SHH 
signaling pathway in MSCs, thus, further reducing the endogenous potential to compensate for 
osteolytic complications of MM. 

Author Contributions: Conceptualization D.T., N.V., A.R., F.D.R., and C.G.; methodology and investigation 
A.L., A.R., A.B., M.D.R., and I.A.B.; formal analysis D.T., A.L., N.V., A.R., C.D.A., G.L., R.G., R.P., and C.G.; data 
curation M.D.R., C.D.A., G.L., R.P., G.L.V., G.A.P., and C.G.; writing—original draft preparation D.T., N.V., and 
C.G.; writing—review and editing D.T., N.V., R.G., R.P., G.L.V., A.R., F.D.R., G.A.P., and C.G. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This work was supported by Research Funding for University of Catania, Italy (Piano per la Ricerca 
2016-2018, FIR 2018-2020-F.D.R. and FIR 2018-2020 G.L.V.). N.V. was supported by the PON AIM R&I 2014-2020 
- E66C18001240007. This study was supported in part by A.I.L. (Associazione Italiana contro le Leucemie) 
sezione di Catania, FON.CA.NE.SA. (Fondazione Catanese per lo Studio delle Malattie Neoplastiche del 
Sangue), and Takeda, which furnished the ixazomib powder by MTA # 

Conflicts of Interest: All other authors declare no conflict of interest. The funders had no role in the design of 
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision 
to publish the results 

References 

1. Kyle, R.A.; Rajkumar, S.V. Multiple myeloma. N. Engl. J. Med. 2004, 351, 1860–1873, 
doi:10.1056/NEJMra041875. 

2. Palumbo, A.; Anderson, K. Multiple myeloma. N. Engl. J. Med. 2011, 364, 1046–1060, 
doi:10.1056/NEJMra1011442. 

3. Terpos, E.; Christoulas, D.; Gavriatopoulou, M.; Dimopoulos, M.A. Mechanisms of bone destruction in 
multiple myeloma. Eur. J. Cancer Care (Engl.) 2017, 26, doi:10.1111/ecc.12761. 

4. Tsubaki, M.; Komai, M.; Itoh, T.; Imano, M.; Sakamoto, K.; Shimaoka, H.; Takeda, T.; Ogawa, N.; Mashimo, 
K.; Fujiwara, D.; et al. Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced 
osteoclast formation through the inhibition of ERK1/2 and Akt activation. J. Biomed. Sci. 2014, 21, 10, 
doi:10.1186/1423-0127-21-10. 

5. Terpos, E.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Dimopoulos, M.A. Pathogenesis of bone disease 
in multiple myeloma: from bench to bedside. Blood Cancer J. 2018, 8, 7, doi:10.1038/s41408-017-0037-4. 

6. Nishida, H. Bone-targeted agents in multiple myeloma. Hematol. Rep. 2018, 10, 7401, 
doi:10.4081/hr.2018.7401. 

7. Noll, J.E.; Williams, S.A.; Tong, C.M.; Wang, H.; Quach, J.M.; Purton, L.E.; Pilkington, K.; To, L.B.; 
Evdokiou, A.; Gronthos, S.; et al. Myeloma plasma cells alter the bone marrow microenvironment by 
stimulating the proliferation of mesenchymal stromal cells. Haematologica 2014, 99, 163–171, 
doi:10.3324/haematol.2013.090977. 

8. Konstantinova, I.M.; Tsimokha, A.S.; Mittenberg, A.G. Role of proteasomes in cellular regulation. Int. Rev. 
Cell Mol. Biol. 2008, 267, 59–124, doi:10.1016/S1937-6448(08)00602-3. 

9. Romano, A.; Conticello, C.; Di Raimondo, F. Bortezomib for the treatment of previously untreated multiple 
myeloma. Immunotherapy-UK 2013, 5, 327–352, doi:10.2217/imt.13.14. 

10. Di Rosa, M.; Tibullo, D.; Vecchio, M.; Nunnari, G.; Saccone, S.; Di Raimondo, F.; Malaguarnera, L. 
Determination of chitinases family during osteoclastogenesis. Bone 2014, 61, 55–63, 
doi:10.1016/j.bone.2014.01.005. 

11. Zavrski, I.; Krebbel, H.; Wildemann, B.; Heider, U.; Kaiser, M.; Possinger, K.; Sezer, O. Proteasome 
inhibitors abrogate osteoclast differentiation and osteoclast function. Biochem. Biophys. Res. Commun. 2005, 
333, 200–205, doi:10.1016/j.bbrc.2005.05.098. 

12. Ang, E.; Pavlos, N.J.; Rea, S.L.; Qi, M.; Chai, T.; Walsh, J.P.; Ratajczak, T.; Zheng, M.H.; Xu, J. Proteasome 
inhibitors impair RANKL-induced NF-kappaB activity in osteoclast-like cells via disruption of p62, TRAF6, 
CYLD, and IkappaBalpha signaling cascades. J. Cell Physiol. 2009, 220, 450–459, doi:10.1002/jcp.21787. 

13. von Metzler, I.; Krebbel, H.; Hecht, M.; Manz, R.A.; Fleissner, C.; Mieth, M.; Kaiser, M.; Jakob, C.; Sterz, J.; 
Kleeberg, L.; et al. Bortezomib inhibits human osteoclastogenesis. Leukemia. 2007, 21, 2025–2034, 
doi:10.1038/sj.leu.2404806. 



Cancers 2020, 12, 323 14 of 16 

 

14. Tibullo, D.; Di Rosa, M.; Giallongo, C.; La Cava, P.; Parrinello, N.L.; Romano, A.; Conticello, C.; Brundo, 
M.V.; Saccone, S.; Malaguarnera, L.; et al. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived 
osteoclast and in myeloma cells. Front. Pharmacol. 2015, 6, 226, doi:10.3389/fphar.2015.00226. 

15. Terpos, E.; Sezer, O.; Croucher, P.; Dimopoulos, M.A. Myeloma bone disease and proteasome inhibition 
therapies. Blood 2007, 110, 1098–1104, doi:10.1182/blood-2007-03-067710. 

16. Zanwar, S.; Abeykoon, J.P.; Kapoor, P. Ixazomib: a novel drug for multiple myeloma. Expert. Rev. Hematol. 
2018, 11, 761–771, doi:10.1080/17474086.2018.1518129. 

17. Yang, Y.; Blair, H.C.; Shapiro, I.M.; Wang, B. The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid 
Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway. J. Biol. Chem. 2015, 
290, 16918–16928, doi:10.1074/jbc.M115.663963. 

18. Accardi, F.; Toscani, D.; Bolzoni, M.; Dalla Palma, B.; Aversa, F.; Giuliani, N. Mechanism of Action of 
Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: 
Impact on Myeloma-Induced Alterations of Bone Remodeling. Biomed. Res. Int. 2015, 2015, 172458, 
doi:10.1155/2015/172458. 

19. Ingham, P.W.; McMahon, A.P. Hedgehog signaling in animal development: paradigms and principles. 
Genes Dev. 2001, 15, 3059–3087, doi:10.1101/gad.938601. 

20. Beachy, P.A.; Karhadkar, S.S.; Berman, D.M. Tissue repair and stem cell renewal in carcinogenesis. Nature 
2004, 432, 324–331, doi:10.1038/nature03100. 

21. Nakamura, T.; Naruse, M.; Chiba, Y.; Komori, T.; Sasaki, K.; Iwamoto, M.; Fukumoto, S. Novel hedgehog 
agonists promote osteoblast differentiation in mesenchymal stem cells. J. Cell Physiol. 2015, 230, 922–929, 
doi:10.1002/jcp.24823. 

22. Oliveira, F.S.; Bellesini, L.S.; Defino, H.L.; da Silva Herrero, C.F.; Beloti, M.M.; Rosa, A.L. Hedgehog 
signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem 
cells. J. Cell Biochem. 2012, 113, 204–208, doi:10.1002/jcb.23345. 

23. Murone, M.; Rosenthal, A.; de Sauvage, F.J. Hedgehog signal transduction: from flies to vertebrates. Exp. 
Cell Res. 1999, 253, 25–33, doi:10.1006/excr.1999.4676. 

24. Briscoe, J. Agonizing hedgehog. Nat. Chem. Biol. 2006, 2, 10–11, doi:10.1038/nchembio0106-10. 
25. Alcedo, J.; Ayzenzon, M.; Von Ohlen, T.; Noll, M.; Hooper, J.E. The Drosophila smoothened gene encodes 

a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 1996, 86, 221–232, 
doi:10.1016/s0092-8674(00)80094-x. 

26. Chen, Y.; Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 1996, 87, 553–
563, doi:10.1016/s0092-8674(00)81374-4. 

27. Choi, D.H.; Suhaeri, M.; Hwang, M.P.; Kim, I.H.; Han, D.K.; Park, K. Multi-lineage differentiation of human 
mesenchymal stromal cells on the biophysical microenvironment of cell-derived matrix. Cell Tissue Res. 
2014, 357, 781–792, doi:10.1007/s00441-014-1898-5. 

28. Liu, C.; Weng, Y.; Yuan, T.; Zhang, H.; Bai, H.; Li, B.; Yang, D.; Zhang, R.; He, F.; Yan, S.; et al. 
CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced 
osteogenic differentiation of mesenchymal stem cells. Int. J. Med. Sci. 2013, 10, 1181–1192, 
doi:10.7150/ijms.6657. 

29. Fuchs, S.; Dohle, E.; Kirkpatrick, C.J. Sonic Hedgehog-mediated synergistic effects guiding angiogenesis 
and osteogenesis. Vitam. Horm. 2012, 88, 491–506, doi:10.1016/B978-0-12-394622-5.00022-5. 

30. Yang, J.; Andre, P.; Ye, L.; Yang, Y.Z. The Hedgehog signalling pathway in bone formation. Int. J. Oral Sci. 
2015, 7, 73–79, doi:10.1038/ijos.2015.14. 

31. Iwasaki, M.; Kuroda, J.; Kawakami, K.; Wada, H. Epidermal regulation of bone morphogenesis through 
the development and regeneration of osteoblasts in the zebrafish scale. Dev. Biol. 2018, 437, 105–119, 
doi:10.1016/j.ydbio.2018.03.005. 

32. Vicario, N.; Bernstock, J.D.; Spitale, F.M.; Giallongo, C.; Giunta, M.A.S.; Li Volti, G.; Gulisano, M.; Leanza, 
G.; Tibullo, D.; Parenti, R.; et al. Clobetasol Modulates Adult Neural Stem Cell Growth via Canonical 
Hedgehog Pathway Activation. Int. J. Mol. Sci. 2019, 20, doi:10.3390/ijms20081991. 

33. Raje, N.; Roodman, G.D. Advances in the biology and treatment of bone disease in multiple myeloma. Clin. 
Cancer Res. 2011, 17, 1278–1286, doi:10.1158/1078-0432.CCR-10-1804. 

34. Anderson, K.; Ismaila, N.; Flynn, P.J.; Halabi, S.; Jagannath, S.; Ogaily, M.S.; Omel, J.; Raje, N.; Roodman, 
G.D.; Yee, G.C.; et al. Role of Bone-Modifying Agents in Multiple Myeloma: American Society of Clinical 



Cancers 2020, 12, 323 15 of 16 

 

Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 812–818, 
doi:10.1200/JCO.2017.76.6402. 

35. Romano, A.; Chiarenza, A.; Conticello, C.; Cavalli, M.; Vetro, C.; Di Raimondo, C.; Cunsolo, R.; Palumbo, 
G.A.; Di Raimondo, F. Salvage therapy with pegylated liposomal doxorubicin, bortezomib, 
cyclophosphamide, and dexamethasone in relapsed/refractory myeloma patients. Eur. J. Haematol. 2014, 93, 
207–213, doi:10.1111/ejh.12325. 

36. Garcia-Gomez, A.; Quwaider, D.; Canavese, M.; Ocio, E.M.; Tian, Z.; Blanco, J.F.; Berger, A.J.; Ortiz-de-
Solorzano, C.; Hernandez-Iglesias, T.; Martens, A.C.; et al. Preclinical activity of the oral proteasome 
inhibitor MLN9708 in Myeloma bone disease. Clin. Cancer Res. 2014, 20, 1542–1554, doi:10.1158/1078-
0432.CCR-13-1657. 

37. Yang, Y.; Lei, H.; Qiang, Y.W.; Wang, B. Ixazomib enhances parathyroid hormone-induced beta-catenin/T-
cell factor signaling by dissociating beta-catenin from the parathyroid hormone receptor. Mol. Biol. Cell 
2017, 28, 1792–1803, doi:10.1091/mbc.E17-02-0096. 

38. Qiang, Y.W.; Hu, B.; Chen, Y.; Zhong, Y.; Shi, B.; Barlogie, B.; Shaughnessy, J.D., Jr. Bortezomib induces 
osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood 2009, 113, 
4319–4330, doi:10.1182/blood-2008-08-174300. 

39. Hu, B.; Chen, Y.; Usmani, S.Z.; Ye, S.; Qiang, W.; Papanikolaou, X.; Heuck, C.J.; Yaccoby, S.; Williams, B.O.; 
Van Rhee, F.; et al. Characterization of the molecular mechanism of the bone-anabolic activity of 
carfilzomib in multiple myeloma. PLoS One 2013, 8, e74191, doi:10.1371/journal.pone.0074191. 

40. Mak, K.K.; Bi, Y.; Wan, C.; Chuang, P.T.; Clemens, T.; Young, M.; Yang, Y. Hedgehog signaling in mature 
osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev. 
Cell 2008, 14, 674–688, doi:10.1016/j.devcel.2008.02.003. 

41. Lv, W.T.; Du, D.H.; Gao, R.J.; Yu, C.W.; Jia, Y.; Jia, Z.F.; Wang, C.J. Regulation of Hedgehog signaling Offers 
A Novel Perspective for Bone Homeostasis Disorder Treatment. Int. J. Mol. Sci. 2019, 20, 
doi:10.3390/ijms20163981. 

42. Hojo, H.; Ohba, S.; Chung, U.I. Signaling pathways regulating the specification and differentiation of the 
osteoblast lineage. Regen. Ther. 2015, 1, 57–62, doi:10.1016/j.reth.2014.10.002. 

43. Cannonier, S.A.; Sterling, J.A. The Role of Hedgehog Signaling in Tumor Induced Bone Disease. Cancers 
(Basel) 2015, 7, 1658–1683, doi:10.3390/cancers7030856. 

44. Liu, Z.; Xu, J.; He, J.; Zheng, Y.; Li, H.; Lu, Y.; Qian, J.; Lin, P.; Weber, D.M.; Yang, J.; et al. A critical role of 
autocrine sonic hedgehog signaling in human CD138+ myeloma cell survival and drug resistance. Blood 
2014, 124, 2061–2071, doi:10.1182/blood-2014-03-557298. 

45. Singh, B.N.; Fu, J.; Srivastava, R.K.; Shankar, S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) 
inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One 2011, 6, e27306, 
doi:10.1371/journal.pone.0027306. 

46. Martin, D.R.; Cox, N.R.; Hathcock, T.L.; Niemeyer, G.P.; Baker, H.J. Isolation and characterization of 
multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 2002, 30, 879–886, 
doi:10.1016/s0301-472x(02)00864-0. 

47. Haynesworth, S.E.; Goshima, J.; Goldberg, V.M.; Caplan, A.I. Characterization of cells with osteogenic 
potential from human marrow. Bone 1992, 13, 81–88, doi:10.1016/8756-3282(92)90364-3. 

48. Cai, K.; Na, W.; Guo, M.; Xu, R.; Wang, X.; Qin, Y.; Wu, Y.; Jiang, J.; Huang, H. Targeting the cross-talk 
between the hedgehog and NF-kappaB signaling pathways in multiple myeloma. Leuk. Lymphoma 2019, 60, 
772–781, doi:10.1080/10428194.2018.1493727. 

49. Zavala, G.; Prieto, C.P.; Villanueva, A.A.; Palma, V. Sonic hedgehog (SHH) signaling improves the 
angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). Stem Cell Res. Ther. 
2017, 8, 203, doi:10.1186/s13287-017-0653-8. 

50. Calabrese, G.; Giuffrida, R.; Forte, S.; Fabbi, C.; Figallo, E.; Salvatorelli, L.; Memeo, L.; Parenti, R.; Gulisano, 
M.; Gulino, R. Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite 
scaffold promote bone augmentation after implantation in the mouse. Sci. Rep. 2017, 7, 7110, 
doi:10.1038/s41598-017-07672-0. 

51. Calabrese, G.; Giuffrida, R.; Fabbi, C.; Figallo, E.; Lo Furno, D.; Gulino, R.; Colarossi, C.; Fullone, F.; 
Giuffrida, R.; Parenti, R.; et al. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem 
Cells Osteogenic Differentiation In Vitro. PLoS One 2016, 11, e0151181, doi:10.1371/journal.pone.0151181. 



Cancers 2020, 12, 323 16 of 16 

 

52. Vicario, N.; Pasquinucci, L.; Spitale, F.M.; Chiechio, S.; Turnaturi, R.; Caraci, F.; Tibullo, D.; Avola, R.; 
Gulino, R.; Parenti, R.; et al. Simultaneous Activation of Mu and Delta Opioid Receptors Reduces Allodynia 
and Astrocytic Connexin 43 in an Animal Model of Neuropathic Pain. Mol. Neurobiol. 2019, 56, 7338–7354, 
doi:10.1007/s12035-019-1607-1. 

53. Gulino, R.; Vicario, N.; Giunta, M.A.S.; Spoto, G.; Calabrese, G.; Vecchio, M.; Gulisano, M.; Leanza, G.; 
Parenti, R. Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss. Int. J. 
Mol. Sci. 2019, 20, doi:10.3390/ijms20061500. 

54. Paratore, S.; Parenti, R.; Torrisi, A.; Copani, A.; Cicirata, F.; Cavallaro, S. Genomic profiling of cortical 
neurons following exposure to beta-amyloid. Genomics 2006, 88, 468–479, doi:10.1016/j.ygeno.2006.06.007. 

55. Almqvist, H.; Axelsson, H.; Jafari, R.; Dan, C.; Mateus, A.; Haraldsson, M.; Larsson, A.; Martinez Molina, 
D.; Artursson, P.; Lundback, T.; et al. CETSA screening identifies known and novel thymidylate synthase 
inhibitors and slow intracellular activation of 5-fluorouracil. Nat. Commun. 2016, 7, 11040, 
doi:10.1038/ncomms11040. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


