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Recent developments in machine learning have expanded data-driven modelling (DDM) capabilities,
allowing artificial intelligence to infer the behaviour of a system by computing and exploiting correla-
tions between observed variables within it. Machine learning algorithms may enable the use of increas-
ingly available ‘big data’ and assist applying ecosystem service models across scales, analysing and
predicting the flows of these services to disaggregated beneficiaries. We use the Weka and ARIES soft-
ware to produce two examples of DDM: firewood use in South Africa and biodiversity value in Sicily,
respectively. Our South African example demonstrates that DDM (64–91% accuracy) can identify the
areas where firewood use is within the top quartile with comparable accuracy as conventional modelling
techniques (54–77% accuracy). The Sicilian example highlights how DDM can be made more accessible to
decision makers, who show both capacity and willingness to engage with uncertainty information.
Uncertainty estimates, produced as part of the DDM process, allow decision makers to determine what
level of uncertainty is acceptable to them and to use their own expertise for potentially contentious deci-
sions. We conclude that DDM has a clear role to play when modelling ecosystem services, helping pro-
duce interdisciplinary models and holistic solutions to complex socio-ecological issues.
� 2018 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Many scientific disciplines are taking an increasingly integrative
approach to planetary problems such as global climate change,
food security and human migration (Baziliana et al., 2011;
Bullock et al., 2017). To address such challenges, methods and
practices are becoming more reliant on large, interdisciplinary data
repositories often collected in cutting-edge ways, for example via
citizen scientists or automated data collection (Isaac et al., 2014).
Recent developments in information technology have expanded
modelling capabilities, allowing researchers to maximise the util-
ity of such ‘big data’ (Lokers et al., 2016). Here, we focus on one
of these developments: data-driven modelling (DDM). DDM is a
type of empirical modelling by which the data about a system
are used to create models, which use observed systems’ states as
inputs for estimating some other system state(s), i.e., outputs
(Jordan and Mitchell, 2015; Witten et al., 2016). Thus, DDM is
the process of identifying useful patterns in data, a process some-
times previously referred to as knowledge discovery in databases
(Fayyad et al., 1996). This process consists of five key steps: 1)
understanding the research goal, 2) selecting appropriate data, 3)
data cleaning, pre-processing and transformation, 4) data mining
.1016/j.
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Table 1
A simplified summary of machine learning algorithms (categorised as supervised and
unsupervised).

Category Task Common algorithms

Unsupervised learning
(learning without
feedback from a trainer)

Clustering k-means
Associations Apriori
Dimensionality
reduction

PCA

Supervised learning
(learning past actions/
decisions with trainer)

Classification
(learning a
categorical
variable)

Bayesian Networks,
Decision Trees, Neural
Networks

Regression
(learning a
continuous
variable)

Linear Regression,
Perceptron
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(creating a data driven model), and 5) interpretation/evaluation
(Fayyad et al., 1996) (Fig. 1). A variety of methods for data mining
and analysis are available, some of which utilise machine learning
algorithms (Witten et al., 2016; Wu et al., 2014) (Fig. 1). A machine
learning algorithm is a process that is used to fit a model to a data-
set, through training or learning. The learned model is subse-
quently used against an independent dataset, in order to
determine how well the learned model can generalise against the
unseen data, a process called testing (Ghahramani, 2015; Witten
et al., 2016). This training–testing process is analogous to the cal-
ibration–validation process associated with many process-based
models.

In general, machine learning algorithms can be divided into two
main groups (supervised- and unsupervised-learning; Fig. 1), sep-
arated by the use of explicit feedback in the learning process (Blum
and Langley, 1997; Russell and Norvig, 2003; Tarca et al., 2007).
Supervised-learning algorithms use predefined input-output pairs
and learn how to derive outputs from inputs. The user specifies
which variables (i.e., outputs) are considered dependent on others
(i.e., inputs), which sometimes indicates causality (Hastie et al.,
2009). The machine learning toolbox includes several linear and
non-linear supervised learners, predicting either numeric outputs
(regressors) or nominal outputs (classifiers) (Table 1). An example
of supervised machine learning that is familiar to many ecosystem
service (ES) scientists is using a general linear model, whereby the
user provides a selection of input variables hypothesised to predict
values of an output variable and the general linear model learns to
reproduce this relationship. The learning process needs to be fine-
tuned through a process, as for example in the case of stepwise
selection where an algorithm selects the most parsimonious
best-fit model (Yamashita et al., 2007). However, note that
Machine
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Fig. 1. A schematic outlining howmachine learning algorithms (yellow) can contribute to
the references to colour in this figure legend, the reader is referred to the web version o
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stepwise functions may also be used in unsupervised learning pro-
cesses when combined with other methods. Within unsupervised-
learning processes, there is no specific feedback supplied for input
data and the machine learning algorithm learns to detect patterns
from the inputs. In this respect, there are no predefined outputs,
only inputs for which the machine learning algorithm determines
relationships between them (Mjolsness and DeCoste, 2001). An
example unsupervised-learning algorithm, cluster analysis, groups
variables based on their closeness to one another, defining the
number and composition of groups within the dataset (Mouchet
et al., 2014). Within the supervised- and unsupervised-learning
categories, there are several different varieties of machine learning
algorithms, including: neural networks, decision trees, decision
rules and Bayesian networks. Others have described the varieties
of machine learning algorithms (Blum and Langley, 1997;
learning algorithms
used to iden�fy
in data with varying
es of autonomy

rvised-learning
ms use predefined
ut pairs, learning to
tputs from inputs.
ervised-learning
es learns to detect
rom the inputs (with
c feedback supplied
input data).

A variety of
machine learning
algorithms are

available (Table 1)

structure can be
or learned by the
(structural learning)

the data-driven modelling process (blue) (Fayyad et al., 1996). (For interpretation of
f this article.)
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Mjolsness and DeCoste, 2001; Russell and Norvig, 2003; Tarca
et al., 2007) and so we only provide a brief summary here, leaving
out more advanced methods such as reinforcement learning, and
deep learning (see Table 1).

DDM undoubtedly has a role to play when modelling socio-
ecological systems and assessing ES. DDM can give useful predic-
tive insight into areas where understanding of the underlying pro-
cesses is limited. However, as with many statistical methods, DDM
requires adequate data availability. The level of data required is
determined on a case-by-case basis, depending of the research
question being asked. For example, to use machine learning algo-
rithms, data must be able to be divided into training and testing
subsets (Smith and Frank, 2016). Machine learning algorithms
assume considerable changes in the modelled system have not
taken place during the time period covered by the model
(Ghahramani, 2015; Jordan and Mitchell, 2015), though machine
learning can also be used for identifying change, i.e., detecting con-
cept drift (Gama et al., 2004). Model validation/testing, which has
yet to become standard practice within the ES modelling commu-
nity (Baveye, 2017; Hamel and Bryant, 2017), is an integral part of
the machine learning process within DDM. This is vital as DDM can
result in overfitting, which occurs when the model learns the train-
ing data well (i.e., a close fit to the training data), but performs
poorly on independent test data (Clark, 2003).

To assess the quality of the learning process, machine learning
algorithms use various methods (summarised in Witten et al.
(2016)) to ensure that the results are generalizable and avoid over-
fitting. For example, k-fold cross validation allows for fine-tuning
of model performance (Varma and Simon, 2006; Wiens et al.,
2008). This approach maximises the data availability for model
training by dividing the data into k subsets and using k-1 subsets
to train the model whilst retaining a subset for independent valida-
tion. This process is repeated k times so that all available data have
been used for validation exactly once. The results of the k-folds are
then combined to produce metrics of quality for the machine
learning process, often accompanied with an estimation of the
model uncertainty (i.e., the cross-validation statistic). Whilst the
goodness-of-fit parameter used varies within DDM (e.g., root mean
square error is used extensively within regression models, but the
standard error is more commonly used in Bayesian machine learn-
ing (Cheung and Rensvold, 2002; Uusitalo, 2007)), it provides the
user with a transparent estimate of model uncertainty. Whilst esti-
mates of uncertainty are useful, users of DDM should be aware that
such models do not represent the underlying processes within
socio-ecological systems, but instead capture relationships
between variables (Ghahramani, 2015). However, for some data-
sets and model applications (see Section 4 for further details),
DDM can produce more accurate models than process-based mod-
els, as the latter may suffer from an incomplete representation of
the socio-ecological processes (Jordan and Mitchell, 2015; Tarca
et al., 2007). Finally, as with any modelling, DDM depends on the
quality of the training and testing datasets used; whilst some
extreme cases or outliers might get ignored during DDM, the qual-
ity of the information supplied to the machine learning algorithms
should be verified beforehand (Galelli et al., 2014).

The aim of this paper is to demonstrate the utility of DDM to the
ES community. We present two examples of DDM using Bayesian
networks (a supervised learning technique), as implemented in
theWaikato Environment for KnowledgeAnalysismachine learning
software (Weka; http://www.cs.waikato.ac.nz/ml/weka/; Frank
et al. (2016); Hall et al. (2009)), used both standalone and as part
of the Artificial Intelligence for Ecosystem Services (ARIES; http://
aries.integratedmodelling.org/; Villa et al. (2014)) modelling plat-
form. We chose Bayesian network methods as uncertainty metrics
describing both the model fit and the grid-cell uncertainty can be
calculated (Aguilera et al., 2011; Landuyt et al., 2013; Uusitalo,
Please cite this article in press as: Willcock, S., et al. Machine learning for e
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2007). Our Weka example focusses on firewood use in South Africa,
and is comparable to conventional ES models recently published by
Willcock et al. (submitted for publication). Using ARIES, we model
biodiversity value within Sicily, and demonstrate how DDM can
make use of volunteered geographical information by incorporating
data from Open Street Maps into the machine learning process. In
both examples, we highlight how model structure and uncertainty
computed in themachine learning process supplement and enhance
the value of the results reported to the user.
2. Methods

For the first example, we used Weka, an open-source library of
machine learning algorithms (Frank et al., 2016; Hall et al., 2009),
to create a model capable of identifying the upper quartile of sites
for firewood use in South Africa. We chose this example as: 1) fire-
wood use is of high policy relevance in sub-Saharan Africa
(Willcock et al., 2016); 2) robust spatial data on firewood use are
available within South Africa and may, for some municipalities,
provide a comparable context to other parts of sub-Saharan Africa,
which are often more vulnerable but data deficient (Hamann et al.,
2015); 3) models ranking the relative importance of different sites
were rated as useful to support ES decision-making by nearly 90%
of experts in sub-Saharan Africa (Willcock et al., 2016); and 4) mul-
tiple conventional models have recently been run for this ES cover-
ing this spatial extent (see Willcock et al. (submitted for
publication) for full details).

The firewood use data are freely available (Hamann et al., 2015)
and are based on the South African 2011 population census, which
provides proportions of households per local municipality using a
specific ES (similar data are available for a set of other ES; see
www.statssa.gov.za for all 2011 census output). For this paper
we used the proportion of households that use collected firewood
as a resource for cooking (Hamann et al., 2015). To derive a mea-
sure of total resource use, we multiplied the proportion of use by
the 2011 official census municipal population size (from www.
statssa.gov.za) as: [(% households using a service) x (municipal popu-
lation size)]. We then divided this value by the area of each local
municipality to provide an estimate of firewood use density, ensur-
ing that model inputs are independent of the land area of the local
municipality.

To utilise Bayesian networks, the decision variable (firewood
use density) had to be converted into a categorical (nominal) attri-
bute; note, the categories created during this process are unor-
dered. The goal of this task was to predict the areas in the upper
quartile, reflecting demand from decision-makers for identification
of the most important sites for ES production and, once identified,
enabling these areas to be prioritised for sustainable management
(Willcock et al., 2016). Thus, the firewood use density data were
categorised within the highest 25% (Q4) and the lowest 75% (Q1-
Q3) quartiles using Weka’s Discretize filter to create ranges of equal
frequencies (four in our case). Out of the generated quartiles, the
three lower ones were merged with the MergeTwoValues filter. To
ensure like-for-like comparisons between our DDM and conven-
tional models, we provided the machine learning algorithms with
the same user supplied input data used to model firewood within
Willcock et al. (submitted for publication) (Table 2). Since most
Bayesian network inference algorithms can use only categorical
data as inputs, the input data were discretised by grouping their
values in five bins of equal frequencies. Selecting the number of
bins is a design choice and may impact model output (Friedman
and Goldszmidt, 1996; Nojavan et al., 2017). As such, the sensitiv-
ity of the modelled output to variable bin numbers warrants future
investigation, but is beyond the scope of this first-order introduc-
tion to machine learning for ES.
cosystem services. Ecosystem Services (2018), https://doi.org/10.1016/j.
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Table 2
The municipal-scale inputs into the Weka machine learning algorithms to estimate
firewood use in South Africa. Overfitting is avoided by first training the algorithm on
subset of these data and then testing against the remaining data.

Attribute Description

LCAgriculture The proportion of agricultural land area, derived from
GeoTerraImage (2015)

LCForest The proportion of forested land area, derived from
GeoTerraImage (2015)

LCGrassland The proportion of grassland land area, derived from
GeoTerraImage (2015)

LCUrban The proportion of urban areas, derived from
GeoTerraImage (2015)

LCWater The proportion of water bodies area, derived from
GeoTerraImage (2015)

COFirewood The proportion of area on which firewood can be
produced (Forest, Woodland, Savanna), derived from
GeoTerraImage (2015)

OProtected The proportion of protected natural areas, derived from
the World Database on Protected Areas (www.
protectedplanet.net)

MOCarbon Mean amount of carbon stored per hectare, as
calculated in Willcock et al. (submitted for publication)

OGrowthDay Average number of growing days in the area as driven
by the relationship between rainfall and
evapotranspiration, as calculated in Willcock et al.
(submitted for publication)

ZScholesA A metric of the nutrient-supplying capacity of the soil
(Scholes, 1998)

ZScholesB A metric of the nutrient-supplying capacity of the soil
(Scholes, 1998)

ZScholesD Scholes (1998) land use correction, as calculated in
Willcock et al. (submitted for publication)

ZSlope This is the mean slope in the area, based on the global
90-m digital elevation model downloaded from CGIAR-
CSI (srtm.csi.cgiar.org/SELECTION/inputCoord.asp)

Population_density The municipal population based on the South African
2011 census (www.statssa.gov.za)

Firewood_density Observed firewood use for cooking from the South
African 2011 census (Hamann et al., 2015)
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We used the BayesNet implementation of Weka to train our
DDM. The machine learning algorithm can construct the Bayesian
network using alternative network structures and estimators for
finding the conditional probability tables (Chen and Pollino,
2012). In a Bayesian network, conditional probability tables define
the probability distribution of output values for every possible
combination of input variables (Aguilera et al., 2011; Landuyt
et al., 2013). Unlike the use of expert elicitation or Bayesian net-
work training (e.g., Marcot et al. (2006)), the machine learning
approach fits the structure of the model, as well as the conditional
probabilities, a process also called structural learning (Fig. 1). In
this example, we evaluated 16 alternatives for parameterising
the Bayesian network learning (see Appendix 1). We used 10
cross-fold validation (Varma and Simon, 2006; Wiens et al.,
2008), repeated 10 times with different seeds, for creating the ran-
dom folds.

ARIES has recently incorporated the Weka machine learning
algorithms into its modelling framework, with the aim of enabling
use of DDM within the ES community (see Villa et al. (2014) for a
description of the ARIES framework). In our second example, we
used the ARIES implementation of Weka BayesNet to propagate
site-based expert estimates of ‘biodiversity value’ and so build a
map for the entire Sicilian region (Li et al., 2011). Here, biodiversity
value does not refer to an economic value, but to a spatially explicit
relative ranking. The original biodiversity value observations were
the result of assessments made with multiple visits by flora, fauna
and soil experts (Fig. 2). The same experts who had ranked high-
value sites were asked to identify sites of low biodiversity value,
with the constraint that the low value depended on natural factors
and not on human intervention, as datasets combining high and
Please cite this article in press as: Willcock, S., et al. Machine learning for
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low value observations generally produce more accurate models
(Liu et al., 2016). These data were originally interpolated using
an inverse distance weighted technique to provide a map of biodi-
versity value to support policy- and decision-making (Fig. 2a), and
our DDM attempts to improve on this map. The DDM process
involved 20 repetitions, each using 75% of the data to train the
model and 25% to validate it. Using ARIES, we instructed the
machine learning algorithm to access explanatory variables, indi-
cated by the same experts who provided the estimates used in
training as the most likely predictors of biodiversity value (see
Appendix 2). The data used by the machine learning process
(Appendix 2) included distance to coastline and primary roads
metric calculated using citizen science data from Open Street
Map (https://www.openstreetmap.org/; Haklay and Weber
(2008)). The trained model was then used to build a map of biodi-
versity value for the entire island, computing the distribution of
biodiversity values for all locations not sampled by the experts.
The machine learning algorithms used quantitative variables, dis-
cretised in 10 equal intervals, for both inputs and outputs
(Friedman and Goldszmidt, 1996; Nojavan et al., 2017). The result-
ing map was subsequently discussed and qualitatively validated by
the same experts who collected the data, as well as quantitatively
using a confusion matrix accuracy assessment.
3. Results

In the first example, the results for all configurations of the
DDM created for firewood use in South Africa had a classification
accuracy above 80% (see Appendix 1). The model predictions are
statistically significant with a confidence level of 0.05 (two tailed)
when compared to the ZeroR classifier (a baseline classifier that
always predicts the majority class). Using ArcGIS v 10.5.1, we spa-
tially mapped the outputs of the most accurate Bayesian network
DDM (Figs. 3, 4; Appendix 3). The confusion matrix for this model
shows that 186 out of the 226 local municipalities were correctly
classified (an overall classification accuracy of 82%), and, out of
56 municipalities classified in the upper quartile (Q4), 36 were cor-
rect predictions (64% recall [i.e. the percentage of the most impor-
tant sites for firewood ES correctly identified], comparable with
conventional modelling methods evaluated against independent
data [Table 3; Willcock et al. (submitted for publication)]; Appen-
dix 3). The DDM also produces probabilistic outputs for the respec-
tive inputs (Appendix 4).

For biodiversity value in Sicily, 43% of the testing subsample
was correctly classified into 1 of 10 biodiversity value categories,
with a majority of the incorrectly classified results falling into
immediately close numeric ranges (Appendix 5). During a work-
shop in June 2017, the same Sicilian experts that provided the
training set (a team of five including an academic conservation-
ist, an academic ornithologist, an academic botanist and an
expert on agricultural biodiversity) qualitatively evaluated the
output in non-sampled but well-known regions and deemed it
a distinct improvement on previously computed biodiversity
value assessments, built through conventional GIS overlapping
and interpolation techniques; an assessment that was embraced
by other participants from both local governmental and conser-
vation institutions (Fig. 2). As the map reflects the human
assessment of biodiversity value rather than objective measure-
ments, the consensus of experts and practitioners was deemed
equivalent to a satisfactory validation. The confusion matrix
(Appendix 5) shows how the majority of misclassifications are
between similar value categories. For example, 73% of test data
were predicted within one class above or below their actual
class, and 84% of test data were correctly classified within two
classes above and below their actual class. A Spearman Rho test
ecosystem services. Ecosystem Services (2018), https://doi.org/10.1016/j.
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Fig. 2. The relative value of terrestrial biodiversity in Sicily estimated by a) inverse distance weighted interpolation of observed values and b) Bayesian networks using data-
driven modelling. Both original (white) biodiversity value observations and the additional sites of low biodiversity value (black) are shown as points.

Fig. 3. Diagrammatic representation of the machine-learned Bayesian network model of firewood use in South Africa (see Table 2 for category codes). The structure of the
model was informed by the machine learning algorithm with no predetermined restrictions.
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Fig. 4. Observed (a and b) and modelled (c and d) data on firewood use density within South Africa. The Weka BayesNet DDM process derives a probabilistic output (c) from
the observed data (a). The modelled output can be categorised into quartiles (Q1-4, with Q4 being the upper quartile; d) and compared to the observed data within the same
categories (b).
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highlights the significant correlation between the ranked model
and validation data categories (Rho: 0.58; p-value <0.001). The
root-mean-squared error of the model prediction was also com-
puted and resulted in a value of 0.26 (Hyndman and Koehler,
2006).
Please cite this article in press as: Willcock, S., et al. Machine learning for
ecoser.2018.04.004
4. Discussion

Lack of credibility, salience and legitimacy are the major rea-
sons for the ‘implementation gap’ between ES research and its
incorporation into policy- and decision-making (Clark et al.,
ecosystem services. Ecosystem Services (2018), https://doi.org/10.1016/j.
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Table 3
Comparing recall of DDM outputs with conventional models when producing estimates of firewood use in South Africa. Outputs from conventional models of varying complexity
were validated using independent data (see Willcock et al. (submitted for publication) for full model descriptions and model complexity analysis). DDM outputs were validated
using k-fold cross validation (see Section 2).

Model Model criteria Recall for the upper quartile
of firewood use (%)

Bayesian network within Weka (Frank et al., 2016; Hall et al., 2009) Assignment threshold = 50% 64.3
Assignment threshold = 75% 90.9

Conventional model A (Complexity score: 2; Willcock et al. (submitted for publication))* Gridcell size = 1 km 75.0
Gridcell size = 10 km 73.2

Conventional model B (Complexity score: 4; Willcock et al. (submitted for publication))* Gridcell size = 1 km 75.0
Gridcell size = 10 km 76.8

Conventional model C (Complexity score: 4; Willcock et al. (submitted for publication))* Gridcell size = 1 km 60.7
Gridcell size = 10 km 60.7

Conventional model D (Complexity score: 36; Willcock et al. (submitted for publication))* Gridcell size = 55.6 km 76.8
Conventional model A (Complexity score: 31; Willcock et al. (submitted for publication))* Gridcell size = 5 km 53.6

* Models have been anonymised as identification of the best specific model for a particular use is likely to be location specific and may shift as new models are developed
(Willcock et al., submitted for publication).
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2016; Olander et al., 2017; Wong et al., 2014). A lack of uncertainty
information and the inability to run models in data-poor environ-
ments and/or under conditions where underlying processes are
poorly understood may contribute to the implementation gap.
However, DDM can help to address these current shortcomings
in ES modelling. Here, we have demonstrated that DDM is feasible
within ES science and is capable of providing estimates of
uncertainty.

For our South African case study, the machine learning algo-
rithms were able to produce a modelled output of comparable
accuracy to conventional modelling methods when using the same
input variables, despite our DDM using data at a much coarser
(local municipality) scale (Table 3). Using the spatially attributed
uncertainty (i.e., the probability of each local municipality being
in Q4), decision-makers would be able to set their own level of
acceptable uncertainty. In our example, since we have two categor-
ical bins (i.e., Q1-3 and Q4), any local municipality with a modelled
Q4 probability over 0.5 is assigned to the Q4 category. This assign-
ment threshold can be varied; e.g., it is possible to state that
municipalities where modelled Q4 probability is less than 0.25 or
greater than 0.75 are likely to be grouped within Q1-3 and Q4
respectively, and to admit that we are less certain for the remain-
ing municipalities. In our example, this would result in a 96% (135
out of 140) categorisation accuracy for Q1-3 and a 91% (30 out of
33) categorisation accuracy for Q4, with 53 local municipalities left
uncategorised due to uncertainty.

Thus, using Bayesian networks and machine learning, we are
able to convey to decision-makers not only which sites show the
highest ES use or value, but also how confident we are in our esti-
mate at each site (Aguilera et al., 2011; Chen and Pollino, 2012;
Landuyt et al., 2013). This information allows decision-makers to
1) apply an assignment threshold of their choosing to the modelled
output before making a policy- or management-decision, and 2)
use their own judgement for potentially contentious decisions,
where uncertainty is higher (Olander et al., 2017). For example,
whilst it is perhaps obvious that sites where we are highly certain
that there is high ES value should be appropriately managed, it is
unclear which sites should be the next highest management prior-
ity. Given a limited budget, is a medium-ES value site with high
certainty more or less worthy of management than a potentially
high-value site with medium or low certainty? Decision-makers
show both capacity and willingness to engage with the uncertainty
information should these data be made available (McKenzie et al.,
2014; Scholes et al., 2013; Willcock et al., 2016), even when results
may indicate high levels of uncertainty. This is illustrated by a
Sicilian case study, in which decision-makers, when advised of
the relatively low overall classification accuracy (43%), accepted
Please cite this article in press as: Willcock, S., et al. Machine learning for e
ecoser.2018.04.004
it as predictions were close to their actual value (i.e. 73% of test
data were predicted within one class above or below their actual
class) and were viewed as an improvement on previous estimates
(Fig. 2). Thus, providing estimates of uncertainty should become
standard practice within the ES community (Hamel and Bryant,
2017).

There are both advantages and disadvantages to using machine
learning algorithms for the ‘data mining’ step of DDM (Fayyad
et al., 1996). As highlighted above, machine learning algorithms
provide indications of uncertainty that could usefully support
decision-making. However, similar uncertainty metrics can also
be obtained using conventional modelling (i.e., via the confidence
intervals surrounding regressions (Willcock et al., 2014) or Baye-
sian belief networks (Balbi et al., 2016)). Similar to conventional
modelling, the performance of model algorithms substantially
depends on the parameters, model structure and algorithm set-
tings applied (Zhang and Wallace, 2015). For example, many
machine learning algorithms require categorical data and so poten-
tially an additional step of data processing whereby continuous
data are discretised. In our South African case study, we divided
firewood use data into five bins but acknowledge that the number
of bins may affect model performance and the impact of this war-
rants further investigation (Friedman and Goldszmidt, 1996;
Nojavan et al., 2017; Pradhan et al., 2017). However, a variety of
machine learning algorithms are available (Table 1) and not all of
them required discretised data (Jordan and Mitchell, 2015;
Witten et al., 2016). Furthermore, for our firewood models, we
used machine learning to create the model structure. Structural
learning can yield better performing models (i.e., all our South Afri-
can model configurations had a classification accuracy above 80%;
Appendix 1) and may highlight relationships that have not yet
been theorised (or have previously been discarded) (Gibert et al.,
2008; Suominen and Toivanen, 2016). However, the obtained
structures (Fig. 3) may not be causal and could confuse end-users
(Schmidhuber, 2015). Thus, predefined network structures may
be preferred for applications where causality is particularly impor-
tant. Further generalisations useful for ES modellers considering
machine learning algorithms include the following: 1) Multi-
classification problems may have lower accuracy – as highlighted
by comparing our South African (2 category output, 82% accuracy)
and Sicilian (10 category output, 43% accuracy) examples – the
more categories in the modelled output, the lower the apparent
accuracy. Thus, the number of categories in the output should be
considered when interpreting the model accuracy metric. For
example, a random model with a two category output and a four
category output will be accurate 50% and 25% of the time respec-
tively. Thus, a machine-learned model with an accuracy of 40% is
cosystem services. Ecosystem Services (2018), https://doi.org/10.1016/j.
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poor if the output had two categories, but learned more (and so
might be of more use) if a four category output was being consid-
ered; 2) Supervised learning can be used when drivers are known –
for example, with no a priori assumptions, unsupervised learning
could cluster beneficiaries into groups, but these may not match
known beneficiary groups (i.e., livelihoods) and so might be diffi-
cult to interpret (Schmidhuber, 2015). Supervised learning can be
used to align the outputs from machine learning algorithms with
decision-maker specified beneficiary groups; 3) machine learning
algorithms are best applied to the past and present, but not the
future – Although machine learning algorithms can detect strong
relationships, accurately describing past events and providing use-
ful predictions where process-based understanding is lacking (Jean
et al., 2016), the relationships identified may not be causally linked
and so may not hold when extrapolating across space or time
(Mullainathan and Spiess, 2017). Thus, where the process is well
understood, DDM is unlikely to be more appropriate than conven-
tional process-based models (Jordan and Mitchell, 2015). Under-
standing the caveats and limitations of machine learning
algorithms is important before the algorithms are used for DDM.

A further critique of DDM is that it can appear as a ‘black box’ in
which the machine learning processes are not clear to the user and
so they could widen the implementation gap (Clark et al., 2016;
Olander et al., 2017; Wong et al., 2014). However, we have demon-
strated that utilisation of machine learning algorithms can be
transparent and replicable. For example, Bayesian networks allow
the links between data to be visualised (Fig. 3) (Aguilera et al.,
2011; Chen and Pollino, 2012; Landuyt et al., 2013). The standalone
Weka software is user friendly and requires minimal expertise, and
ease of use has been further simplified within the ARIES software
as DDM can be run merely by selecting a spatiotemporal modelling
context and then using the ‘drag-drop’ function to start the
machine learning process (Villa et al., 2014). Machine learning
and machine reasoning (Bottou, 2014) are facilitated within the
ARIES system through semantic data annotation, which makes data
and models machine readable and allows for automated data
selection and acquisition from cloud-hosted resources, as well as
automated model building (Villa et al., 2017). To ensure that this
complex process remains transparent, the Bayesian network is
described using a provenance diagram (Fig. S2), characterising
the DDM process, i.e., which data and models were selected by
ARIES (Fig. 1). Furthermore, work has begun to enable the ARIES
software to produce automated reports that describe the DDM pro-
cess and modelling outputs in readily understandable language
(see Appendix 2 for a preliminary automated report for the ARIES
example used in this study). Advances such as this may enable
decision-makers to run and interpret ES models with minimal sup-
port from scientists, potentially increasing ownership in the mod-
elled results and closing the implementation gap (Olander et al.,
2017).

The DDM process encourages scientists to use as much data
as possible to generate the highest quality knowledge. Machine
learning algorithms provide a tool by which ‘big data’ can be
incorporated into ES assessments (Hampton et al., 2013; Lokers
et al., 2016; Richards and Tunçer, 2017). For example, using
the ARIES software, we demonstrated how Open Street Map data
can be included in the machine learning process (Haklay and
Weber, 2008). Whilst future research is needed to determine
how much data is actually needed, it is clear that ES scientists
must contribute to and make use of large datasets to participate
in the information age (Hampton et al., 2013), particularly where
data are standardised and made machine-readable (Villa et al.,
2017). Using machine learning algorithms to interpret big data
may help provide a wide range of ES information across the vari-
ety of temporal and spatial scales required by decision-makers
(McKenzie et al., 2014; Scholes et al., 2013; Willcock et al.,
Please cite this article in press as: Willcock, S., et al. Machine learning for
ecoser.2018.04.004
2016). There has been a recent call-to-arms within the ES mod-
elling community to shift focus from models of biophysical sup-
ply towards understanding the beneficiaries of ES and
quantifying their demand, access and utilisation of services, as
well as the consequences for well-being (Bagstad et al., 2014;
Poppy et al., 2014). Combining social science theory and data
to explain the social-ecological processes of ES co-production,
use and well-being consequences will likely result in substantial
improvements to ES models (Bagstad et al., 2014; Díaz et al.,
2015; Pascual et al., 2017; Suich et al., 2015; Willcock et al.,
submitted for publication). Such social science data are some-
times available at large scales (e.g., via national censuses) but,
with some notable exceptions (e.g., Hamann et al. (2016,
2015)), are rarely used within ES models (Egoh et al., 2012;
Martínez-Harms and Balvanera, 2012; Wong et al., 2014). The
process of DDM guides researchers in how to incorporate of
big data into ES models, scaling up results from sites to conti-
nents (Hampton et al., 2013; Lokers et al., 2016). DDM allows
an interdisciplinary approach across a large scale and so may
help guide global policy-making, e.g., within the Intergovern-
mental Science-Policy Platform for Biodiversity and Ecosystem
Services (IPBES; www.ipbes.net).

In conclusion, DDM could be a useful tool to scale up ES models
for greater policy- and decision-making relevance. DDM allows for
the incorporation of big data, producing interdisciplinary models
and holistic solutions to complex socio-ecological issues. It is cru-
cial that the approach and results of machine learning algorithms
are conveyed to the user to enhance transparency, including the
uncertainty associated with the modelled results. In fact, we hope
that the validation of ES models becomes standard practice with
the ES community for both process-based and DDM. In the future,
automation of the modelling processes may enable users to run ES
models with minimal support from scientists, increasing owner-
ship in the final output. Such automation should be accompanied
by transparent provenance information and procedures for a com-
puterised system to select context-appropriate data and models.
Taken together, the advances described here could help to ensure
ES research contributes to and inform ongoing policy processes,
such as IPBES, as well as national-, subnational-, and local-scale
decision making.
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