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Abstract: Since graphene was first reported as a saturable 
absorber to achieve ultrafast pulses in fiber lasers, many 
other two-dimensional (2D) materials, such as topologi-
cal insulators, transition metal dichalcogenides, black 
phosphorus, and MXenes, have been widely investigated 
in fiber lasers due to their broadband operation, ultra-
fast recovery time, and controllable modulation depth. 
Recently, solution-processing methods for the fabrication 
of 2D materials have attracted considerable interest due to 
their advantages of low cost, easy fabrication, and scal-
ability. Here, we review the various solution-processed 
methods for the preparation of different 2D materials. 
Then, the applications and performance of solution-pro-
cessing-based 2D materials in fiber lasers are discussed. 
Finally, a perspective of the solution-processed methods 
and 2D material-based saturable absorbers are presented.

Keywords: solution-processed; 2D materials; fiber laser; 
pulse.

1   Introduction
Lasers able to generate pulses on a picosecond time 
scale or less have widespread applications in science and 
technology [1]. Among these, fiber lasers have advantages 
such as alignment-free operation, efficient heat dissipa-
tion, and compact designs, making them particularly 
attractive for applications requiring a stable operation [2, 
3]. For example, in medicine, stable pulses operating at ~2 
μm are required for surgery due to the water absorption at 
this wavelength [4, 5], while pulses operating in the ~1–1.5 
μm range are required for imaging, to minimize photoda-
mage and maximize penetration depth [6]. Owing to their 
high performance, design flexibility, and low maintenance 
costs [7, 8], fiber lasers have been particularly successful 
in applications such as medicine [9, 10], telecommuni-
cation [11], and sensing [12]. Optical pulses, as required 
by most applications, are generated by a mode-locking 
or Q-switching technique [13, 14], where an intensity-
dependent saturable absorber (SA) is typically used [15]. 
SAs with high modulation depths (e.g. 41.2% and 51.3% 
[16, 17]) and low saturation intensity (e.g. 0.75 and 2.02 
MW/cm2 [18, 19]) are typically desired for mode locking 
of fiber lasers due to their higher gain and lower cavity 
losses compared with solid-state lasers [20]. To date, the 
most common SAs used in commercial fiber lasers are 
based on semiconductor SA mirrors (SESAMs) [21] and 
non-linear polarization evolution [22]. However, SESAMs 
generally have a limited bandwidth (~100 nm [21]), while 
non-linear polarization evolution-based SAs are sensi-
tive to environmental parameters [22], resulting in strin-
gent technological requirements needed to control their 
properties. These limitations are particularly detrimental 
for scientific research and technological development. 
For example, from a laser design perspective, SAs able 
to provide flexible parameters (e.g. low linear absorption 
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and high modulation depth), and that can be easy to fabri-
cate and integrate, are especially desirable [23, 24]. These 
requirements, driven by a growing number of scientific 
and industrial applications, motivate research on new 
materials, novel designs, and technologies [25–28].

Two-dimensional materials (2DMs) have emerged as 
promising SAs with a number of favorable properties for 
laser development [29, 30], such as broadband operation 
[31, 32], controllable modulation depth [33], and ultrafast 
recovery time [34, 35]. In addition, they can be solution 
processed by means of wet chemistry [36], making them 
easy to fabricate and integrate into all-fiber configura-
tions. Since the first demonstration of a graphene SA pro-
duced by liquid-phase exfoliation (LPE) [37], a growing 
number of related 2DMs are being investigated due to their 
diverse properties and manufacturing flexibility [30]. 
Among these, SAs based on topological insulators (TIs) 
have been demonstrated with high (~95%) modulation 
depth [38], while transition metal dichalcogenides (TMDs) 
have better saturable absorption response (1.38 MW/cm2 
[39]) compared with graphene (e.g. 60 and 266 MW/cm2 
[40, 41]). Moreover, black phosphorus (BP) with a large 
span of bandgap and controllable band energy (0.3 eV for 
bulk BP and 2 eV for monolayer BP) that can be controlled 
by the number of layers has also proved to be a broadband 
SA up to the mid-infrared band [42].

Here, we review recent developments toward the 
implementation of solution-processed 2DMs to fiber lasers 
and present our outlook on this field. The exfoliation, sta-
bilization, sorting, and MXene fabrication are discussed 
in Section 2. Then, the applications of solution-processed 
2DM-based ultrafast fiber lasers are presented. Finally, a 
summary and outlook is given in Section 4.

2   Fabrication methods
The two main methods to produce 2DMs (i.e. crystalline 
materials with a layered structure) can be categorized 
into bottom-up and top-down [43]. For example, chemi-
cal vapor deposition (CVD) is a popular bottom-up method 
able to produce high-quality, large-area materials [44–46]. 
While CVD is used for applications such as integrated elec-
tronic devices [47, 48] or transparent electrodes, for other 
applications such as solar cells, fuel cells, thermoelectric 
devices, or optical sensing systems [49–52], it is preferable 
to have the 2DMs dispersed in a liquid, which would make 
them easier to process and manipulate [53, 54].

LPE of 2DMs is a typical top-down method where a bulk 
crystal or powder (of the starting material) is exfoliated 

in a liquid medium by disrupting the forces keeping the 
layers together [43]. It can be achieved by using physical 
forces (e.g. ultrasound waves or shear forces [53, 55, 56]) or 
by chemically modifying the layers, e.g. by intercalation 
(e.g. insertion of ions or use of electrochemical actions 
[56]), or by oxidation [57, 58]. Compared to CVD, which 
requires high substrate temperatures followed by transfer 
to the target substrate, LPE has the advantages of scal-
ability, room temperature processing, and high yield, and 
does not require any substrate [43]. Dispersions produced 
by LPE can be easily integrated into various systems like 
batteries or solar cells [49]. Here, we provide a brief over-
view of the main LPE methods used to achieve stable 2DM 
dispersions for ultrafast laser applications.

LPE is one of the most popular methods to produce 
2DM-based SAs. From the SA perspective, a number of 
aspects need to be considered when evaluating an LPE 
method. For example, the yield of single or few layers, 
as well as their concentration, is important to maximize 
the modulation depth [59], while the dispersion stability 
(i.e. the ability to prevent reaggregation [53]) is crucial as 
aggregates could cause non-saturable scattering losses 
[60]. Other aspects such as cost and scalability are clearly 
important from a technology implementation standpoint 
[53, 61]. Regardless of the type of forces involved, there are 
three main steps in achieving stable dispersions: actual 
exfoliation, stabilization, and sorting. Herein, we summa-
rize the typical LPE-based 2DM SAs, as shown in Table 1.

2.1   Exfoliation methods

Exfoliation is the process by which the layered structure 
of a 2DM is disrupted to form individual layers or few-layer 
structures [133–135]. The most popular exfoliation method 
used to fabricate SAs is ultrasonication, in which ultra-
sound waves are employed to disrupt the weak inter-layer 
van der Waals forces within the 2D crystal (Figure 1A, B). 
Ultrasonication has proved effective for most 2DM-based 
SAs, including graphene [36, 41, 62–67, 133], TIs [16, 59, 89, 
91, 105, 107–111, 114, 136–138], TMDs [19, 39, 60, 74, 83–89, 
91, 92, 96, 97, 99–104, 135, 139–142], and BP [42, 116–130, 
143–145]. Its popularity arises from the ease of use, low 
cost, and immediate availability across most laboratories 
[55, 146, 147]. Conversely, scalability is an issue for such 
methods, as ultrasonication remains essentially a labora-
tory-based process [55].

Intercalation is another popular method used to exfo-
liate 2DMs for SA preparation. The intercalation process 
can occur by using intercalants (typically small ions like 
Li+) or by electrochemistry [56]. The process relies on the 
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Table 1: Summary of the typical LPE-based 2DM SAs.

Material   Exfoliation   Medium/stabilization   Integration   Ref.

Graphene   Ultrasonication   PVA   PVA composite   [62]
Graphene   Ultrasonication   Surfactant   PVA composite   [36, 41, 63–66]
Graphene   Ultrasonication   Surfactant or solvent (NMP or ODCB)  PVA or SMMA composite   [61]
Graphene   Ultrasonication   NMP   SMMA composite   [67]
Graphene   Electrochemistry   Sulfuric acid   Photonic crystal fiber   [68]
GO   Acid treatment   –   PPV composite   [69]
GO   Hummers   –   Optical deposition   [40]
GO   Hummers   –   PVA composite   [70–72]
GO   –   –   Photonic crystal fiber   [73]
GO   –   –   Spray   [74–76]
RGO   Hummers/hydrazine   –   Self-assembled membrane   [77]
RGO   Hummers/hydrazine   –   Optical deposition   [78–81]
GO and RGO  Hummers/benzylamine   –   Deposited on fused silica   [82]
MoS2   Ultrasonication   Surfactant   PVA composite   [19, 83, 84]
MoS2   Ultrasonication   DMF   PVA composite   [85–88]
MoS2   Ultrasonication   IPA   PVA composite   [89]
MoS2   Intercalation   Li-ion and ethylene glycol   Optical deposition   [90]
WS2   Ultrasonication   Surfactant   PVA composite   [39, 84, 91, 92]
WS2   Ultrasonication   NMP   PVA composite   [88]
WS2   Intercalation   Hydrazine and Na-ion   Optical deposition on tapered fiber   [93]
WS2   Intercalation   Li-ion in ethanol   Spin coating on side polished fiber   [94]
WS2   Intercalation   Li-ion and butyl-lithium in hexane   PVA composite   [95]
WS2/MoSe2   Ultrasonication   Surfactant   PVA composite   [96]
WS2   Ultrasonication   Water and ethanol   Optical deposition or PVA composite  [97]
MoSe2   Ultrasonication   Surfactant   PVA composite   [60, 84]
MoSe2   Intercalation   Hydrazine and Na-ion   Optical deposition   [98]
WSe2   Ultrasonication   Surfactant   PVA composite   [84, 99]
TiS2   Ultrasonication   NMP   Optical deposition   [100]
SnS2   Ultrasonication   Alcohol   PVA composite   [101, 102]
ReS2   Ultrasonication   NMP   PVA composite   [103]
PtTe2   Ultrasonication   IPA   PVA composite   [104]
Bi2Te3   Ultrasonication   Surfactant   PVA composite   [91]
Bi2Te3   Ultrasonication   NMP   PVA composite   [105]
Bi2Te3   Intercalation   Li-ion and ethylene glycol   Drop cast on CaF2 lens   [17]
Bi2Te3   Intercalation   Li-ion and ethylene glycol   Solution-filled photonic crystal fiber   [106]
Bi2Se3   Ultrasonication   NMP   Optical deposition   [59]
Bi2Se3   Ultrasonication   NMP   PVA composite   [105, 107–109]
Bi2Se3   Ultrasonication   IPA   Drop-cast on quartz plate   [110]
Bi2Se3   Ultrasonication   IPA   Transfer onto fiber end facet   [111]
Bi2Se3   Intercalation   Li-ion and ethylene glycol   Optical deposition   [112, 113]
Bi2Te3   Ultrasonication   NMP   Solution-filled photonic crystal fiber   [114]
Sb2Te3   Stirring   Water and chitosan   Drop-cast on side-polished fiber   [115]
BP   Ultrasonication   IPA   Optical deposition   [116–118]
BP   Ultrasonication   NMP   Optical deposition   [119–124]
BP   Ultrasonication   NMP   PVA composite   [125–128]
BP   Ultrasonication   NMP   Deposited on Au mirror   [116, 117]
BP   Ultrasonication   NMP   Inkjet printing   [129]
BP   Ultrasonication   Surfactant   PVA composite   [130]
BP   Electrochemistry   Tetra-n-butyl-ammonium bisulfate   Transfer onto fiber adapter   [131]
BP   Electrochemistry   Tetra-n-butyl-ammonium bisulfate   Sandwiched freestanding film   [132]

PVA, polyvinyl alcohol; SMMA, styrene methylmethacrylate; NMP, N-methyl-2-pyrrolidone; ODCB, ortho-dichlorobenzene; PPV, poly-
phenylene vinylene; DMF, dimethyl formamide; IPA, isopropyl alcohol.
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insertion of an ion or a molecule into a 2DM structure to 
disrupt its inter-layer forces (Figure 1C). For SA fabrica-
tion, intercalating ions have been used for TMDs [90, 
93–95] and TIs [17, 38, 106, 112, 113, 148–155]. Lithium ions 
(Li+) were first used to produce MoS2 monolayers using a 
chemical reaction with n-butyl lithium [156]. In this case, 
such reaction produced molecular hydrogen (H2), which 
released forced layers to detach and migrate in solu-
tion [157]. Indeed, Li-ion-based intercalation is the most 
popular intercalation method used to produce SAs based 
on MoS2 [90], WS2 [94, 95], Bi2Te3 [17, 38, 106, 148–155], and 
Bi2Se3 [112, 113]. Sodium ions can also be used in a process 
involving hydrazine initially, which releases ammonia 
(NH3), H2, and nitrogen (N2) gases while intercalating the 
TMD layers, then an Na-naphthalenide solution is added 
in a second step [93, 158]. Intercalation by electrochem-
istry is an exfoliation process in which the layered mate-
rial acts as an electrode in an electrochemical setup [56], 
which has also been used to produce SAs. For example, 
graphite can be used as anode with platinum (Pt) as 
cathode in an electrolyte solution to produce graphene 
monolayers [159–161, 68]. In such experiments, sulfuric 
acid or sulfate salts were used and sulfate was the interca-
lated ion. A similar process was used to produce BP-based 
SAs, with the crystal used as cathode (with a Pt foil anode) 
with tetra-n-butyl-ammonium bisulfate as electrolyte in 
anhydrous deoxygenated propylene carbonate [131, 132].

A chemical modification of the layers has proved to 
be a very popular method to exfoliate graphene in water, 
avoiding the use of surfactants. The material obtained 
has oxygen-containing functional groups [58], making it 

easily soluble in water, and is so called graphene oxide 
(GO), which is different from the graphene obtained in the 
liquid phase by other methods discussed above. This is 
usually carried out using the Hummers method, consist-
ing of treatment in sulfuric acid and potassium perman-
ganate [57]. Other oxidization routes include nitric acid 
or other oxidizing agents like potassium chlorate [58]. GO 
can be used as such to make SAs [18, 40, 69–76, 82, 162]. 
GO can be reduced back to graphene by hydrazine [163]. 
As reduction is never complete, this material is known as 
reduced GO (RGO), to distinguish from pristine graphene, 
which can also be used to make SAs [77–82].

2.2   Stabilization methods

Once exfoliated, 2DMs need to be stabilized in the liquid 
phase to avoid reaggregation. Stabilization methods are 
2DM dependent and can involve the use of a suitable 
solvent, surfactants, or polymers, to minimize the exfo-
liation energy cost [55]. Organic solvents like N-methyl-
2-pyrrolidone (NMP) and dimethyl formamide (DMF) have 
successfully been employed for the liquid-based exfolia-
tion of a number of 2DMs, like graphene [133], TMDs [135, 
164], and BP [165–167]. It has been proposed that exfoli-
ation in a solvent is successful as long as some solubil-
ity parameters, like surface tension and Hildebrandt or 
Hansen parameters, are very close for the solvent and the 
material [55, 133, 135, 146]. This enhances the compatibil-
ity between the material and the solvent, and increases 
the material concentration in solution [55, 133, 135, 146]. 
Other solvents used for graphene were ortho-dichloroben-
zene [168] and perfluorinated aromatic solvents [169]. 
Among the solvents used for fabricating SAs, NMP is the 
most popular [61, 67, 88, 103, 116, 117, 119–129, 144, 145], 
while other solvents used are DMF [85–88] and isopro-
pyl alcohol (IPA) [42, 89, 104, 116–118]. While the main 
advantage of using solvents is the high purity of the final 
material, there are also several drawbacks. Indeed, NMP 
and DMF are toxic and their high boiling point prevents 
an easy removal [55]. Also, solvents may not be compat-
ible with further steps of a process [55]. While other sol-
vents with lower boiling points have been proposed, like 
acetone, acetonitrile, 1-propanol, or IPA, their solubility 
parameters were not as good as those for NMP and DMF 
and their use was not as successful [170–174]. Despite this, 
there are a number of reports on SAs made from IPA-based 
2DM solutions, particularly MoS2 [89], PtTe [104], Bi2Se3 
[16, 89, 110, 111, 137, 138], and BP [42, 116–118].

The use of surfactants (i.e. cationic, anionic, or non-
ionic molecules with a long non-polar tail and a polar or 

Bulk material Exfoliated layers

Ultrasounds

A B

C

Figure 1: Schematics of the main exfoliation methods.
(A) Bath ultrasonication. (B) Tip ultrasonication. (C) Intercalation.
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charged head) in water provides a viable alternative to 
exfoliation in organic solvents [55, 56]. In this approach, 
the long non-polar tail of the surfactant adsorbs on the 
layered material, also non-polar. The polar or ionic head 
is instead exposed to water, also polar, thus stabilizing the 
solution and also preventing aggregation by electrostatic 
or steric repulsion [55]. This method has been mainly 
adopted for graphene, using sodium dodecylbenzene 
sulfonate, sodium cholate, sodium deoxycholate, cetyltri-
methylammonium bromide, and tetracyanoquinodimeth-
ane [61, 134, 175–177]. TMDs have also been dispersed in 
water using SC [178].

Due to the convenience of operating in aqueous 
environment, surfactants have been widely used in pro-
cesses for fabricating SAs [19, 36, 39, 41, 60, 61, 63–66, 
83, 84, 91, 92, 96, 99, 130]. While the use of water as a 
solvent makes the processing environmentally friendly 
and harmless, as well as potentially compatible with 
subsequent steps, the final material is not pure and may 
require a further processing step in case the surfactant 
causes interference with the designated application. 
When 2DMs are to be used as SAs, absorption of the sur-
factants in the laser region should be taken into account. 
Surfactants are usually transparent in the visible range 
but may give some optical absorption in the near-infra-
red region, where they may then cause non-saturable 
losses in the laser cavity. Hence, for fiber laser applica-
tions, they must be chosen carefully depending on the 
output wavelength or removed from the final SA mate-
rial. Beyond the specific SA applications, surfactants 
must also be removed if, for example, graphene disper-
sions are to be used for making transparent conductive 
films. In this case, surfactant molecules prevent efficient 
contact between flakes, thus increasing junction resist-
ance, impeding efficient carrier hopping from flake to 
flake and ultimately increasing the overall film resist-
ance [179]. However, an easy solution is just washing 
the surfactant away with water to minimize junction and 
the overall sheet resistance [179]. Hence, surfactants are 
potentially detrimental not just for optical applications 
but also for electrical ones.

The use of polymers is also a valid approach to the 
stabilization of 2DMs in both water and organic solvents. 
In general, polymers are partially adsorbed onto the 
material’s surface, leaving segments protruding into the 
liquid and preventing reaggregation by steric repulsion 
[55, 180]. However, this approach has found only limited 
applications for SA fabrication, as only in one case has 
polyvinyl alcohol (PVA) been reported as both a stabiliz-
ing polymer and polymer matrix for fiber laser integra-
tion [62].

2.3   Sorting methods

Regardless of the exfoliation and stabilization method, 
a final sorting step is always needed to enrich the solu-
tion of single- or few-layer material with the desired 
flake size. The universal sorting technique is centrifu-
gation. Standard centrifugation can also be referred 
to as sediment-based separation. During this process, 
the fragmented 2DMs separate according to their size 
and thickness. Thick and large flakes sediment faster 
and are  thus found in the bottom at the end of the 
process [55].

Standard centrifugation is the only sorting method 
used within SA fabrication. However, variations of the 
standard centrifugation exist. Density gradient ultracen-
trifugation allows a more precise control on the number 
of layers and lateral size [181–183], where flakes separate 
according to their density through a density gradient. 
However, this process is time consuming and has a very 
low yield, and thus is not useful for practical applications, 
including SAs.

A centrifugation method with good size and thick-
ness control as well as higher yield than density gradient 
ultracentrifugation is liquid cascade centrifugation [184], 
which has been developed for TMDs but can be used in 
principle for any 2DMs. In this method, a solution contain-
ing the exfoliated and stabilized material is subjected to 
subsequent centrifugation steps, where the sediment is 
separated and redispersed and the supernatant is cen-
trifuged again at a higher speed. This is repeated multi-
ple times with speeds that can be tuned according to the 
desired size and thickness distribution [184]. This is a 
recently developed method that has not found applica-
tion in SA fabrication yet; however, we cannot rule out its 
application in the near future.

2.4   MXene fabrication

MXenes are not typically produced by the common LPE 
methods. These are carbides or nitrides (or carbonitrides) 
of early transition metals, of which the most popular is 
titanium [185]. MXenes are obtained from the so-called 
MAX phases, also containing a layer of a group IIIA 
element, normally Al. Such MAX phases can be treated 
with hydrofluoric acid (HF) to etch the Al layer and leave 
the exfoliated MXene sheets in solution [185]. MXenes can 
be prepared by top-down or bottom-up methods such as 
aqueous acid etching (AAE), high-temperature etching, 
and CVD method, of which AAE is the most commonly 
used method in the preparation of high-quality MXenes 
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[186]. AAE is the etching of element A in the MAX phase by 
using acid solution, while MXenes are usually exfoliated 
by an ultrasonic method [187]. In this process, HF solu-
tion is the most attractive etchant for researchers due to its 
advantages of mature process, high practicability, and low 
cost [188]. For example, Wu et al. and Jhon et al. obtained 
Ti3C2Tx and Ti3CNTx by etching Al layers from different 
MAX phases in 40% and 30% HF acid, respectively [189, 
190]. Because intercalation cations such as NH4

+ and K+ 
can facilitate etching and exfoliation, fluorohydrides (e.g. 
NH4HF2 and KHF2) are also popular etchants for fabricat-
ing MXenes [191].

2.5   Fabrication summary

Table 1 shows a summary of fabrication methods for 
SAs. Notably, ultrasonication maintains its popular-
ity as an exfoliation method; however, intercalation is 
still significantly used to fabricate SAs. The intercala-
tion process relies on chemistry (or electrochemistry) to 
produce exfoliated layers, and as such may cause their 
chemical modification and ultimately an alteration of 
the electronic and optical properties, which is an effect 
that should be taken into account when fabricating an 
SA. Conversely, ultrasonication only relies on physical 
forces and maintains the layer structure intact [53, 55, 
56]. We thus believe that this is a preferable exfoliation 
method. When ultrasonication is used, we notice that 
the applications of surfactant and solvents are roughly 
evenly split. This is because both have their own distinct 
advantages and disadvantages, as mentioned above. 
When intercalation is used, the most popular option is 
based on lithium ions.

3   Solution-processed 2DM-based 
ultrafast fiber lasers

Fiber lasers are attractive platforms for ultrafast pulse 
generation due to their advantages of high pulse quality, 
flexibility, and compactness [1, 2]. Meanwhile, the use of 
SAs is a preferred method for the generation of pulses in 
fiber lasers [30]. Particularly, 2DM-based SAs are more 
attractive in terms of their broadband operation and engi-
neerable properties [23]. Indeed, solution-processed 2DMs 
have been widely exploited in fiber lasers, as evident from 
Table 2. Here, we summarize the common 2DMs used and 
the current trends.

3.1   Graphene

Since the first demonstration of graphene-mode-locked 
fiber lasers based on solution processing [37], solution-
processing-based graphene has been widely used for 
mode locking fiber lasers in the 1-μm [62], 1.5-μm [36, 41], 
and 2-μm regions [66]. For example, Hasan et al. obtained 
630-fs pulse at 1.56 μm by LPE of graphite [61]. Besides, 
polymer composites are a common carrier that is used 
to integrate graphene into fiber lasers [18]. In 2010, Sun 
et al. reported a wavelength-tunable (1525–1559 nm) fiber 
laser based on graphene PVA composite [41]. Popa et al. 
obtained 173-fs pulse from a dispersion-managed Er-doped 
fiber laser mode-locked by graphene PVA composite [63]. 
Apart from PVA [36, 41, 62–66, 69], some other polymers 
have also been exploited to fabricate graphene-based 
films. In 2009, Zhang et al. demonstrated mode-locked Er-
doped fiber lasers based on graphene polyvinylidene fluo-
ride polymer membrane [18]. In 2011, Gui et al. reported a 
self-assembled graphene membrane as an ultrafast mode 
locker in an Er-doped fiber laser [77]. In 2016, Torrisi et al. 
proposed graphene-styrene methylmethacrylate compos-
ite for ultrafast lasers [67]. The method of optical deposi-
tion is also used to transfer graphene to the fiber in laser 
cavity [78–81, 162]. For instance, Fu et al. reported a gra-
phene-mode-locked Er-doped fiber laser based on optical 
deposition, where a fiber connector for physical contact 
(FC/PC) was immersed in graphene solution. After alcohol 
evaporation, a graphene film was obtained at the center 
of the fiber core on the FC/PC tip, as shown in the inset 
of Figure 2A. They obtained the bound states of solitons 
and harmonic mode locking (HML) with orders from 1st to 
26th [81]. Figure 2B shows a spectrum of HML (inset, pulse 
profile). Similar to optical deposition, Lin et al. embedded 
graphene nanoparticles into photonic crystal fiber (PCF), 
which achieves the evanescent wave mode locking in an 
Er-doped fiber laser [68].

As a graphene derivative, GO has been widely investi-
gated as a broadband SA candidate because of its ultrafast 
recovery time, flat saturable absorption, low cost, and easy 
preparation [40, 200]. In 2010, GO-based fiber laser was 
first reported by Bonaccorso et al., who achieved an ~ 743-fs  
pulse in an Er-doped fiber laser [201]. PVA as a polymer 
matrix was also popular in GO-based ultrafast fiber lasers 
[70–72]. Besides, Liu et  al. demonstrated a nanosecond 
pulse by using few-layered GO SA, where a hollow core 
PCF was filled with GO solution [73]. Xu et  al. obtained 
200-fs pulses in a dispersion-managed fiber laser, where a 
thin GO membrane was formed on the broadband reflec-
tive mirror [40]. Jung et al. achieved a mode-locked fiber 
laser at 2-μm band by spraying GO onto the flat side of 
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a D-shaped fiber [74, 75]. Xu et  al. reported dissipative 
soliton generated from a GO-mode-locked fiber laser, in 
which a broadband reflective mirror was immersed into 
the GO hydrosol for 48 h [192]. Figure 2C shows the spectra 
before pulse compression (black curve), after 50-m single-
mode fiber (blue curve) and after 75-m single-mode fiber 
(red curve). Figure 2D shows the autocorrelation trace of 
chirped (blue curve) and dechirped pulses (red curve). 
Lee et al. reported a Q-switched mode-locked fiber laser by 
depositing GO to a D-shaped fiber [76]. Sobon et al. com-
pared the properties of GO with RGO as SAs in Er-doped 
mode-locked fiber laser, and showed that GO could be an 
efficient SA without reduction to RGO [82].

Although the modulation depth of single-layer 
graphene is ~2.3% or less [33, 36, 67], it can be easily 
enhanced by increasing the number of layers [33]. Fur-
thermore, broadband operation is another remarkable 
property of graphene [41]. For example, Fu et al. achieved 
a broadband mode-locked fiber laser by using a single 
graphene SA at different wavelengths, where the span of 
the wavelength covers from Yb-doped (1 μm), Er-doped 
(1.5 μm), and Tm-doped (2 μm) (up to 1000 nm) [31]. Gra-
phene started a new beginning for 2DM-based ultrafast 

photonics, paving the way for the research and develop-
ment of ultrafast lasers enabled by 2DMs [20].

3.2   Topological insulators

Similar to graphene, TIs such as Bi2Se3, Bi2Te3, and Sb2Te3 
belong to the Dirac materials [202]. In 2012, TI-based 
SA was first reported in an Er-doped fiber laser [38]. 
Panels A and B of Figure  3 show the scanning electron 
microscopy (SEM) and transmission electron microscopy 
(TEM) images of the Bi2Te3 nanosheets fabricated by the 
method of hydrothermal intercalation/exfoliation. The 
mode-locked spectrum and corresponding autocorrela-
tion trace are shown in Figure 3C and D, respectively. 
Since then, hydrothermal intercalation/exfoliation has 
been widely used to produce TIs [17, 38, 112, 148–150]. For 
example, Wu et al. reported on 635-nm visible Q-switched 
Pr-doped ZBLAN fiber lasers with Bi2Se3 and Bi2Te3 SAs 
[105]. Li et  al. experimentally demonstrated a 212-kHz-
linewidth transform-limited pulse from a single-frequency 
Q-switched fiber laser based on a few-layer Bi2Se3 SA [107]. 
For TI integration into the laser cavities, polymer matrices 
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Figure 2: Mode-locked results enabled by graphene and GO.
(A) Raman spectrum of the graphene (inset: graphene optically deposited on fiber tip). (B) HML spectrum (inset: the autocorrelation trace of 
the 26th harmonic). (C) Spectra: before pulse compression (black curve), after 50-m single-mode fiber (blue curve), and after 75-m single-mode 
fiber (red curve). (D) Autocorrelation trace of chirped (blue curve) and dechirped pulses (red curve). (A) and (B) are reproduced with permission 
from Ref. [81]. Copyright 2019 CLP Publishing. (C) and (D) are reproduced with permission from Ref. [192]. Copyright 2012 OSA Publishing.
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such as PVA were frequently utilized in the preparation 
of TI-based SAs [89, 108, 109, 137, 151]. In 2014, Liu et al. 
obtained 660-fs pulses generated in an Er-doped fiber 
laser enabled by Bi2Se3 nanosheets [89]. The spectrum 
and autocorrelation trace are shown in Figure 3E and F, 
respectively. In 2015, Mao et al. integrated Bi2Te3-PVA films 
into an Er-doped fiber laser and obtained mode-locked 
pulses at a low pump power of ~13 mW [151]. Optical depo-
sition is also suitable for transferring TIs to the fiber tips in 
laser cavity [16, 113, 152–155, 193, 203]. In 2013, Chen et al. 
proposed a self-assembled Bi2Se3-based membrane as an 
SA, which achieved dual-wavelength Q-switched pulses 
in Er-doped fiber laser [16]. In 2014, Liu et  al. obtained 
dual-wavelength harmonic-mode-locked pulses with 
Bi2Te3-based microfiber [154]. In 2018, Jin et al. reported on 
3.125-GHz harmonics realized by Bi2Te3-based tapered fiber 

by optical deposition [155]. In addition, polyol method 
was also used to prepare TIs as SAs in fiber lasers [110, 
111, 138]. For example, Zhao et al. reported a wavelength-
tunable picosecond soliton pulse generated in a Bi2Se3 
mode-locked fiber laser [110]. Dou et al. exploited Bi2Se3 as 
SA to achieve mode locking in a Yb-doped fiber laser [111]. 
Lin et al. obtained Q-switched pulses in a Yb-doped fiber 
laser by Bi2Se3 [138]. Besides, some other methods such as 
TI-based solution filled in PCF were also used to achieve 
mode locking in fiber lasers [106, 114].

TIs have a broad non-linear response and a large mod-
ulation depth [23]; however, the mode-locking stability is, 
to some extent, lower than graphene. Sometimes, the sig-
nal-to-noise ratio of the mode-locked fiber lasers based on 
TIs SAs are <60 dB [89, 108, 111, 137]. In addition, TI-based 
SAs tend to obtain Q-switched pulses with pulse width 
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in the order of nanoseconds or microseconds [16, 109], 
which is undesirable as it is usually preferred to achieve 
ultrashort pulses (picoseconds or sub-picoseconds) for 
applications in optical communications and material 
processing [89, 114]. Therefore, it is of vital importance 
to make TI-based SAs with better performance in order to 
further optimize the mode-locking properties.

3.3   Transition metal dichalcogenides

TMDs, such as MoS2, MoSe2, WS2, and WSe2, have a layer-
dependent bandgap that allows them to be used as broad-
band SAs in ultrafast fiber lasers [90]. Since Zhang et al. 
first demonstrated MoS2 as an SA in passively mode-locked 
fiber laser by optical deposition [90], ultrafast fiber lasers 
enabled by TMD-based SAs have been extensively inves-
tigated. Several techniques were used for the prepara-
tion of TMDs as SAs in fiber lasers [194, 195, 204]. In 2013, 
Wang et al. revealed the ultrafast saturable absorption of 
2D MoS2 nanosheets by using the LPE technique, indicat-
ing that MoS2 is a potential SA for achieving ultrafast fiber 
lasers [34]. In 2014, Luo et  al. reported Q-switched fiber 
lasers operated at 1, 1.5, and 2 μm by sandwiching the 

MoS2 PVA film between two fiber ferrules, which shows 
the broadband properties of MoS2 as an SA for ultrafast 
photonics [87]. In 2015, Woodward et al. obtained stable 
Q-switched pulses at 1060, 1566, and 1924  nm in Yb-, 
Er-, and Tm-doped fiber lasers, respectively, by embed-
ding liquid-phase exfoliated few-layer MoSe2 flakes into a 
polymer film [60]. Mao et al. reported on WS2-mode-locked 
fiber lasers, where WS2 nanosheets were deposited on a 
D-shaped fiber and WS2 PVA film was sandwiched into 
the facet of the fiber connector [97]. Li et al. proposed a 
WS2-based SA fabricated by the thermal decomposition 
method, which achieves sub-nanosecond mode-locked 
pulses in Yb-doped fiber laser [196]. Chen et al. obtained 
Q-switched pulses based on four kinds of TMD PVA 
materials (MoS2, MoSe2, WS2, and WSe2) with the same 
cavity configurations [84]. Panels A–D of Figure  4 show 
the spectra of MoS2, MoSe2, WS2, and WSe2, respectively. 
In fact, while several TMDs have been obtained by solu-
tion processing [135], researchers are devoting significant 
effort to explore such new TMDs for applications in ultra-
fast photonics [35, 91, 100–104, 205]. In 2017, Mao et  al. 
reported on a passively Q-switched and mode-locked fiber 
laser based on a film-type ReS2 PVA, demonstrating that 
ReS2 has similar saturable absorption property to MoS2 
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and WS2 [103]. In 2018, Tian et al. reported a femtosecond 
mode-locked fiber laser with TiS2 based on LPE, indicating 
that non-equilibrium electrons could promote TiS2-based 
SA to be an ultrafast switch for ultrafast pulse output [35]. 
In 2018, Niu et  al. reported a passively mode-locked Er-
doped fiber laser based on SnS2 PVA film, where a long-
time and stable mode locking was achieved [102]. Wang 
et al. reported that a high-energy passively Q-switched Er-
doped fiber laser enabled Mo0.5W0.5S2-based SA, where the 
Mo0.5W0.5S2-alcohol solution was injected into the quartz 
tube in order to deposit it onto the taper fiber [91]. In 2019, 
Cheng et al. suggested a multilayer PtTe2 PVA composite 
thin film as an SA, achieving Q-switched pulses in a Yb-
doped fiber laser [104].

A variety of TMD materials have been discovered, 
where MoS2 and WS2 are the most common SAs that were 
used to achieve ultrashort pulses. PVA composites usually 
serve as carriers for transferring TMDs to the laser cavity. 
Meanwhile, the method of evanescent field is an alterna-
tive way to accomplish the interaction between lasers and 
TMDs. Similar to TIs, TMD-based SAs also easily produce 
Q-switched pulses. Thus, it is important to fabricate better 
TMD materials to improve the performance of lasers.

3.4   Black phosphorus

In 2014, BP joined the family of 2DMs [206]. The bandgap of 
BP ranges from 0.3 eV (bulk) to 2.0 eV (monolayer) and the 
energy bandgap depends on its thickness [207]. The broad-
band non-linear optical response of BP was confirmed by 
the wideband open-aperture Z-scan measurement tech-
nique from the visible to mid-infrared region [208]. Since 
the first demonstration of BP-based passively mode-locked 
fiber lasers [209], BP has been used to mode lock fiber 
lasers in the 1-μm [42, 131], 1.5-μm [119–121, 125, 197], and 
2-μm regions [122, 144] by the solution-processing method, 
as well as to Q-switch fiber lasers [116, 123, 126, 127, 130, 
132, 210]. For example, Qin et al. reported on BP fabricated 
by LPE for the Q-switched Er:ZBLAN fiber laser at 2.8 μm, 
where the maximum average power of 485 mW with pulse 
energy of 7.7 μJ was achieved [117]. Luo et  al. proposed a 
lateral interaction mechanism based on BP-based microfib-
ers by the LPE in an Er-doped fiber laser [124]. They believed 
that this mechanism not only increases the damage thresh-
old of several layers of BP as SA but also increases the inter-
action between light and matter [124]. Chen et al. reported 
on sub-300-fs tunable fiber laser with all-anomalous dis-
persion mode locked by BP, in which the multi-layer BP was 
deposited on the tapered fiber by the method of evanescent 
field interaction [118]. Jin et al. obtained a long-term stable 

ultrashort pulse (~100 fs) generated in a BP mode-locked 
fiber laser by a scalable and highly controllable inkjet print-
ing technology [129]. Song et al. achieved a vector soliton 
fiber laser by incorporating BP nanoflake-based SA into 
an Er-doped fiber laser, indicating that nanoflake-based 
BP SAs were polarization independent and suitable for 
vector soliton fiber laser [145]. Panels E and F of Figure 5 
show the spectra and autocorrelation trace of vector soliton 
fiber laser mode locked by BP. Furthermore, Yun reported 
a dual-wavelength polarization-locked vector soliton in an 
Er-doped fiber laser enabled by BP-based PVA film [128]. Xu 
et al. exploited black phosphorene quantum dots (BPQDs) 
as a mode-locker in an Er-doped fiber laser, indicating that 
BPQDs have potential applications for ultrafast photon-
ics [198]. Figure 5A shows the TEM of BPQDs prepared by 
a solvothermal method in NMP solution, and the absorp-
tion trace is shown in Figure 5B. Panels C and D of Figure 5 
show the spectrum and autocorrelation trace, respectively. 
It is worth noting that BPQDs as SAs demonstrated better 
performance than BP nanosheets due to quantum confine-
ment effects [198].

PVA composites and evanescent filed interaction are 
the typical methods to incorporate BP to the laser cavity. 
BP has a low saturation intensity and the ability of broad-
band operation up to the ~3-μm band [120, 208]. BP-based 
SAs such as BPQDs and black phosphorene nanoparticles 
have also been exploited to achieve ultrashort pulses in 
fiber lasers [119–121]. However, BP is not stable enough and 
easily oxidized in the air. Different preparation methods 
have been studied to obtain the BP-based SAs with the best 
performance. For example, Hu et al. proposed a printed BP 
ink in order to improve the long-term stability (~30 days) 
of the BP devices [211]. For now, the fabrication of BP with 
higher stability and quality is still a big challenge.

3.5   MXenes

Recently, MXenes (2D transition metal carbides, carboni-
trides, or nitrides [20]) have attracted more attention 
because of their outstanding optoelectronic and optical 
properties [185, 212, 213]. In 2017, John et al. reported Ti3C-
NTx-based SA by solution processing in an Er-doped fiber 
laser, where the stacked Ti3CNTx monolayers were trans-
ferred to a side-polished fiber, and obtained stable pulses 
as short as 660 fs at a repetition rate of 15.4  MHz and a 
wavelength of 1557  nm [190]. In 2018, Jiang et  al. inves-
tigated the broadband non-linear photonics of Ti3C2Tx 
by depositing Ti3C2Tx solution onto a side-polished fiber 
[186], where stable mode locking was achieved in Yb- and 
 Er-doped fiber lasers, respectively, as shown in Figure 6. 
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In 2019, Zhang et al. obtained an ultrashort pulse (104 fs) 
in a dispersion-managed fiber laser by depositing Ti3C2Tx 
onto a microfiber [189]. The spectrum and the autocorrela-
tion trace are shown in Figure 6E and F, respectively. Wang 
et al. reported a high-energy pulse (~305 nJ) realized in a 
Q-switched fiber laser based on Ti3C2Tx by optical deposi-
tion [188], which shows that Ti3C2Tx could be applied as 
an SA for high-energy pulse generation. Yi et al. demon-
strated the solution processing Ti2CTx operated in three 
different fiber lasers (1-, 1.5-, and 2.8-μm bands) [199], 
indicating the excellent non-linear absorption perfor-
mance of Ti2CTx in the mid-infrared regime.

As a kind of emerging new 2DM, some MXene-based 
SAs possess high modulation depth, which is beneficial 
to obtain ultrafast pulses (~38%) [186]. Besides, MXenes 
can also be operated as broadband SAs from the near- to 

mid-infrared band [199]. It can be expected that MXene-
based SAs will bring more surprises to the research and 
development of ultrafast photonics in lasers.

4   Perspective
The development of 2DM-based fiber lasers has brought 
great convenience to industry because of their compact-
ness, flexibility, broadband operation, and high pulse 
quality. 2DM-based SAs are being developed rapidly 
and attracting substantial attention [214–217]. Graphene 
has excellent broadband operation and an adjustable 
modulation depth that depends on its layer number [33]. 
Graphene-based 2DMs have also been used to achieve 
single-frequency Q-switching [218], singly polarized 
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pulse generation [219], optical frequency comb [220], and 
broadband gate-tunable terahertz plasmons [221]. TIs can 
achieve a high modulation depth, and TMDs have better 
saturable absorption compared with graphene; however, 
the mode-locked stability of TIs and TMDs still needs to be 
improved. Although BP is easily oxidized in the air, it can 
be operated in the mid-infrared band [211]. Besides, BP as a 
platform of nanomedicine has also been used for biomedi-
cal diagnosis [222–224]. As a new family member of 2DMs, 
MXenes have many desirable properties, such as high 
modulation depth and broadband operation [190, 199]. 
However, the existing 2DM-based SAs also have their own 
shortcomings. In order to overcome the existing shortcom-
ings of 2DMs and achieve wide applications in industry, 
some other mono-elemental 2D materials, such as anti-
monene and bismuthene, have attracted more attention 
[225–233]. In 2017, Song et al. experimentally investigated 

the broadband non-linear optical response of few-layer 
antimonene as SA, and obtained ~550-fs pulses in an Er-
doped fiber laser [225]. In 2018, Lu et  al. obtained 652-fs 
pulses in a bismuthene-based mode-locked fiber laser 
[226]. In addition, Ge et al. exploited few-layer selenium-
doped BP nanosheets as SA to achieve mode-locked pulses 
in an Er-doped fiber laser, indicating that selenium-doped 
BP is an excellent SA candidate for ultrafast photonics 
[234]. To date, there have been various attempts to avoid 
their drawbacks. Different preparation methods have been 
studied to obtain SAs with better performance [235–237].

From a processing standpoint, while ultrasonication 
and intercalation potentially suffer from poor scalability, 
other exfoliation methods have been demonstrated as effec-
tive LPE techniques. These include ball milling and shear 
exfoliation. Ball milling is an exfoliation technique that has 
been demonstrated for graphene and MoS2 [238, 239]. It uses 
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collisions and shear forces to disrupt the layer-to-layer inter-
actions. Originally being an industrial process, it is intrinsi-
cally scalable. Shear exfoliation is based on the action of a 
rotor/stator or a rotating blade [240–243]. Exfoliation occurs 
by shear forces and produces large flakes of single- and few-
layer material [240]. This is also a simple industrial process 
and thus intrinsically scalable, as it allows processing of 
much larger volumes than ultrasonication and higher pro-
duction rates, thus reducing the potential cost. While ball 
milling and shear exfoliation are still batch processes, a con-
tinuous process has recently been developed for the exfolia-
tion of graphite into graphene that uses turbulent flow and 
high pressure and does not require a centrifugation step 
afterwards [244]. Such methods, to our knowledge, have not 
been used thus far to produce SAs. However, they seem to be 
very promising methods to achieve 2DM dispersions suitable 
for SA fabrication at a lower cost and on a larger scale than 
ultrasonication or intercalation, and may thus find applica-
tions in this field in the near future.

5   Conclusion
We have reviewed solution-processed 2D materials for 
ultrafast fiber lasers. Exfoliation, stabilization, sorting, 
and MXene fabrication are introduced in this review. The 
applications of 2DM-based SAs such as graphene, TIs, 
TMDs, BP, and MXenes in ultrafast fiber lasers have been 
discussed. In addition, a summary and outlook has been 
presented in perspective. We believe that the exploration 
of 2DMs for ultrafast photonics will never stop, and we 
look forward to seeing the better combination of 2DMs 
and fiber lasers in the near future.
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