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This paper describes PROFETA (standing for Python RObotic Framework for dEsigning 
sTrAtegies), a framework for the programming of autonomous robots based on the Belief-
Desire-Intention (BDI) software model. PROFETA is inspired by AgentSpeak(L), a formal 
language for the creation of BDI software agents. The framework is implemented in Python, 
and utilizes the metaprogramming capabilities offered by this language to implement the 
operational semantics of AgentSpeak(L). PROFETA provides a flexible environment offering 
both traditional object-oriented imperative constructs and declarative constructs, enabling the 
definition of a robot’s high-level behavior in a simple, natural way. The contributions 
of this paper, in the area of software design and development, are: (i) a methodology, 
equipped with suitable technical solutions, to extend the Python programming language 
with AgentSpeak(L) declarative constructs; and (ii) a unified environment enabling software 
components for robots to be developed using a single language (Python) within a single
runtime environment (the Python virtual machine). A comparison between PROFETA and 
other similar frameworks is provided, illustrating common aspects and key differences.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The operation of an autonomous robotic system necessitates a flexible software architecture, capable of integrating the 
many components required for the robot control and coordination. These typically include a number of heterogeneous pieces 
of software, ranging from low-level motor control up to automated action planning and execution. A natural approach is to 
organize software components in a hierarchy of layers [1–5], depending on their level of abstraction from the hardware. This 
allows designers to decouple the code that implements “low-level” tasks, which are typically related to control and sensing, 
from “middle-level” (e.g. coordination of multiple actuators) and “high-level” activities (e.g. reasoning and path planning). 
Layered architectures impose a clear separation between the different software parts, thus improving maintainability of the 
codebase, and facilitate the addition of novel features by providing clear programming interfaces between layers.

In layered architectures, the top layer traditionally controls the behavior of the robot, as it relates to its goals and its 
perception of the environment. In many simple applications, the behavior is defined by a finite-state machine (FSM) [6–9]. 
This is a convenient approach and is relatively simple to implement, but does not always scale up straightforwardly: complex 
behaviors, dealing with the need to adapt to continuous changes in the environment, require large FSMs that are difficult to 
design and maintain.
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More sophisticated approaches to programming behavior offer explicit support for the implementation of reasoning pro-
cesses, rather than the simple execution of condition–action mappings (as in the case of FSMs). Such approaches have been 
developed in the area of intelligent agents [10,11], and in particular of agent-oriented programming (AOP) [12,13]. Among 
these, an interesting paradigm is the Belief–Desire–Intention (BDI) model [14], which is inspired by Bratman’s theory of 
human practical reasoning [15]. Briefly, BDI is based on the concept that an agent has certain goals (desires) and a set of 
plans to achieve them; plans are selected, thus becoming intentions, depending on the agent’s perception of the circum-
stances (represented by a set of beliefs). Beliefs, desires and intentions are specified at a high level, often using a powerful 
logic/declarative approach: this enables complex behaviors to be implemented, still keeping code transparent and readable.

Integration of a BDI-based layer in a robotic software architecture often results in a mixture of programming languages, 
styles, and runtime environments: low-level tasks are generally implemented in an imperative language (e.g. C [16] or as-
sembly [17]), while, in many cases, BDI systems utilize declarative languages with a syntax and semantics inspired by either 
Prolog or LISP [18–22] (even if there are also solutions that exploit an imperative approach). From a software engineer-
ing standpoint, developing and maintaining such an architecture would require the coordination of multiple development 
teams, with specialists for each of the programming languages involved, leading to higher human resources costs. More 
generally, the proliferation of different programming languages within the same architecture results in software systems 
that are potentially hard to control, debug and maintain [23–26].

A way to tackle the complexity related with multiple development languages/environments is to adopt an agent-oriented 
software engineering (AOSE) methodology [27–30], equipped with a CASE tool. This provides powerful assistance in con-
ceptualizing the system with a design process so made essentially visual, and at the same time carries out automatic code 
generation, thus masking development language diversity and related problems. Yet, this approach, albeit useful, is far from 
ideal, and should not be seen as the “silver bullet” of robotic systems design. Indeed, it is not uncommon for the generated 
code to be hard to read and maintain, which also hampers the debugging process. We also observe that this is essentially 
an agent-oriented approach, typically focusing on the multi-agent interaction aspect, hardly useful for robotic applications.

In this work, we tackle the noted issues, proposing as a solution a novel, unified programming environment that 
smoothly and elegantly integrates imperative and declarative constructs, thereby enabling developers to rapidly create and 
combine the different parts of a robotic software architecture. Specifically, we propose a framework, called PROFETA (Python 
RObotic Framework for dEsigning sTrAtegies), which builds on the Python programming language and extends it to implement 
the operational semantics required to define and run BDI agents. PROFETA runs on the Python virtual machine, and ex-
tends Python with a set of declarative constructs inspired by AgentSpeak(L), a well-known BDI kernel language [14,15]. 
Such constructs were defined through Python’s operator overloading, and enable the description of a robot’s behavior, while 
Python’s object-oriented/imperative constructs can be used for the implementation of middle and low-level tasks. This pa-
per describes the current state of development of PROFETA, presenting its basics, syntax and architecture, and including a 
case-study illustrating how to design and develop a robotic application within PROFETA.

The outline of the paper is as follows. Section 2 provides an overview of the BDI model. Section 3 describes related 
approaches and highlights their differences from PROFETA. Section 4 presents the basic PROFETA model, with its syntax 
and semantics. Section 5 describes PROFETA’s software architecture, presenting its basic classes along with the principles 
exploited to endow Python with logic/declarative capabilities. Section 6 presents a concrete case study, aimed at showing 
how PROFETA can be used in an industrial scenario. Section 7 evaluates some distinctive aspects of PROFETA, by comparing 
them with the capabilities provided by other BDI frameworks. Finally, Section 8 presents the authors’ conclusions and 
illustrates future research directions.

2. Overview of the BDI model

This section presents a brief overview of the Belief–Desire–Intention (BDI) model, which constitutes the foundation of
PROFETA. For an exhaustive description of the BDI model, the reader is referred to [15,14].

The BDI paradigm is derived from a philosophical theory of human practical reasoning, and assumes that the mental
state of an intelligent system (an agent or robot2) consists of three fundamental attitudes: Beliefs, Desires and Intentions.

Beliefs represent the informational state of the agent, which includes the information about its own internal state and 
the knowledge about the external world. An agent’s beliefs are subject to changes due to the data received through sensors, 
which monitor the external world, and as a result of a reasoning process, which is capable of inferring new knowledge. 
Beliefs are stored in a knowledge base, which can be queried to check if a specific information is known to the robot, or to 
determine if the robot/environment is in a certain state.

Desires, or more commonly Goals, represent the motivational state of the robot, i.e. a set of objectives it wants to achieve; 
for instance, picking an object, avoiding an obstacle, searching for an item, reaching a certain position, etc. In practice, in 
order to achieve its objectives as it operates in its environment, a robot can be endowed with several plans specifying the 
sequence of actions to be carried out. A plan becomes an Intention after a deliberation process that entails the selection of 
the “most appropriate plan” to achieve a given goal.

2 Hereafter, we will use the words “robot” and “agent” interchangeably.
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A plan representing a goal is selected only if it is consistent with the current set of beliefs of the agent. Thus, the 
knowledge possessed by the agent becomes a precondition in determining the proper goal to be achieved. The execution of 
a plan may cause the knowledge base to be updated, due to either an explicit revision of current beliefs, or modifications 
of the environment state detected through the sensors. The new state of the knowledge base can, in turn, trigger the 
achievement of a new goal, thus making the reasoning process proceed.

3. BDI and other reasoning based approaches to robot development

As of today, numerous tools and methodologies have been developed to define the behavior of an autonomous robot. 
The BDI model has been mainly introduced to model the behavior of agent-based and multi-agent systems but its principles 
have also been applied to robotic systems [31–35]. On the other hand, in the context of agent-based platforms, the literature 
abounds with a plethora of proposals [36], but only few of them have been used to actually program robotic systems [37–39,
35,40].

One of the first advanced reasoning approaches is the generic architecture of the Procedural Reasoning Systems (PRS) [41,
42]. Known implementations of PRS are the PRS-CL [43,44] and dMARS (distributed multi-agent reasoning system) [45]. Both 
platforms use an ad-hoc LISP-like declarative language to express plans, and provide a graphical tool to help the developer 
in designing the system.

The JACK framework [22] is an evolution of dMARS and is fully Java-based. The main feature of JACK is JAL, the Jack Agent 
Language, an extension of the Java language; it exhibits characteristics of logic languages (like logical variables), and syntactic 
constructs suitable to define and handle beliefs, events and plans. JAL extends Java syntax by including the definition of 
agent-oriented constructs and a set of statements that can operate on BDI-specific data structures in order to perform 
reasoning activities. JACK main entities are represented by classical BDI constructs: agents that handle beliefs and behave by 
executing plans triggered by events; all these entities can be defined as classes featuring usual object-oriented characteristics, 
like inheritance. An interesting language construct of JACK is the definition of the capabilities, entities introduced, for the 
BDI-model, in [46]; they are used to encapsulate pieces of a—more or less complex—behavior and can include plans, events 
and beliefs. Capabilities are mainly intended to be used as “pluggable components” that favor software reuse and thus 
facilitate the design and development of a BDI agent-based application.

JACK also provides multi-agent support, including an agent communication model. Finally, a graphical environment is 
provided to facilitate design and development in JACK of BDI-based agent systems [47].

In short, JACK extends Java to provide BDI-aware programming constructs. A different approach is taken in Jason [21,48,
49], which runs in a Java environment (like JACK), but provides its own ad-hoc language to express the BDI behavior of an 
agent. Jason is considered the reference implementation of AgentSpeak(L) [14,19], a kernel, logic-based, BDI language which 
is also the basis for our PROFETA framework. Jason has been mainly employed in multi-agent programming platforms, 
such as JaCaMo [50], but has also found a few robot programming applications [49,35,51]. Its architecture is based on a 
clear separation between the behavior implementation and the interface with the environment of the target agent/robot; 
behavior is specified with ease in the logic/declarative Jason language, while the other parts are programmed in plain Java. 
Jason comes with a graphical development tool that allows programmers to write and run Jason programs; a powerful 
debugger is also provided. Since Jason and PROFETA share the same inspiration, i.e., AgentSpeak(L), an in-depth comparison 
between them is in order and can be found in Section 7.

Another noteworthy BDI Java-based framework is Jadex [52], a BDI reasoner built on top of the JADE middleware [7]. One 
of the relevant differences between Jadex and other BDI-based agent-oriented frameworks is represented by the introduction 
of explicit goals [53], a notion which is distinct from that of plan. Jadex plans, implemented as Java objects, specify what 
the agent has to do when a certain triggering event occurs in the environment; among plan actions, a designer can specify 
the achievement of certain goals. Jadex goals are defined with a type and a context precondition. The type, used to model 
the different kinds of goals that may occur in real-life reasoning [53], can be one of: perform, achieve, query, and maintain. 
The context precondition is a predicate that must be true for the goal to be activated. Jadex goals can also include the 
specification of the set of actions to be performed by the agent to achieve that goal, and can contain sub-goals, thus allowing 
the specification of goal hierarchies. Goals are collected in the goalbase, which is accessed by the reasoning component that 
takes care of selecting and executing goals, on the basis of their lifecycle (option, active or suspended) and dependence from 
other (sub)goals. A further interesting feature of Jadex are capabilities, whereby different reasoning elements of a BDI agent 
(beliefs, goals, plans, events) can be grouped together into a reusable module, addressing a meaningful set of functionalities; 
this ability (present in JACK too) affords a degree of encapsulation and reusability. The development model adopted by 
Jadex consists of: (i) an XML Agent Definition File (ADF) defining the various BDI entities (beliefs, goals and plans), together 
with their attributes and parameters, and (ii) Java code implementing the body of plans (a Java API enables access to BDI 
entities). While such a solution may seem reasonable, it confronts developers with a problem if an automatic design tool is 
not available: handling XML files from text editors is clumsy at best, especially because of XML containing Java fragments 
required to properly interface the two domains. As for the use of Jadex in robotics, apart from the examples provided in the 
reference papers [52,53], some significant experiments in the field of multi-robotic systems are reported in [33].

In the context of non-BDI approaches, there are several notable proposals aimed at supporting reasoning in robotic en-
vironments, like those based on expert systems, put forward [26,54,4] by the authors of this paper, and the goal-based 
approaches, of which an outstanding example is GOAP (Goal-Oriented Action Planning) [55]. GOAP introduces a decision-
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making architecture, specifically designed for games, which supports the definition of actions, goals (conditions an agent 
wants to satisfy), and plans (sequences of actions intended to reach a desired goal). The developer has to define the pre-
conditions to be satisfied in order to execute a specific action, along with its effects on the state of the world, and the cost 
associated with the action itself. A planner, using an A∗-like search algorithm, selects a sequence of actions that satisfies 
the desired goal at the “minimum cost”. Two projects we are aware of that implement GOAP are “Emotional GOAP” [56]
and pyGOAP [57], released by the project PyGame. An attempt at adopting the GOAP paradigm to specify the behavior of 
autonomous robots is the RGOAP (Robotic Goal Oriented Action Planning) project [58], presented in [59].

In recent years, the authors of this work developed the GOLEM [60] approach, which shares some aspects with GOAP. 
GOLEM is an abstract framework for autonomous robot programming, where the behavior of a robot is described by mim-
icking human behavior, organizing activities into goals and sub-goals, linked to one another through specific relationships. 
As in GOAP, execution of goals is not determined by a prefixed sequence; instead, the next goal to achieve is selected 
on the basis of an evaluation of its “opportunity”. This is a design choice meant to improve the autonomy enjoyed by a 
GOLEM-based robot.

Behavior trees (BT) [61] are another reasoning approach developed, like GOAP, to model non-players characters for games. 
A BT is a directed acyclic graph that specifies a computation executed as the left-to-right traversal of its nodes, starting from 
the root. The root orderly “ticks” each child, thus enabling it. Any enabled non-leaf node will recursively do the same with 
its offspring. In reply to the enabling tick, a node may return success, failure or running. A non-leaf returns running as soon as 
one of its children reports to be still running. A sequence non-leaf returns success if all its children succeed, or failure as soon 
as a child is found to have failed. A fallback or selector non-leaf returns success as soon as a child succeeds, or failure only 
after having tried all its children and found them failed. Leaf nodes represent action or conditions to be directly evaluated. 
An interesting extension of BT purports to model emotions [62], by means of an additional emotional selector node. Recent 
efforts [63] have been devoted to adapt BT to robotic and control applications, although, as the authors of [63] themselves 
remark, BT literature lacks the consistency and mathematical rigor required for this field. Thus, they endeavor to provide 
an accurate definition of BTs, as the conceptual groundwork for a unified BT framework, and then show its applicability 
to a real robotics scenario. For this purpose, they design, implement and exploit a layered, open-source, BT library for the 
Robot Operating System (ROS) [64]. Based on their experience, the authors point out two main difficulties pertaining to the 
recursive nature of the BT execution model: (i) BT implementations exploit recursive function calls, which may cause stack 
overflow for huge trees; moreover, (ii) each “execution tick” traversing the BT from the root requires a large number of 
checks over the state space of the actions in the tree. As a partial solution to (ii), the traversal and the state checking are 
executed asynchronously (accepting the latter may lag behind).

We end this short survey of reasoning-based approaches to robotic design with some notes on our PROFETA framework. 
It was first proposed in [65,66]. The first release was a bare implementation of AgentSpeak(L). However, continued use 
and testing in our robotic platforms have driven the development of PROFETA, causing it to undergo major modifications 
from both its original release and inspiring language: the execution semantics has been revised making it more simple 
and flexible, while the language now includes additional belief constructs (reactors and singleton-beliefs) and the convenient 
abstraction of stages. As for the execution platform, the present version has been enriched with the explicit introduction of 
sensors, as well as the option of performing sensing and actuation activities in an asynchronous way. All of these, and other 
aspects, are dealt with in the following sections.

4. PROFETA basics, syntax and semantics

This section provides an overview of PROFETA. We first introduce the basic entities, describe the syntax of the language, 
and finally illustrate how a typical PROFETA program is structured.

4.1. Basic entities

Like other implementations of the BDI paradigm (cf. Section 2), PROFETA involves the following basic entities: beliefs, 
goals and plans. In particular, PROFETA supports two kinds of plans: Goal Plans, describing the necessary steps to achieve a 
certain goal; and Reactive Plans, which are executed upon the occurrence of a certain event, e.g. a change in the knowledge 
base or failure of another plan. A plan is composed of three basic parts:

• The Head, which for goal plans consists of the goal name and a list of parameters; for reactive plans, this is the specifi-
cation of the triggering event.

• The Context Condition (or simply the Context), i.e. a first-order logic predicate specifying the beliefs that must be 
present in the knowledge base in order to allow the execution of the plan; if the condition is false, the plan cannot be 
selected for execution.

• The Body, i.e. the code of the plan, containing a list of actions which are executed in sequence; actions may include 
changes to the knowledge base, requests to achieve a goal, or specific actions to be performed onto the environment.

In PROFETA, plans can be organized in stages, which represent distinct phases of the robot’s operation. Stages provide 
a useful abstraction to group together plans, facilitating code organization and maintenance. Also, they offer a mechanism 
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prog ::= line1 . . . linen . (n ≥ 1)

line ::= stage | plan
stage ::= “stage(” literal “)

plan ::= r_plan | g_plan
r_plan ::= r_hd “>>” aseq
g_plan ::= g_hd “>>” aseq

r_hd ::= evt | evt “/” ctx
g_hd ::= goal | goal “/” ctx

evt ::= “+”bel | “-”bel | “-”goal
ctx ::= cond1 “&” . . . “&” condn (n ≥ 1)

cond ::= bel | lambda
lambda ::= (lambda : “any Python boolean expression” )

aseq ::= “[” action1, . . . , actionn “]” (n ≥ 0)

action ::= A(t1, . . . , tn) | “set_stage(” literal “)
| “any Python statement”
| “+”bel | “-”bel | goal | “-”goal (n ≥ 0)

bel ::= at
goal ::= at

at ::= P(t1, . . . , tn) (n ≥ 0)

A ::= atom
P ::= atom
t ::= term

literal ::= any valid Python string

Fig. 1. PROFETA syntax.

to quickly enable/disable a set of plans: plans that belong to a stage (referred to as stage plans) can only be executed if 
the program is currently in that stage—the run-time sequence of stages can be controlled using the set_stage command. 
Conversely, a global plan does not belong to a specific stage and may be triggered at any time.

In addition to beliefs, plans and stages, which encapsulate the behavioral aspects of the agent, PROFETA implements 
two additional entities: sensors and actions. The former collect information from the environment and update the agent’s 
knowledge base accordingly, asserting or retracting beliefs. The latter represent operations that the agent can do to change 
the status of the environment.

4.2. Language syntax

The syntax of PROFETA is illustrated in Fig. 1. The language implements a logical-declarative paradigm, and its seman-
tics is defined through the operator overloading mechanism of Python [67,68]. PROFETA code is therefore made up of 
valid Python instructions that are ultimately processed by the PROFETA reasoning engine. As an example, the expression
+my_position(0,0) causes the addition of a belief (my_position) to the knowledge base; the operator + was over-
loaded to produce such a behavior. These aspects will be covered in greater detail in the next section.

Goals and beliefs are the fundamental constructs of PROFETA. They are expressed using a Prolog-like syntax, i.e. logic 
atomic formulas followed by an optional list of parameters. E.g., the belief my_position(0,0) seen earlier has two 
numerical parameters (presumably meant to identify a 2D point in space). In general, goals and beliefs can have mul-
tiple parameters of different types (e.g., obstacle_position(0,"in_front")), or have no parameter at all (e.g.,
object_got()); any valid Python type is admissible, including strings, provided they do not begin by an uppercase letter. 
Parameters may also be free variables, which may be assigned a value at runtime. Free variables are enclosed within dou-
ble quotes and their name must begin with an uppercase letter, e.g. my_position("X","Y"). Variable assignment is 
performed through a Prolog-style pattern matching mechanism: for instance, the belief my_position("X","Y") can 
be matched against my_position(100,200), resulting in variables X and Y being assigned 100 and 200, respectively.
PROFETA parameters with no free variables are said to be “grounded”.

Beside goals and beliefs, the basic building blocks of PROFETA code are actions, i.e., operations that are executed atomically
to make the robot “do something” by controlling its actuators. Examples of actions include driving an arm to pick an 
object, or moving the robot to a new position. Actions have the same syntax of goals and beliefs; thus, expressions like
move_to(100,200), move_to("X","Y") or go_home() are all valid action representations.

A PROFETA program contains a number of stages and plans. Plans can be defined globally or within a stage. Global plans 
come first, followed by stages. A stage is declared using the stage(name) command, and comprises all the plans defined 
after it and before the next stage command, if any.

A plan is defined by specifying: (i) what triggers its execution, (ii) the context needed for its execution to be enabled, 
and (iii) the list of actions the plan involves.

A goal plan (g_plan in Fig. 1) has a name, the goal itself, with parameters. Execution of a goal plan is simply triggered 
by the pursuit of its goal name. For a reactive plan (r_plan), the trigger is the occurrence of a specific event, represented by 
either the addition/retraction of a belief from the knowledge base (+bel/ −bel), or the failure of a goal (−goal). Such events 
may be specified with free variables, and become grounded at run-time through the same pattern-matching mechanism de-
scribed earlier; as an example, consider the expression +my_position(100,"Y"), denoting a triggering event occurring 
when the belief my_position is asserted with the first parameter equal to 100 (and any second parameter): should this 
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�
1 pick_new_pallet() >> [ set_stage("area-scan") ]
2
3 stage("area-scan")
4 +start() >> [ drive_to("start") ]
5 #...
6 +pallet("X","Y") >> [ stop_robot(), set_stage("pick") ]
7
8 stage("pick")
9 +start() / pallet("X", "Y") >> [ rotate_to(90), forward_slow("X"), activate_bumpers() ]

� �

Fig. 2. Some example plans.

occur at run-time, for any value of my_position()’s second parameter, the plan will be executed, and the free variable
"Y" will become bound to that value, which will thereby be available, as "Y", within the scope of the plan.

The second (optional) component of a plan is the context condition (ctx in Fig. 1). This is a condition, on the state of 
the knowledge base, which must be satisfied for the execution of the plan to be enabled. The context condition is the 
conjunction (denoted by “&”, the logical AND) of a set of (sub-)conditions that must (all) hold to enable the plan. This 
sub-condition can be, at the simplest, a belief with parameters (again, ground terms or free variables), or a more complex 
Boolean expression over suitable variables, specified using the Python lambda construct to define a functor that returns a 
Boolean value.3

Finally, the body of a plan contains a comma-separated list of statements, enclosed in squared brackets. Each statement 
can be:

1. A user-defined atomic action (introduced above) to be executed.
2. The built-in action set_stage(name), which causes the PROFETA execution environment to enter the named stage.
3. Python code (e.g., an assignment or math expression) enclosed in double quotes; note that this code can access the 

scope of the plan, i.e., the values taken by bound variables.
4. The assertion or retraction of a belief (+bel and −bel).
5. The request to achieve a specific goal (goal).
6. The request to abandon (i.e., fail) the current goal (−goal).

As an example, the listing in Fig. 2 shows two PROFETA plans, excerpted from the case study reported in Section 6.
Line 1 defines a goal plan; it means that goal pick_new_pallet() is to be achieved by executing the action

set_stage("area-scan"), whereby the program enters the "area-scan" stage. Line 3 opens the definition of the 
stage named "area-scan": all plans declared after this statement and before stage("pick") will be eligible for pos-
sible activation only after, at runtime, the program has entered stage "area-scan", via a set_stage("area-scan")
statement. Stage "area-scan" begins with the so-called (reactive) stage startup plan (line 4): indeed, entering a stage 
causes the automatic assertion of the start() belief,4 which can be used, like here, to trigger an optional startup plan. Line 
6, still within stage "area-scan", has a reactive plan, whose body is triggered when a belief of the form pallet(t,u), 
for grounded t, u, is asserted; if this happens, variables "X" and "Y" become bound respectively to t and u, and two actions 
are executed: stopping the robot and entering stage "pick". In the latter, the startup plan (lines 9 and 10) is executed 
under a context condition, i.e., provided the pallet(t,u) belief is present in the knowledge base for some grounded t, u; 
in this case too, "X" and "Y" will be bound to t and u when actions following » are executed (notably, this happens for 
action forward_slow("X")).

4.3. Structure of a PROFETA program

The basic organization of a PROFETA program is illustrated in Fig. 3. The program consists of a sequence of parts. Part 
A lists the necessary module imports. Parts B through D contain the definition of the entities used in the program (beliefs, 
goal, actions and sensors). Beliefs and goals must be defined as subclasses of, respectively, Belief and Goal – these classes 
are provided by the framework. Likewise, actions and sensors must be defined as subclasses of Action and Sensor
respectively. An action should override the execute() method with the code that acts on the environment. A sensor 
overrides the sense() method to specify how it senses the environment; the return value of the sense() method can be 
either None or a belief to be asserted in the knowledge base (which, as said earlier, could trigger the execution of a plan).

Once all entities have been specified, the PROFETA engine is instantiated and started in part E. The PROFETA.start()
method is invoked to create all the structures required for the runtime representation of the knowledge base and the plans. 
The organization of these structures, from a software architecture point of view, as well as their role in the execution of a
PROFETA program, will be covered in Section 5.

3 The functor does not have parameters and can access the bound variables of the plan.
4 Indeed, this is a special belief called reactor, see Section 5.
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1 # ------------- PART A: IMPORTS
2 from profeta.main import *
3 from profeta.lib import *
4
5 # ------------- PART B: definition of beliefs and goals
6 class belief1(Belief): pass
7 class belief2(Belief): pass
8
9 ...

10
11 class goal1(Goal): pass
12 class goal2(Goal): pass
13
14 # ------------- PART C: user-defined actions
15 class action_a(Action):
16 def execute(self):
17 # ... python code for action_a
18 ...
19
20 # ------------- PART D: definition of sensors
21 class sensor_x(Sensor):
22 def sense(self):
23 # ... perform environment sensing
24 return +belief1(1,2,3,4,...)
25 ...
26
27 # ------------- PART E: instantiation of the PROFETA engine
28 PROFETA.start()
29
30 # ------------- PART F: plans of the PROFETA program
31 +belief1("X","Y") / belief2("X") >> [ action_a("X", "Y"), goal1() ]
32 goal1() / belief2("X") >> [ -belief2("X") ]
33
34 # ------------- PART G: adding sensors and initial beliefs
35 PROFETA.add_sensor(sensor_x())
36 PROFETA.assert_belief(belief2(200,400))
37 PROFETA.assert_belief(...)
38
39 # ------------- PART H: execute everything
40 PROFETA.run()

�� �

Fig. 3. Structure of a PROFETA program.

Plans are defined in section F, organized in stages when needed. As mentioned earlier, like all PROFETA code, they are 
also valid Python expressions. This fact, which is obvious for PROFETA entities occurring in previous program sections, also 
holds for plans, for PROFETA exploits operator overloading to redefine the following operators of its basic classes: “+”, “-”, 
“/”, “&” and “>>”, i.e., those used to construct plans. The execution of these overloaded operators results, at runtime, in 
the execution of code that builds structures which represent the plans. This enables the Python virtual machine to interpret 
these structures as expected according to PROFETA semantics. Further details on how they are handled by the PROFETA core 
are provided in the following section.

The next section, part G, declares which sensors will be used (these must have been previously defined in part D), and 
populates the knowledge base of the robot with beliefs assumed to hold. These initializations are performed by invoking
PROFETA functions add_sensor() and assert_belief(), respectively. Any other system initialization—if needed—has 
to be performed before entering the main PROFETA loop, i.e. before invoking the run() function. This function never 
returns and continually performs sensor polling, event detection, and plan selection and execution, as shall be seen in the 
next section.

5. PROFETA: software architecture and implementation

5.1. Architecture of the PROFETA platform

PROFETA is structured according to the object-oriented architecture illustrated in Fig. 4.
PROFETA classes can be divided into two groups: classes above the dashed line in Fig. 4 are internal and implement the 

BDI reasoning engine; classes below the line, i.e. Action, Sensor, Belief and Goal, are made available to the pro-
grammer for subclassing. In the set of exported classes, additional (sub-)classes appear: AsyncAction, AsyncSensor,
SingletonBelief and Reactor. These implement certain specialized aspects of their respective parent classes. Specif-
ically, AsyncAction and AsyncSensor are used when the action or the sensing must be performed in parallel with 
respect to the execution of the plans; an AsyncAction is used when action termination does not affect the execution of 
the plan and that action requires a certain time to complete, thus its synchronous execution would introduce latencies in 
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Fig. 4. PROFETA class diagram.

plans; an AsyncSensor is instead used when a sensor must be polled with a specific timing/dynamics. SingletonBe-
lief is a belief which can exist in a single instance in the knowledge base; therefore, if an assert operation is performed 
and another belief of this type is already present in the knowledge base, that belief is replaced and not added as in normal 
instances of Belief; it is used when a state information must be handled,5 and update operations on it are needed; using 
a SingletonBelief optimizes the operations since it avoids removing and reasserting the belief, as it happens in other 
similar platform. A Reactor is instead a special kind of belief which is automatically removed from the knowledge base 
when an associated plan is executed; reactors are mainly used to represent one-shot events whose effect disappears when 
the event itself is consumed.

Attitude, Belief and Goal provide methods that overload the behavior of operators “+”, “-”, “/”; Plan redefines 
operator “>>”; and operator “&” is redefined in both Condition and Belief.

These overloaded methods help to implement PROFETA’s declarative semantics underlying the plan definition paradigm.
The description of a plan is encapsulated by the Plan class, which contains, as attributes, references representing plan 

components, i.e.:

• the trigger event, which is an Attitude (i.e., a Belief or a Goal),
• the context condition, represented by a Condition object, which, in turn, is a collection of Beliefs,

5 A typical use of a SingletonBelief is, for example, to store the current pose of a robot.
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Fig. 5. PROFETA engine: PEM, sensors, event queue, knowledge base.

• a list of Actions,
• the associated stage, if any (this attribute is set to None if the plan is global).

Plans are collected and managed by the PlanLibrary, an attribute of the main PROFETA Engine. This is a Singleton 
class which includes the PROFETA Execution Machine, i.e., the main code governing the execution of a PROFETA program, as 
detailed in Section 5.2.

When the triggering event of a plan occurs, provided its context condition evaluates to true, that plan is selected for 
execution, i.e., is placed into a collection holding all plans ready to be (and not yet) executed. In BDI terminology, such a 
plan is an intention and, for this reason, the class of the collection of ready plans is called Intentions.6

Finally, the Engine contains an instance of class KnowledgeBase, which exposes methods to: (i) modify the set of 
beliefs, (ii) test the presence of a particular belief, (iii) query for a specific subset of beliefs.

5.2. Execution of a PROFETA program

As stated in Section 4.3, a PROFETA program is started by the invocation of the PROFETA.start() method, which 
triggers the instantiation (and initialization) of the PROFETA Engine. The main loop of the program is started through a 
call to the PROFETA.run() method, which starts the PROFETA Execution Machine (PEM), embedded into the Engine and 
whose functioning is illustrated in the following.

The PEM contains data structures representing the state of the machine itself:

• K B , the knowledge base, containing the asserted beliefs
• P S , the set of plans defined in the PROFETA program
• S , the set of sensors used in the program
• E Q , the event queue, keeps track of events that need to be processed
• ST G , the current stage
• I S , the intention list, i.e., a list of plans selected for execution

These entities and their relationships are reported in Fig. 5, while the basic behavior of the PEM is exemplified by the 
pseudo-code of Algorithm 1 and described below.

E Q implements a queue and is manipulated by means of enqueue/dequeue operations. I S is a multi-purpose structure 
which contains the intentions and is treated as both a stack (with push and pop operations) and a queue. An intention is 
represented, in the PEM, as a tuple (evt, cond, aseq). The first element of I S (which is the head of the queue or the top of 
the stack) is called current intention and is the one currently executed.

As specified by Algorithm 1, the execution proceeds as follows. At the start-up phase, E Q and I S are empty, and ST G
is set to None; K B could contain some initial beliefs (if they are asserted before starting the program), P S contains the 
program and S contains the set of sensors defined. The main execution loop of the PROFETA machine is subdivided in three 
phases: sensor polling (lines 5–10), event processing (lines 11–17), intention processing (lines 18–56).

Sensor polling is performed by scanning the S set and calling the sense() method of each defined sensor (line 6). The 
outcome of such a call can be nothing or the assert/retract of a belief or reactor. In the latter case, K B and E Q are updated 

6 As detailed later on, if multiple plans could be selected (because they are triggered by the same event and all their contexts are true), only the first 
plan occurring in the source code becomes an intention, i.e., enters the collection of ready plans, awaiting execution.
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Algorithm 1
1: E Q ← ∅
2: I S ← ∅
3: ST G ← None
4: while true do
5: for all sensor ∈ S do
6: evt ← sensor.sense()
7: if evt �= nil then
8: update(K B, E Q , evt)
9: end if

10: end for
11: if E Q �= ∅ then
12: evt ← dequeue(E Q )

13: i ← f ind_ f irst_intention(evt, P S, ST G)

14: if i �= nil then
15: enqueue(I S, i)
16: end if
17: end if
18: while I S �= ∅ do
19: current ← head(I S)

20: (evt, cond, aseq) ← current
21: a ← remove_head(aseq)

22: if aseq = ∅ then
23: pop(I S)

24: end if
25: if a is_a action then
26: if a is_a set_stage then
27: ST G ← a.parameter[0]
28: enqueue(E Q , +start())
29: else
30: a.execute()
31: end if
32: else if a is_a assert then
33: update(K B, E Q , a)

34: else if a is_a retract then
35: update(K B, E Q , a)

36: update_intentions(I S, a)

37: else if a is_a achieve_goal then
38: i ← f ind_ f irst_intention(a, P S, ST G)

39: if i �= nil then
40: push(I S, i)
41: end if
42: else if a is_a f ail_goal then
43: pop_until(I S, a)

44: i ← f ind_ f irst_intention(a, P S, ST G)

45: if i �= nil then
46: push(I S, i)
47: end if
48: end if
49: if any f ailure during action execution then
50: g ← pop_until_goal(I S)

51: i ← f ind_ f irst_intention(−g, P S, ST G)

52: if i �= nil then
53: push(I S, i)
54: end if
55: end if
56: end while
57: end while

accordingly (line 8). In more detail, the semantics of update() is as follows: if the operation is the assertion of a belief, 
the K B is updated and the relevant event is added to the queue E Q , unless the belief itself is a singleton and an instance 
is already present.

If a belief is instead retracted, given that it belongs to K B , the relevant event is added to E Q ; however, if E Q already 
contains an event related to the assertion of that belief, the latter event is simply removed from the queue.7

After scanning the set of sensors, the PEM checks for the presence of an event evt in the E Q (line 11) and, if this is the 
case, it find the first matching plan (i.e., candidate intention). The latter, if present, is then added (enqueued) to the intention 

7 This may happen if a belief b is first asserted, and subsequently retracted before the +b event is processed.
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list I S (lines 13–16). Note that the concept of “first” is related to the order in which the plans are defined in the PROFETA

program.
With line 18, execution of intentions begins, and goes on until structure I S becomes empty (i.e. all intentions have 

been executed). The first intention on the list I S (i.e. the current intention) is picked,8 and the next action to execute, a, is 
extracted from the action list aseq; if aseq becomes empty, the intention is removed from I S . Action a is now executed (lines 
25–48), in a fashion depending on its type, which may fall into one of three main categories: atomic actions, event-related 
actions and goal-related actions:

• If a is an atomic action, it is directly executed (lines 25–31). A special case is the built-in action set_stage, which 
changes the current stage ST G according to its parameter; in addition, the built-in reactor start() is added to E Q ; 
this event can be used to automatically trigger a start-up plan (if any) for the entered stage.

• The second category (event-related actions) is relevant to belief assert and retract operations, which basically cause the 
addition, to E V , of the relevant +b or −b event:
– If a is a belief assert, the K B is updated accordingly and the relevant event is added to the event queue (lines 32–33).
– A similar operation is performed when a refers to belief removal, of the form −b; in addition, I S is searched for the 

presence of an intention related to event +b: if present, this intention will be removed from I S , for the “fact” which 
caused it to be scheduled for execution no longer holds (lines 34–36).

• The third category (goal-related actions) includes actions pertaining to goal achievement and goal abandonment (or goal 
failure); executing them essentially amounts to push or pop intentions as appropriate:
– Goal achievement, is treated by searching for a plan matching the requested achievement operation (line 38); if 

such a plan is found, it is transformed into an intention which gets pushed onto the intention list (39–41); the push 
operation is required since a goal achievement is—more or less—akin to a procedure call of an imperative language;

– A goal failure request—goal abandonment—is executed by canceling any pending execution of the same goal to be 
abandoned (lines 42–48), i.e., by popping, from I S , all intentions until the request to achieve the goal to be abandoned 
is found (pop_until(I S, a)). Subsequently, the engine searches for a plan that the current, goal-failure, event a could 
trigger; if present, it is made an intention and pushed onto I S (lines 44–46).

• When the execution of the current intention fails for any reason, i.e., an unhandled run-time error is encountered,9

a goal failure event must be generated; for this purpose, intentions are popped from I S until the first goal achievement 
request, say g , is found (lines 49–56); subsequently, event −g , amounting to failure/abandonment of g is generated, 
a relevant plan is searched for and, if present, made into an intention and pushed onto I S .

6. Case study

PROFETA—whose current version is available on GitHub10—has been used by the authors of this paper to write the soft-
ware for several of the robots built in their laboratory. In particular, PROFETA has been used to program robots participating 
to the Eurobot competition.11 The aim of this competition is to build a mobile robot capable of collecting, manipulating and 
sorting a range of different objects, usually distributed across a playing area. The challenge of this competition is manifold: 
robots must operate in an autonomous manner, i.e. without any kind of external aid; two or more opponent robots might 
be operating in the same area, thus requiring mechanisms for localization and collision avoidance; opponents can move 
objects from their original locations on the playing area, thus robots must be able to cope with fast-changing conditions. 
These aspects make the Eurobot competition an interesting test-bed for the proposed framework: despite the complexity of 
the game, PROFETA enabled us to write game strategies in a simple, declarative manner; at the same time, the reasoning 
engine offered by PROFETA allows robots to dynamically adapt their behavior during the game, in response to perceived 
events [65,66].

While our previous work demonstrated the use of PROFETA in the context of a robotic competition, here we provide 
a case study involving an industrial scenario—the objective is to illustrate how PROFETA can be used in a more realistic 
application. To this aim, we will consider a sample application involving a forklift robot moving boxes in a warehouse.

Fig. 6 depicts the application scenario: the task of the robot (illustrated in Fig. 7) is to move pallets (one at a time) 
from their initial locations (c1, c2, ... c8) to one of the depots (dep1, dep2). Each initial location may or may not contain 
a pallet, therefore the robot has to scan the area through presence sensors before picking a pallet from it. Each pallet has 
type that the robot can detect (using, e.g., bar-codes, QR-codes or RFID tags). Selection of the final depot area for a pallet is 
based on its type; moreover, we further assume that the association between pallet type and the depot is dynamic and can 
be established at run-time through suitable beliefs like bring_to(PalletType, Depot). Once all pallets have been 
moved,12 the robot finally goes back to its parking area, which is represented by point park in Fig. 6.

8 It is only read and not extracted.
9 This correspond to the occurrence of an uncaught exception from the point of view of the Python language.

10 https :/ /github .com /corradosantoro /profeta/.
11 http :/ /unict-team .dmi .unict .it, http :/ /www.eurobot .org.
12 We suppose that each depot is able to host more than a pallet.

https://github.com/corradosantoro/profeta/
http://unict-team.dmi.unict.it
http://www.eurobot.org
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Fig. 6. Forklift Case study. A forklift robot moves pallets from one location to another in a warehouse, according to a specific plan. The robot moves to the 
pallet area, from which it picks a pallet at time and move it to one of the three depots, on the basis of the content.

Fig. 7. A 3D model of the forklift robot considered in the case-study (left-side) and a detail of the beam scanner sensor (right-side).

In our scenario, the robot shares the environment with other humans and machines, so it must implement a collision 
avoidance strategy. The possible paths that can be taken by the robot are constrained to belong to the graph depicted in 
Fig. 6 using dashed lines for the edges. Dijkstra’s shortest-path algorithm is used to determine the road to follow from a 
starting point (e.g. c3) to a destination (e.g. dep2); should an obstacle be detected during the cruise, the same algorithm is 
used to determine an alternative path. Beside graph-based navigation, we also postulate that other primitives are available to 
make the robot perform make simple movements, like rotating a certain amount of degrees, going forward a certain distance, 
reaching a certain point through a rotate-and-go-straight motion, etc. Given these navigation approaches, we suppose that 
a localization system is present in the environment, so that the robot is able to detect its own location, in a XY coordinate 
space, and use it to navigate.

The behavior of the robot can be implemented using the strategy outlined in Table 1.
In step 1, the robot reaches point start , then scans each station from c1 to c8 (step 2) until a pallet is found; during this 

step, a sensor (i.e. a LIDAR), placed on the left side of the forklift, is used to detect the pallet (see the 3D sketch in the right 
side of Fig. 7). Once a pallet is found, it is first picked (step 3), and then its type is detected (step 4) to determine where it 
should be moved; the move operation is performed in step 5; at its end, after releasing the pallet, the program goes back 
to step 1. If no pallet is found during step 2, the robot goes back to the parking location (step 6).

From a PROFETA point of view, this behavior can be implemented using four stages, namely area-scan, pallet-pick, depot
and parking. The association between stages and the step/tasks described is reported in Table 1.
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Table 1
Description of the forklift behavior.

Step Description Tasks Stage

1 Approaching the pallets area Move towards point start area-scan
2 Scanning the pallets area Move towards point c8 with pallet scanner activated. If 

a pallet is found go to step 3, otherwise go to step 6.
3 Picking the pallet Drive towards the pallet and actuate the forks pick
4 Identifying the pallet Activate the RFID/QRCode reader
5 Carrying the pallet to depot Move towards a point dep X and then release the pallet to-depot
6 Going to parking Move towards point park to-parking

Table 2
Beliefs used in the case-study.

Type Name Meaning Asserted by

Singleton Belief moving_to(T) Forklift is moving to a target T Plan
pose(X, Y, Theta) The current pose of the robot PoseSensor
pallet(X, Y) The relative position of a pallet PalletScanner
pallet_type(P) The type of the pallet identified by forklift sensors PalletIdentifier

Reactor path_completed() The forklift has reached the destination point of a path PathSensor
obstacle() Forklift has encountered an obstacle ObstacleScanner
bump() One of the fork bumpers is active ForkBumpers
lift(L) The current height of the lift LiftSensor

The robot is equipped with three main sensors (see Fig. 7): (i) a LIDAR to detect pallets, (ii) another LIDAR, placed in 
front, to check for heads-on obstacles, and (iii) two bumpers placed in the forks to understand when the pallet is ready to 
be lifted. Table 2 shows how we map onto beliefs data from these physical sensors, as well as other state and environment 
information managed by plans (cf. moving_to()).

Physical sensors are accessed by means of the following Sensor classes: PathSensor, PoseSensor, ObstacleS-
canner, PalletScanner, PalletIdentifier, ForkBumpers and LiftSensor. The first two sensors have the task 
of interacting with the underlying motion system: PathSensor asserts the reactor path_completed() when the robot 
has reached an established target position, while PoseSensor asserts the singleton belief pose(X,Y,Theta) that rep-
resents the current pose of the robot.13 ObstacleScanner polls the front LIDAR and, whenever detects the presence of 
an obstacle, asserts reactor obstacle(). Pallet scanning and localization is performed by means of the side LIDAR, which 
is interfaced through PalletScanner; this PROFETA sensor does not only read LIDAR scans, but also performs some pro-
cessing of the data, aiming at recognizing a shape with its beam, as illustrated in the right side of Fig. 7; on this basis, it 
computes the position {Xp, Y p} of the pallet with respect to the robot and makes it known for PROFETA code by asserting 
belief pallet(X,Y).

Pallet type is instead read by PalletIdentifier which, once activated by a RFID or QR-code reader, asserts belief
pallet_type(P) accordingly. Sensor ForkBumpers has the task of polling the bumpers present in the forks and, when 
one of it is activated, assert the reactor bump(). Finally, sensor LiftSensor polls the lift motion system and asserts 
the belief lift(L) where L represents the current height of the lift from the ground (in cm); this belief is treated as a 
reactor since it is used to trigger a plan which stops the lift as soon as it reaches a certain position14 (see, e.g., line 30 in 
Program 1).

Actions used in this case-study are summarized in Table 3; they are classified into three main categories.
The driving (or motion) actions control the robot movements; they only initiate motion, i.e. trigger the motion, but do 

not wait for the robot to reach the target point—this aspect is handled by PathSensor.15 The first two actions, dijk-
stra_move_to(T) and dijkstra_move_to_excluding(T,X,Y) are used to move the robot towards a node T of 
the graph by planning the shortest path using the graph itself; the latter action takes, as additional parameter, a point (X, Y )

that must be excluded in the planning: as it will be shown in the following, this is required when an obstacle is met and 
thus the relevant point (occupied by the obstacle) must be excluded in the next planned path. The move_to(T) is instead 
used to move the robot towards a node T of the graph but a straight path. The other driving actions—rotate_to(A),
forward_slow(D) and stop_robot()—handle simple movements of the robot in the XY plane and of course do not 
use the graph. The second category of actions are those related to sensor handling. Note that some sensor classes should 
perform data polling only when needed (rather than in any case); for this reason, we introduce, for such sensors, actions to 
turn them on (or off) as required by plans. The third category of actions control the lift and are used to start lift movement 

13 The pose of a robot in a 2D environment is represented by the triple {X, Y , θ}, where X and Y are the coordinates of a robot’s reference point and θ
is the heading of the robot.
14 We are assuming the hardware driving the lift does not support position control.
15 This aspect is elaborated in more details later on, when the code of the case-study is analyzed.
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Table 3
Actions used in the case-study.

Type Name Meaning and parameters

Motion Actions dijkstra_move_to(T) Triggers the movement of the forklift towards target T using the graph and 
Dijkstra’s algorithm

dijkstra_move_to_excluding(T,X,Y) Triggers the movement of the forklift towards target T using the graph and 
Dijkstra’s algorithm, but excluding the graph point nearest to (X, Y)

move_to(T) Triggers the movement of the forklift towards target T without using the 
graph (straight path)

rotate_to(A) Triggers a rotational movement in order to head to absolute orientation A 
(in degrees)

forward_slow(D) Triggers a forward slow motion of a distance D (in meters, negative values 
allowed)

stop_robot() Halts the forklift

Sensor activate_scanner() Turns on the sensor PalletScanner
Handling stop_scanner() Turns off the PalletScanner
Actions identify_pallet_type() Identifies the type of the goods in the pallet

activate_bumpers() Turns on the sensor ForkBumpers

Lift lift_up() Turns on the lift to go up
Actions lift_down() Turns on the lift to go down

lift_stop() Stops lift motion

Other Actions wait_seconds(S) Waits for S seconds

(up or down), and to stop it. Among other actions (fourth category), we find only wait_seconds(S), which halts the 
program for S seconds.

All driving actions are asynchronous, i.e. they instruct the underlying layers and/or the hardware to perform that action 
but do not wait for completion, which, in this case, would entail waiting for target achievement. Indeed, that such a 
driving action fails of succeeds is supposed to be captured by a proper Sensor (by polling the underlying layer), and then 
made known to the PROFETA code by means of a suitable belief.16 On this basis, a task like “moving to a target position 
T ” cannot be handled in a single plan but is spread over several ones: first the moving action is triggered; later, when
path_completed() is asserted, the target is considered to be reached and the next task of the behavior can be executed; 
however, if, during motion, an obstacle is detected (cf. belief obstacle()), an avoidance policy is first deployed, and the 
motion action is then re-triggered.

In the forklift application (as in many other robotic applications) there are several motion tasks like the one illustrated 
above, so, in order to avoid code duplication, a certain form of code encapsulation and reuse should be employed. This is 
readily achieved in PROFETA for, thanks to some characteristics of the Python language, plans can be parameterized in all 
of their parts.

As an example of this, consider parameterized function drive_and_avoid() in our case study (cf. Program 1, 
lines 5–14). Its parameters are: the PROFETA action move_action which triggers motion, the target of the mo-
tion, and the list of PROFETA actions, next_actions, to be performed once the target is reached. At lines 22 and 23
drive_and_avoid() is “instantiated” twice, with different “actual” parameters, dijkstra_move_to vs. move_to, to 
obtain two separate goals handling path selection in different ways. Also noteworthy how, by inspecting its move_action
parameter, drive_and_avoid() manages to differentiate the obstacle avoidance policy: for Dijkstra’s algorithm motion, 
it tries to find a different path (lines 9–11) by ignoring the point of the graph nearest to the obstacle itself, whereas for 
straight path motion, it waits for a certain amount of time before retrying (lines 13–14).

Highlighting the power of the PROFETA approach, the forklift is implemented as a convenient mix of the imperative and 
declarative programming paradigms: while the main behavior is programmed in terms of PROFETA plans, the path planning 
algorithm is coded imperatively. Listings 1 and 2 document these two styles, respectively. In them, some uninteresting 
details have been omitted (about entities/classes declaration or library imports) to focus instead on the most significant 
bits.

The main goal of the program is pick_new_pallet() (Listing 1, line 18) which is initially triggered at program 
startup (line 54); its sole action is to enter stage "area-scan" which, in turn, triggers the stage startup plan in line 21. 
The task required here is to let the robot reach point start (see Fig. 6, page 47); this is performed by the plans defined by 
function drive_and_avoid, triggered by goal drive_to(target), actually drive_to("start") in this instance. 
Subsequently, again exploiting function drive_and_avoid, the robot moves to point c8 through a straight path, with the 
pallet sensor active (lines 23–24); if the sensor recognizes a pallet, the path is stopped (line 24) and the program enters 
stage “pick”; on the other hand, if scanning is completed without detecting any pallet, target c8 is reached (line 22), thus 
the robot, which has no more pallets to pick, should go to parking by entering stage “to-parking”.

16 As it will be discussed in Section 7, assessing the pros and cons of asynchronous programming, this arrangement is required to avoid blocking/syn-
chronous software actions, which, in a robotic environment, could be harmful.
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Program 1 A declarative PROFETA program to drive a forklift robot.
�

1 # ... profeta imports
2 # ... beliefs, actions, goals and sensor definition
3 from dijkstra import *
4
5 def drive_and_avoid(move_command, target, next_actions):
6 drive_to(target) >> [ move_command(target), +moving_to(target) ]
7 +path_completed() / moving_to(target) >> next_actions
8 if move_command == dijkstra_move_to:
9 +obstacle() / (moving_to(target) & pose("X", "Y","_") ) >> \

10 [ stop_robot(),
11 dijkstra_move_to_excluding(target, "X", "Y") ]
12 if move_command == move_to:
13 +obstacle() / moving_to(target) >> [ stop_robot(), wait_seconds(30),
14 drive_to(target) ]
15
16 PROFETA.start()
17
18 pick_new_pallet() >> [ set_stage("area-scan") ]
19
20 stage("area-scan")
21 +start() >> [ drive_to("start") ]
22 drive_and_avoid(dijkstra_move_to, "start", [activate_scanner(),drive_to("c8")] )
23 drive_and_avoid(move_to, "c8", [stop_scanner(),set_stage("to-parking")] )
24 +pallet("X","Y") >> [ stop_robot(), set_stage("pick") ]
25
26 stage("pick")
27 +start() / pallet("X", "Y") >> [ rotate_to(90), forward_slow("X"),
28 activate_bumpers() ]
29 +bump() >> [ stop_robot(), lift_up() ]
30 +lift("P") / (lambda : P >=50) >> [ lift_stop(), identify_pallet_type(),
31 set_stage("to-depot") ]
32 +path_completed() >> [ alarm() ]
33
34 stage("to-depot")
35 +start() / (pallet_type("T") & bring_to("T", "D")) >> [ drive_to("D") ]
36 +start() >> [ alarm() ]
37 drive_and_avoid(dijkstra_move_to, "X", [ lift_down() ])
38 +lift("P") / (lambda : P <= 5) >> [ lift_stop(), forward_slow(-2),
39 set_stage("area-scan") ]
40
41 stage("to-parking")
42 +start() >> [ drive_to("p") ]
43 drive_and_avoid(dijkstra_move_to, "p", [ ])
44
45 # ... sensor add
46
47 # ... initial beliefs
48
49 PROFETA.add_belief(bring_to("pallet-type-a","dep1"))
50 PROFETA.add_belief(bring_to("pallet-type-b","dep2"))
51 PROFETA.add_belief(bring_to("pallet-type-c","dep2"))
52 PROFETA.add_belief(bring_to("pallet-type-d","dep1"))
53 # ....
54 PROFETA.achieve(pick_new_pallet())
55 PROFETA.run()

� �

In stage “pick”, the plans have the aim of making the forklift pick the pallet. In a real application, this task may 
be quite complex since the robot should adequately move the forks in order to perform a correct alignment with the 
pallet holes to ensure the right picking. Here, we consider a simplified environment and assume that the PalletScanner
detects the pallet when the robot is properly aligned; thus, actions to be taken are: (i) rotate to 90 degrees (absolute 
heading), (ii) go forward at a low speed, and (iii) activate the fork bumpers (lines 27–28); if bumpers are hit before motion 
completion, this means the pallet has been correctly forked and needs to be lifted up (line 29). On the other hand, if the 
motion path is completed without bumping the pallet, something wrong happened, and the robot should stop itself and 
raise an alarm (line 32).

When bumpers are hit, the forks are lifted up (line 29), until the position of the lift has reached a threshold set to 
50 cm (lines 30–31); if this happens, the lift is stopped, the type of the pallet is identified and the program enters stage
“to-depot”.

In this stage, the first plan (line 35) determines first which depot the lifted pallet should go to, by means of the applicable
bring_to(T,D) belief, specifying that depot D is where pallets of type T belong. The robot is then driven towards the 
target depot (line 37), and the lift is lowered to the height of 5 cm, in order to release the pallet (lines 38–39); as a 
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Program 2 The imperative path planner for the forklift robot.
�

1 from profeta.action import *
2
3 # ... other imports
4
5 class Djikstra:
6 def path_to(self, point, excluded_point = None):
7 # .... Djikstra’s algorithm
8 return path # a list of pairs (X,Y)
9

10
11 dijkstra = Djikstra()
12
13 class dijkstra_move_to(Action): # a subclass of Action
14 def execute(self):
15 for point in dijkstra.path_to(self[0]):
16 move_robot_to(point[0], point[1])
17
18 class dijkstra_move_to_excluding(Action): # a subclass of Action
19 def execute(self):
20 for point in dijkstra.path_to(self[0], (self[1], self[2])):
21 move_robot_to(point[0], point[1])

� �

consequence, the robot goes backward two meters (the adequate distance to fork-off the pallet) and restarts its operation 
by entering stage "area-scan" again.

To complete the description of the case-study, we illustrate the chief aspects of the imperative part of the case 
study code. Listing 2 shows class Dijkstra, which implements the path planner, and the classes implementing actions
dijkstra_move_to() and dijkstra_move_to_excluding() (it will be recalled that actions should be subclasses 
of Action and override its execute() method).

For dijkstra_move_to(), execute() invokes the planner, which returns a list of points that should be traversed 
by invoking the (low-level) motion subsystem’s move_robot_to function.17

For action dijkstra_move_to_excluding(t,x,y), execute() instructs the planner to find a path by ignoring 
the point of the graph with is the nearest to (x, y): this is required to bypass an obstacle by ensuring that point will not be 
selected in the path.

7. Discussion

After having presented PROFETA, in this section we review its characteristics and provide a comparison with other BDI 
platforms.

PROFETA is inspired by AgentSpeak(L), like the other known implementation Jason [49] and eJason [69], but while these 
frameworks support the “pure” AgentSpeak(L) syntax and semantics (with no modifications), PROFETA introduces some 
differences. The syntax has been substantially modified, mainly in order to be adapted to the use of Python expressions and 
operators; this is a key aspect, in that the main design principle of PROFETA is to let a programmer use, within the same 
software development environment, both the imperative and logic/declarative programming paradigm. While this concept 
is also present in other BDI platforms [70,49,52], the difference lies in the way in which such a mixing of paradigms 
is achieved. In this sense, there are two different approaches commonly used: A first approach is based on writing the 
declarative (intelligent) part using a different programming language than the underlying platform, so that it will have to be 
interpreted by the platform at run-time; this is the case, e.g., of Jason (and eJason) and Jadex [52]. While such an approach 
keeps a strong separation between the imperative and declarative parts, a feature that is desirable when the implementation 
of the two parts is assigned to two different teams of developers, it undoubtedly poses performance problems due to the 
interpreted execution of the declarative part; moreover, as the imperative part often closely interacts with the declarative 
one, the provided API between the two domains must be designed in such a way as to avoid additional parsing, which 
can be highly time-consuming, or other kind of inefficiencies.18 The second approach is based on extending the language 
used to implement the platform by adding new keywords and constructs, as in the case of JACK [22] which, by means of 
this method, provides suitable ways to represent, in Java, the entities of the BDI model. Then, an ad-hoc pre-processor is 
used to translate such constructs into language lines of code (Java, in the specific case) in order to allow direct compilation 
and execution. This method allows an easy “mingling” of BDI construct into imperative code and does not suffer of the 
performance problems that interpreted approaches have, but has the drawback of requiring the ad-hoc pre-processor.

17 It should be recalled we are assuming the motion system to handle commands in an asynchronous way.
18 An example of such a lack of efficiency is the Jason API: here, if a belief deriving from e.g. reading a sensor must be added in the belief base, the piece 

of Java that performs sensor reading must prepare the relevant belief in a string that is then parsed by the Jason interpreter; this parsing is required each 
time the sensor is read.
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On the other hand, the approach implemented by PROFETA has the advantages of the second method but without requir-
ing the pre-processor. The support for declarative constructs is achieved by simply changing the meaning of the constructs 
already present in the language, in particular operator overloading, which is supported by Python. We believe that this 
technique enables superior run-time performance with respect to other BDI frameworks that implement the first method: 
since PROFETA plans are Python expression, their evaluation, from the Python point of view, causes the constructions of 
suitable runtime structures that allow a fast execution (from the PROFETA point of view) of the program. Investigating such 
performance aspects is beyond of the scope of this paper and will be the subject of future work.

PROFETA is thus a live demonstration of how the object-oriented technology can be successfully used to perform a 
seamless “mingling” of a logic/declarative model into a traditionally imperative programming language thus providing a 
multi-paradigm environment, an experience that indeed can be easily ported to other languages, rather than Python, given 
that they support user-defined operator overloading (for instance, C++ or Scala), which is not supported by Java [71]. At this 
regards, we aim to implement PROFETA in C++ in a future work.

Another important difference of PROFETA with respect to AgentSpeak(L) is the presence of several kind of beliefs, i.e. the 
“simple” Beliefs, the SingletonBeliefs and the Reactors. They have been introduced for two main reasons: better adherence 
to the environment modeled, and performance. As explained earlier, a SingletonBelief is used when we have to represent a 
knowledge that, according to the system to be implemented, exists in a single instance, so that any assert operation results 
in the modification of the already existing belief. In Jason, the corresponding operation would be “− +bel”, meaning “remove 
the first instance of bel and the (re-)add bel”; however, while the resulting effect is the same, the adoption of SingletonBelief 
has some advantages. The first is a software engineering aspect: having a specific entity modeled in the framework affords 
the availability of a reference construct in the design of the system; also, in maintaining the code, the fact that a belief is 
single instance can be immediately understood from its declaration, while, in Jason, the same information must be derived 
by carefully inspecting the program code and, in particular, by looking for “− + bel” constructs. Moreover, the presence of 
an ad-hoc construct avoids programming error which, instead, are possible in Jason when a programmer “forgets” to use the 
“− +bel” operation (and uses instead the simple +bel). The second aspect is related to performance: the “− +bel” construct 
first removes that belief and then adds it once again (even if with different parameters), thus causing two manipulations 
of the knowledge base; indeed, in this case, a simple update operation would suffice and this is what happens in PROFETA

when a +SingletonBelief action is executed.
In PROFETA, we introduced Reactors to represent and handle “one shot events” that do not provide any knowledge. In

PROFETA, Reactors are intended to be mainly generated by Sensors. They are not present in Jason/AgentSpeak(L), but the 
same semantics can be easily implemented by immediately removing the belief (using −bel) in the plan that handles its 
assertion; however, also in this case, there is a drawback in terms of performances because the knowledge base needs to be 
updated twice, while the use of a special belief avoids this side effect.

An additional feature provided by PROFETA is the abstraction of stages. As it has been reported in Section 4, stages 
represent specific phases of the behavior and are intended to provide a form of encapsulation of plans thus facilitating code 
organization and maintenance; in this sense, they are quite similarly to JACK capabilities. The use of such an abstraction, as 
the case-study shows, makes behavior implementation easier, in that it allows a programmer to clearly identify the plans 
that “make sense” in that phase. Indeed, the same objective can also be attained, without the stage abstraction, by using 
e.g. a (singleton) belief that keeps track of the current stage: as an example, the listing in Program 3 shows the plans of the 
case-study belonging to stage "pick", rewriting them without the stage abstraction and using the belief in_stage() to 
track the current phase. But, while the resulting execution will be the same, there are (at least) three important aspects 
that must be considered; first, the concept of “encapsulation” has completely disappeared in Program 3, and the notion that 
those plans belong to the same behavior phase must be derived by looking at all of the plans; the second aspect concerns 
the readability and maintenance degree of the code which, in Program 3, is surely reduced; the third aspect relates to 
performance, for encapsulation in stages “helps” the reasoning engine to efficiently select plans by restricting a priori the 
set of eligible ones.

Program 3 Stages implementation without the “stage” abstraction.
�

1 +start() / (in_stage("pick") & pallet("X", "Y")) >> [rotate_to(90),
2 forward_slow("X"),
3 activate_bumpers() ]
4 +bump() / in_stage("pick") >> [ stop_robot(), lift_up() ]
5 +lift("P") / (in_stage("pick") & (lambda : P >=50)) >> [ lift_stop(),
6 identify_pallet_type(),
7 +in_stage("to-depot"),
8 +start() ]
9 +path_completed() / in_stage("pick") >> [ alarm() ]

� �

A feature that is present in Jason, but not provided in PROFETA, is the possibility of running concurrent/parallel plans. 
This can be achieved in Jason by running more than one goal at system start-up, or using a special operator that starts 
concurrent goals. This is a very interesting feature, which is definitely useful in the context of software agents. However, 
in PROFETA, which is specifically designed for robotics, the absence of concurrent plans is a choice by design. Indeed, in 
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robotics, concurrency is often referred to the possibility of running, in parallel, two or more independent physical tasks: 
as an example, a robot could execute, in parallel, the actions of (i) driving over a certain path and (ii) manipulating (by 
means of an arm) a certain object that it has previously picked. At first sight, such actions could require pieces of program 
code running in parallel; yet, trying to think up the possible plans, it is soon realized that things are not so straightfor-
ward.

As it has been stated in Section 6, the basic programming model of a robotic application is mainly asynchronous, meaning 
that the high-level program has the responsibility of “triggering the actions”, which, in turn, are managed and completed 
by the lower layers (and often in specific, maybe proprietary, daughterboard drivers). Moreover, the program has a need 
to receive a feedback, from suitable sensors, which notifies the completion of the action, or its failure (so that it can react 
accordingly with suitable counter-measures); such a feedback is also received with a latency which is dependent on the 
physical environment and is order of magnitudes higher than CPU execution times.

As a solution, rather than using explicit concurrency, we can code in the fashion illustrated in Program 4. I.e., we can 
simply start our actions (line 1), which (being asynchronous) will be practically executed in parallel; then, we can gather 
the relevant feedbacks with other plans (line 4 and 5), by using the data provided by sensors. It will be understood, that this 
asynchronous programming style does not require the explicit presence of concurrent code: indeed, in the various robots 
developed in our laboratory, we never met the need for explicit concurrency in PROFETA code, which is why it has not been 
implemented as of the current version of the tool.

Program 4 Asynchronous actions and parallelism.
�

1 ... >> [ drive_robot_to("X", "Y"), move_arm_to("X1","Y1","Z1") ]
2 # These two actions trigger two movements that are executed,
3 # in parallel, by the underlying levels or daughter boards
4 +path_completed() >> [ ... ] # do other things after path
5 +arm_position_reached() >> [ ... ] # do other things after arm movement

� �

8. Conclusions

In this paper we described PROFETA, a framework to program the behavior of autonomous robots in a declarative way.
PROFETA is based on the Belief–Desire–Intention (BDI) programming paradigm, which is mostly used in the field of au-
tonomous agents. Our work presents some similarities with AgentSpeak(L), by which it is inspired, but it has been entirely 
written in Python, which affords some distinctive advantages. The proposed approach combines the power of the object-
oriented paradigm, which is useful in programming robotic devices, and the declarative paradigm, which is very powerful 
in defining the robot’s autonomous behavior.

The main contribution of our approach consists in the integration, within a single framework, of the BDI model without 
having to deal with the shortcomings of traditional layered architectures, where the upper layer would be implemented as 
a logic system, and the underlying layers are based on algorithms generally implemented using an imperative language. This 
juxtaposition of different programming approaches forces developers to deal with two different execution environments, 
and generally makes the overall software system harder to debug and maintain.

On the other hand, we have demonstrated, through a non-trivial case-study, how, within the PROFETA framework, robotic 
system design and development can be supported by a unique execution environment, i.e. the Python virtual machine. 
With PROFETA, Python object oriented/imperative constructs are available for the imperative-based components, while the 
robot’s “intelligent behavior” can be implemented, in Python too, by means of the suitable additional constructs introduced. 
Dealing with a single language/environment has obvious advantages in terms of reduced codebase complexity, and improved 
maintainability and reliability of the overall software system, above all, when a Python IDE with debugging capabilities is 
used to develop the system.19

Unlike other frameworks, PROFETA does not provide a GUI to support designers and programmers, which could be a 
requirement for application scenarios where rapid prototyping is paramount. However, we are in the process of adapting 
to PROFETA visual design tools available for the Distilled StateCharts (DSC) formalism, which models agent behavior with 
Statecharts-like state machines. We have already investigated the relationship between DSC and the BDI-inspired PROFETA

in [9,72].
As stated in Section 3, in the recent years, we have developed an approach named GOLEM [60], which is an abstract 

framework for autonomous robot programming. GOLEM represents a different approach, on which robot behaviors are de-
signed to mimicking human behavior by organizing activities into goals and sub-goals, linked to one another through specific 
relationships. Although the design principles of GOLEM are very different from PROFETA, we aim to integrate—in a future 
work—the two approaches.

19 like e.g. Wingware (http :/ /wingware .com/).

http://wingware.com/
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