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Abstract: In the last two decades, the Maximum Entropy Principle (MEP) has been successfully
employed to construct macroscopic models able to describe the charge and heat transport in
semiconductor devices. These models are obtained, starting from the Boltzmann transport equations,
for the charge and the phonon distribution functions, by taking—as macroscopic variables—suitable
moments of the distributions and exploiting MEP in order to close the evolution equations for the
chosen moments. Important results have also been obtained for the description of charge transport in
devices made both of elemental and compound semiconductors, in cases where charge confinement
is present and the carrier flow is two- or one-dimensional.
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1. Introduction

In the design of new generation electronic devices, the modern micro- and nanoelectronics
industry has an increasing need for mathematical models to simulate devices before they are realized in
the laboratory. In particular, the accurate modeling of energy transport in semiconductors is necessary
in order to describe high-field phenomena, such as hot electron propagation, impact ionization and heat
generation in the bulk material. Semiclassically, the most effective way to describe these phenomena
makes use of the semiclassical Boltzmann Transport Equation (BTE) [1]. However, solving the BTE is
a daunting computational task, both using an indirect stochastic approach by Monte Carlo methods
and direct numerical schemes based on discontinuous Galerkin methods or finite differences [2].
This is the reason why, in many cases, it is desirable to have simpler macroscopical models, known as
hydrodynamical-like models, which are highly useful for computer aided design (CAD) purposes.
These models are obtained from the infinite set of moment equations of the BTE by a suitable
truncation procedure. It is well-known that a closure assumption is required in order to have a closed
system of evolution equations. In the past, various closure assumptions have been made for the
semiconductor transport moment systems, leading to various classes of hydrodynamical models,
see e.g., [3–5]. However, these various closure assumptions are, at best, only phenomenological and
often a consistent physical and mathematical justification is lacking. Lately, a closure assumption based
on the Maximum Entropy Principle of extended thermodynamics [6,7] has been successfully applied,
both in the parabolic and non-parabolic band approximation, to various types of semiconductors [8–13].
The resulting models, which differ for the choice of the moments to assume as field variables, are,
in fact, able to describe charge transport due both to electrons and holes and also heat transport
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due to phonons. All the main scattering mechanisms between carriers and phonons and among
phonons themselves are taken into account. The models also have nice mathematical properties,
being symmetric hyperbolic. In particular, this assures the well-posedness of the Cauchy problems
and the finite velocity of the propagation of disturbances [14].

Due to the increasing shrinking of modern device dimensions, quantum effects are beginning to
play a relevant role in charge transport. In the framework of the moment method and of Maximum
Entropy Principle (MEP), a strategy to take into account these effects has been proposed in [15] and
consists of using the moment system arising from the Wigner equation. The starting point is to
expand the Wigner function and the relative transport equation with respect to the squared reduced
Planck constant h̄2. The zero-order part of the collision operator is supposed to be the same as the
semiclassical one, while the first-order contribution is supposed to act only on the h̄2 correction of the
Wigner function and is modeled in a relaxation form. Therefore, at zero order, the Wigner function
is given by the solution of the semiclassical Boltzmann equation, which is approximated with the
standard maximum entropy method, while the h̄2 order correction is obtained with a Chapman–Enskog
expansion in the high field scaling.

In the description of charge transport in some devices, such as double gate metal oxide
semiconductor field effect transistors (DG-MOSFETs), where quantum effects are relevant only along one
direction, called the confinement or transversal direction, another strategy can be used. One can adopt
a quasi-static description along the confining direction based on a coupled Schrödinger–Poisson system
which leads to a subband decomposition of the electron energy levels, while the transport along the
longitudinal directions can be described by a semiclassical Boltzmann equation for each subband [16].
Therefore, a complete description can be done in terms of a coupled Schrödinger–Poisson–Boltzmann
system. However, the numerical integration of the transport part, which has been performed
by employing Monte Carlo or deterministic methods [16,17], is also in this case very expensive,
from a computational point of view, for CAD purposes. Consequently, it can be convenient to substitute
the Boltzmann equations with macroscopic models again obtained by using the moment method and
closing the moment equations with MEP [18–20].

In this paper, we will give a review of all the above-mentioned models according to the following
plan. In Section 2, the 3D semiclassical macroscopic models are presented, showing how they are
closed by using MEP and in Section 3 their quantum correction is discussed. In Section 4, the case of
quantum confinement is described. Eventually in Section 5, some numerical simulations are sketched.

2. The 3D Semiclassical Macroscopic Models

In the semiclassical description, roughly speaking, the charge and heat transport in semiconductors
can be described by modeling them as consisting of a mixture of gases of electrons and phonons.
As regards electrons, those which mainly contribute to the current flow occupy states near to the
lowest minima of the lowest conductions bands and to the highest maxima of the highest valence
bands. The latter contribution can be conveniently treated in terms of pseudo-particles called holes
(missing electrons), which have electric charge, crystal momentum and energy opposite to those of
the missing electrons in the considered valence band [1,21,22]. An electron/hole population for each
neighborhood of the lowest/highest minima/maxima of the lowest/highest conduction/valence
bands is taken into account. The neighborhoods of the minima/maxima are usually called valleys.
The electron/hole state is characterized by the index of the band it occupies, by its wave vector and
spin state.

The dependence of the carrier energy on the wave vector in each valley can be analytically
approximated by non-parabolic dispersion relations of the following form [1,9]

EA(kA) =
h̄2|kA|2

2 me
γA(EA)ψ−1

A (nA), (1)



Entropy 2017, 19, 36 3 of 35

where EA is the carrier energy in the A-th valley measured from the bottom of the valley, the index
A running over the considered valleys, kA is the carrier quasi-wave vector, referred, for each valley,
to the minimum or maximum of the valley [1], nA := kA

|kA |
, γA is the non-parabolicity factor, and me is

the free electron mass.
For electrons, if one uses the ellipsoidal approximation, the dependence of ψA on nA is given by

ψ−1
A =

((nA)1)
2

(m∗A)1
+

((nA)2)
2

(m∗A)2
+

((nA)3)
2

(m∗A)3
,

where (m∗A)
−1
i , i = 1, 2, 3, are the diagonal elements (eigenvalues) of the inverse effective mass tensor

of the A-th valley, multiplied by me, referred to an orthonormal basis of the tensor.
Analogously, for holes, one has

ψ−1
A = |AA| ∓

√
B2

A +
C2

A
4

(
sin4 ϑ sin2 2ϕ + sin2 2ϑ

)
,

in the case of warped bands, with ϕ and θ the azimuthal and polar angle of the wave vector respectively,
and AA, BA and CA inverse valence band parameters.

In the analytic approximations, for each valley, the domain of the wave-vector is extended to
all R3 and the volume element in the k-space can be written as (henceforth we omit the valley index
unless there is a possibility of confusion)

d3k =
me
√

2me

h̄3

√
E

γ5(E)

(
γ(E)− Eγ′ (E)

)
ψ

3
2 (ϕ, θ)dEdΩ,

where the prime denotes a derivative with respect to the argument of the function, and dΩ is the solid
angle element. The charge carrier velocity, given by v = 1

h̄∇kE , has the following expression in terms
of the energy and the angular variables

vi =
h̄

2 me

γ
2
(E)

γ(E)− Eγ′ (E) li, li :=
∂

∂ki
(|k|2 ψ−1) = g(E)ηi(ϕ, θ)ni,

g : =
2
√

2 me E
h̄
√

γ(E)
, ηi :=

√
ψ

m∗i
.

Similarly, for phonons that are used to describe the crystal vibrations and strongly influence
charge transport, one population for each branch has to be considered [23]. The number of branches
is equal to 3ν, ν being the total number of atoms per unit cell of the crystal lattice, and a is the lattice
constant. Among the most used analytic approximations for the phonon dispersion relation, we report
the one which is isotropic and quadratic in the phonon wave vector q

εp = ε
p
0 + h̄vp

s |q|+ h̄cp |q|2 , |q| ∈
[
0,

2π

a

]
, (2)

where εp is the phonon energy, vp
s and cp, p = 1, . . . , 3ν, are suitable constants depending on the

material under consideration, and p varies over the 3ν phonon branches. The Einstein and the Debye
approximations are particular cases of (2), respectively obtained for vp

s = cp = 0 and cp = 0, vp
s 6= 0.

At the kinetic level, the state of the electrons, holes and phonons can be described by their
one-particle distribution functions fAβ

, β = e (electron), h (hole), Aβ indicating the valleys occupied by
β-carriers ({Ae} ∪ {Ah} = {A}), and gp, with p = 1, . . . , 3ν, whose time evolution is determined by
the Boltzmann–Bloch–Peierls (BBP) system (see [24] and references therein)

∂ fAβ

∂t + vAβ
· ∇x fAβ

+
qβ

h̄ E · ∇k fAβ
= Cim( fAβ

) + ∑A′
β′ ,p
C

Aβ A′
β′

p ( fAβ
, fA′

β′
, gp) + ∑A′

β̄
, p I

Aβ A′
β̄

p [ fAβ
, fA′

β̄
,gp

], (3A)
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∂gp

∂t
+ vp · ∇xgp = ∑

Aβ , A′
β′

C p
Aβ , A′

β′
(gp, fAβ

, fA′
β′
) + ∑

η

C p
η (gp) + ∑

Aβ ,A′
β̄

I p
Aβ A′

β̄

[gp, fAβ
, fA′

β̄
], (3B)

∆(εs V) = q
(
n(x, t)− p(x, t) + Na(x)− Nd(x)

)
, (3C)

where qβ is the charge of the particles, qe,h = ∓q with q absolute value of the elementary charge, β̄ is
the complement of β with respect to the set {e, h} vp = 1

h̄∇qεp is the phonon group velocity, εs is the
material permittivity, V and E are the electric potential and field, η labels the type of scattering among
phonons themselves (see below), Na and Nd are the acceptor and donor concentrations, while n is the
total electron density

n = ∑
Ae

fAe , (4)

and p the total hole density
p = ∑

Ah

fAh . (5)

The Boltzmann Equation (3A) is coupled among them through the Poisson Equation (3C) and
some of the collision operators which appear at the right-hand side of (3A) and (3B).

The operator Cim [1] takes into account scatterings between carriers and impurities and is elastic
and intravalley, which means that the initial and the final state of the carrier lie in the same valley.
Its form is

Cim( fAβ
) =

∫
R3

[
wim(k′, k) fAβ

(k′)− wim(k, k′) fAβ
(k)]dk′,

the impurity scattering transition rate being given by

wim(k, k′) = K(im) 1[
|k− k′|2 + λ2

D

]2 δ(E(k′)− E(k)),

with λD =

√
(Na/d)q2

εskB TL
the inverse Debye length and K(im) =

Z2
a/d Na/d q4

4πh̄ε2
s

, where Z is the impurity charge

number, TL the lattice temperature and kB the Boltzmann constant. According to whether interactions
with donors or acceptors are considered, Nd or Na, and Zd or Za have to be taken.

The collision operators CAA′
p ( fA, fA′ ,gp) describe interactions between carriers of the same type

and phonons. These scatterings can be intravalley (intraband) (A = A′), or intervalley (intraband or
interband) (A 6= A′) [1], which means that the initial and final state belong to different valleys.
These operators read [24]

CA A′
p ( fA, fA′ , gp) =

∫
S 2π

a

∫
R3

[
wAA′+

p (k, k′, q)κA A′
1 (gp, fA, fA′)

+w
Aβ A′−
p (k, k′, q)κA A′

2 (gp, fA, fA′)
]
dk′dq,

where S 2π
a

is the sphere of radius 2π
a , which approximates the first Brillouin zone B in the case of

isotropic approximations for the phonon dispersion relations, and, for example, the integrands are
given by

κ
Ae A′e
1 (gp, fAe , fA′e) :=

(
gp

yp
+ 1

)
fA′e(k

′)−
gp

yp
fAe(k),

κ
Ae A′e
2 (gp, fAe , fA′e) :=

gp

yp
fA′e(k

′)−
(

gp

yp
+ 1

)
fAe(k),

wAe A′e±
p (k, k′, q) := sAe A′e

p (q)δ
(
EA′e(k

′)− EAe(k)∓ εp
)
δ
(
k′ − k∓ q + G

)
,
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yp being the p-phonon density of states, δ the Dirac delta function, and G a vector of the Brillouin
zone, whose presence is due to the fact that the total wave vector is conserved up to it. The scattering
functions sAA′

p are characteristic of the type of interaction of carriers, for example with acoustic and
non-polar optical phonons for elemental semiconductors such as Si and Ge, and also with polar optical
phonons for compound semiconductors, such as GaAs and SiC. The previous expressions of the
scattering rates w are valid in the case when only conduction electrons are involved; for all the other
cases as well as for the expressions of the scattering functions, we refer the interested reader to [1,8,9].

The generation-recombination collision operators Ip
Aβ A′

β̄ [ fAβ
, fA′

β̄
, gp] include several mechanisms,

among which the most important are the Auger and the Schockley–Read–Hall (SRH) processes.
In a relaxation time approximation and in the simpler case of a single conduction and a single valence
band, the operators read [25]

I[ fA, fĀ] = − (Γn n + Γh p)
(

ñ fA − ni
2MA

)
− ñ fA − ni

2MA
τh(n + ni) + τn(p + ni)

, (6)

where ñ = n or p according to whether the A-th valley is populated by electrons or holes, theMA’s are
the Maxwellians normalized to unit, Γn and Γh are the Auger electron and hole constant coefficients, τn

and τh are the carrier lifetimes, and ni is the intrinsic concentration [1].
The collision operators which appear in the Boltzmann–Peierls equations for phonons, relative to

their interactions with carriers, read [24]

Cp
Aβ A′

β′
(gp, fAβ

, fA′
β′
)=

∫
R3

∫
R3

w
Aβ A′

β′+
p (k, k′, q)κ

Aβ A′
β′

1 (gp, fAβ
, fA′

β′
)dk′dk.

The other interactions of phonons can be distinguished into intrinsic ones, arising from the
anharmonicity of the interatomic forces, and extrinsic ones, due to phonon scatterings at the boundaries
of the crystal and at various types of crystal defects and imperfections. In their turn, the anharmonic
scatterings can be normal processes (N-processes), in which the phonon total momentum after the
interaction is conserved, and umklapp processes (U-processes) for which the total momentum changes
by a reciprocal lattice vector multiplied by h̄ after a collision. On the other hand, all extrinsic processes
do not conserve the total momentum after a collision and, together with the umklapp ones, are usually
called resistive processes. For the expressions of the corresponding collision operators, we refer the
interested readers to [23] and references therein.

Macroscopic models can be constructed starting from the BBP system by taking a suitable number
of moments of the distribution functions [14]. The most common choice is that of considering the
following functions of the carrier and phonon wave vectors ψAβ

(k) :=
(

1, vAβ
,EAβ

,EAβ
vAβ

)
and(

ψp(q)
)

:=
(
εp, εpvp

)
, to which the following macroscopic state variables correspond:

(
nAβ

WAβ

)
=
∫
R3

 1
EAβ

nAβ

 fAβ
dk,

(
VAβ

SAβ

)
=

1
nAβ

∫
R3

(
vAβ

EAβ
vAβ

)
fAβ

dk, (7)

(
Wp

Qp

)
=
∫

S 2π
a

(
εp

εpvp

)
gpdq, (8)

which are the carrier number densities, the average energies, velocities and energy-fluxes per carrier,
and the phonon average energies and energy-fluxes, respectively. The above choice involves the
minimal number of moments necessary for describing the thermal energy transport, but this number,
if required by the physical problem under study, can be easily extended to cover, for example,
an arbitrary number of scalar and vector moments both for carriers and phonons, by taking into
account, e.g., higher microscopic energy powers in the functions ψ [7,26].
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The evolution equations for the state variables (7) and (8) can be obtained directly from the
Boltzmann equations by integration:

∂

∂t

(
nAβ

nAβ
WAβ

)
+∇x ·

(
nAβ

(
VAβ

SAβ

))
− nAβ

qβ

(
0

E ·VAβ

)
= nAβ

 CnAβ

CWAβ

 , (9)

∂
∂t

(
nAβ

(
VAβ

SAβ

))
+ ∇x

 nAβ

 F(0)
Aβ

F(1)
Aβ


−nAβ

qβ

 G(0)
Aβ

G(1)
Aβ

E = nAβ

 CVAβ

CSAβ

 (10)

∂

∂t

(
Wp

Qp

)
+∇x ·

(
Qp

Tp

)
=

(
CWp

CQp

)
. (11)

In the above equations, the extra-fluxes and production terms relative to charges respectively read F(0)
Aβ

F(1)
Aβ

 =
1

nAβ

∫ ( 1
EAβ

)
vAβ
⊗ vAβ

fAβ
dk,

(
velocity flux,

flux of the energy-flux

)
 G(0)

Aβ

G(1)
Aβ

 =
1

h̄ nAβ

∫ ( ∇kvAβ

∇k

(
EAβ

vAβ

) ) fAβ
dk,

nAβ
CMψAβ

=
∫

ψAβ
(k)
[
Cim( fAβ

) + ∑
A′

β′ ,p
C

Aβ A′
β′

p ( fAβ
, fA′

β′ ,
, gp)

+ ∑
A′

β̄
, p
I

Aβ A′
β̄

p [ fAβ
, fA′

β̄
,gp
]
]
dk, MψAβ

-production,

with MψAβ
:=
(

nAβ
, VAβ

, WAβ
, SAβ

)
, while for the phonons, we have

Tp =
∫

εpvp ⊗ vp gp(q)dq, flux of the energy-flux,(
CWp

CQp

)
=
∫ (

εp

εpvp

)
∑

Aβ, A′
β′

Cp
Aβ,A′

β′
(gp, fAβ

, fA′
β′
) +∑

η

Cp
η (12)

+ ∑
Aβ,A′

β̄

I p
Aβ A′

β̄

[gp, fAβ
, fA′

β̄
]dq,

(
energy production

energy-flux production

)
.

In the evolution equations, the number of the unknowns is greater than that of the equations,
therefore constitutive equations are needed for the extra-variables FA(0)

ij , GA(0)
ij , FA(1)

ij , GA(1)
ij , Tp

ij ,
CnA , CWA , CVA , CSA , CWp , CQp . A systematic way to find these relations is founded on a universal
physical principle: the maximum entropy principle [6,14,27,28]. It states that, if a certain number of
moments is known, then the least biased distribution functions, which can be used for evaluating the
unknown moments, are those maximizing the total entropy functional under the constraint that they
reproduce the known moments. In the case under consideration, neglecting the mutual interactions
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among the subsystems and degeneration effects (the degeneracy case can be tackled in the same way;
we present the non-degenerate case only for the sake of simplicity), the total entropy is

S = −kB

{
∑
Aβ

∫
R3

(
fAβ

ln
fAβ

yAβ

− fAβ

)
dk +∑

p

∫
S 2π

a

[
gp ln

gp

yp

−yp

(
1+

gp

yp

)
ln
(

1+
gp

yp

)]
dq

}
,

with yAβ
= 2

(2π)3 the charge density of states, while the constraints are given by (7) and (8). Let us
introduce the functional spaces

FψAβ
=

{
h : R3 7→ R s.t.

∫
R3
|h(k)ψj(k)| d k < +∞, ∀ψj ∈ {ψAβ

}
}

,

Fψp =

h : R3 7→ R s.t.
∫

S 2π
a

|h(q)ψj(q)| d q < +∞, ∀ψj ∈ {ψp}

 .

Given the values of the moments MψAβ
and Wp, Qp, MEP amounts to solve the following

optimization problem:
max

fAβ
∈FψAβ

,gp∈Fψp

S

under the constraints

∫
R3

ψAβ
(k) fAβ

d k = MψAβ
,
∫

S 2π
a

gp

(
εp

εpvp

)
d q =

(
WP
Qp

)

where time and position are considered fixed and omitted for the sake of simplifying the notation.
The solution of this maximization problem is given by [29]

f ME
Aβ

= exp (−ΛAβ
−ΛWAβ

EAβ
− vAβ

· (ΛVAβ
+ EAβ

ΛSAβ
)),

g ME
p =

yp

exp (εpΛWp+εpvp·ΛQp
)− 1

,

which, linearized with respect to the vector variables (small anisotropy assumption) [8,9,27], becomes

f ME
Aβ

= exp (−ΛAβ
−ΛWAβ

EAβ
)
(
1− vAβ

· (ΛVAβ
+ EAβ

ΛSAβ
)
)
,

g ME
p =

yp

exp (εpΛWp)− 1
−

ypεp exp (εpΛWp
)

(exp (εpΛWp)− 1)2 vp ·ΛQp ,

where the Λ’s are Lagrange multipliers, related to the state variables by means of the constraint
relations (7) and (8). Linearization is made in order to simplify the inversion of the constraints,
otherwise it has to be done numerically [29]. After inversion, the dependence of the distribution
functions on (x, t) will only be through the state variables, and substituting the distributions into the
integrals defining the extra-variables, the needed closure relations can be obtained. It can be proven
that the balance equations with the closure relations given by MEP form a quasilinear hyperbolic
system in the relevant physical region of the field variables.

Following this procedure, mathematical models for the description of charge transport in unipolar
and bipolar silicon devices have been constructed, see for example [10,30], while results relative to
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Si thermal properties can be found in [23,31]. The procedure has also been applied to compound
semiconductors such as GaAs, GaN and SiC [8,9].

3. Quantum Corrections to the Semiclassical Models

Based on the previous considerations, a natural way to get a quantum macroscopic model is to
use MEP in a quantum framework to close the moment system arising from the Wigner equations.
The general guidelines can be found in [32,33]. This approach has been followed in [34] (see also [35]
and references therein). However, one has to deal with operatorial equations which are very complex
and therefore hard to be solved numerically. Moreover, drastic simplifications of the collision terms
are introduced in order to make the problem tractable.

Another strategy can be adopted to close the moment system arising from the Wigner equation.
According to this strategy, the Wigner function and the relative transport equation are expanded
with respect to h̄2. The zero-order part of the collision operator is supposed to be the same as the
semiclassical one, while the first-order contribution is supposed to act only on the h̄2 correction of the
Wigner function and is modeled in a relaxation form. Therefore, at the zero order, the Wigner function
is given by the solution of the semiclassical Boltzmann equation, which is approximated with the
standard maximum entropy method, while the h̄2 order correction is obtained with a Chapman–Enskog
expansion in the high field scaling.

The typical physical situation which can be described in this way is that when the main
contribution to the charge transport is semiclassical, the quantum effects enter as small perturbations.
For example, this is reasonable for devices such as MOSFETs of characteristic length of about ten
nanometers subjected to strong electric fields.

The main assumption is that there is a balance between the h̄2 drift and collision terms. This can
be motivated by the fact that the collision frequency of the semiclassical scatterings tends to increase
as the energy rises. Therefore, quantum effects are expected to be relevant at high fields; in such
conditions, there should be high energies with consequently high collision frequencies.

The starting point for our derivation of the quantum corrections to the semiclassical model is the
single particle Wigner–Poisson system, which represents the quantum analogue of the semiclassical
Boltzmann–Poisson system (for the sake of simplicity, only the case of a single valley in the conduction
band is considered),

∂w
∂t

+ S[E ]w +
q

m∗
Θ[V]w = C[w], (13)

div (εs∇xVS) = −q(Nd − Na − n). (14)

where m∗ is the electron effective mass, the potential V usually is the sum of a self-consistent part
VS, solution of the Poisson equation, and an additional part which models the potential barriers in
heterostructures. The unknown function w(x, p, t), depending on the position x, crystal momentum
p = h̄k and time t, is the Wigner quasi-distribution, defined as

w(x, p, t) = F−1[ρ(x +
h̄

2m∗
η, x− h̄

2m∗
η, t)](p)

=
1

(2π)3

∫
R3

ρ(x +
h̄

2m∗
η, x− h̄

2m∗
η, t) eip·η d η. (15)

Here, ρ(x, y, t) is the density matrix, which is related to the wave function ψ(x, t) by

ρ(x, y, t) = ψ(x, t)ψ(y, t). (16)
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The operator F denotes the Fourier transform, given for a function g(p) ∈ L1(R3) by

F [g(p)](η) =
∫
R3

p

g(p) e−ip·η d p,

with i the imaginary unit, and F−1 denotes the inverse Fourier transform

F−1[h(η)] =
1

(2 π)3

∫
R3

η

h(η) eip·η d η.

The terms S[E ] and Θ[V] represent the pseudo-differential operators

S[E ]w(x, p, t) =
i

h̄(2π)3

∫
R3

x′×R
3
ν

[
E
(

p +
h̄
2

ν, t
)
− E

(
p +

h̄
2

ν, t
)]

w(x′, p, t) e−i(x′−x)·ν d x′ d ν

Θ[V]w(x, p, t) =
i m∗

h̄(2π)3

∫
R3

p′×R
3
η

[
V
(

x +
h̄

2m∗
η, t
)
−V

(
x− h̄

2m∗
η, t
)]

w(x, p′, t) e−i(p′−p)·η d p′ d η.

As is well known, w(x, p, t) is not in general positive definite. However, it is possible to calculate
the macroscopic quantities of interest as expectation values (moments) of w(x, p, t) in the same way as
in the semiclassical case, e.g.,

n(x, t) =
∫
R3

w(x, p, t) d p (density), (17)

V(x, t) =
1

n(x, t)

∫
R3

v w(x, p, t) d p (velocity), (18)

W(x, t) =
1

n(x, t)

∫
R3
E(p)w(x, p, t) d p (energy), (19)

S(x, t) =
1

n(x, t)

∫
R3
E(p) v w(x, p, t) d p (energy-flux). (20)

The operator C[w] represents the quantum collision term. Its formulation is itself an open problem.
Some attempts can be found in [36,37], but a derivation suitable for applications in electron devices
is still lacking. In [15], an expression has been proposed which is a perturbation of the semiclassical
collision term, useful for the formulation of macroscopic models.

As a general guideline, C[w] should drive the system towards the equilibrium. Let us consider the
electrons in a thermal bath at the lattice temperature TL = 1/kBβ. The equilibrium Wigner function
weq for an arbitrary energy band, up to h̄2 terms, reads [38,39]

weq(x, p, β) =
n(x, t)e−βE

A0(β, m∗)

{
1 + h̄2

[(
qβ2

8
∂2V

∂xi∂xj
+

q2β3

24
∂V
∂xi

∂V
∂xj

)
(

∂2E
∂pi∂pj

−
Aij(β, m∗)
A0(β, m∗)

)
− qβ3

24
∂2V

∂xi∂xj

(
vivj −

Bij(β, m∗)
A0(β, m∗)

)]}
+O(h̄4),

where

A0(β, m∗) =
∫
R3

e−βEd p, Aij(β, m∗) =
∫
R3

e−βE ∂2E
∂pi∂pj

d p,

Bij(β, m∗) =
∫
R3

e−βEvivjd p.
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We suppose that the expansion

w = w(0) + h̄2 w(1) +O(h̄4) (21)

holds. By proceeding in a formal way, as h̄ → 0 the Wigner equation gives the semiclassical
Boltzmann equation

∂w(0)

∂t
+ v · ∇xw(0) +

q
m∗
∇x V · ∇vw(0) = C(0)[w(0)] (22)

While, at the first order in h̄2, we have (Einstein’s convention is used: summation with respect to
repeated dummy indices is understood.)

∂w(1)

∂t
+ v · ∇xw(1) − 1

24
∂3E

∂pi∂pj∂pk

∂3w(1)

∂xi∂xj∂xk

+
q

m∗
∇xV · ∇vw(1) − q

24m∗3
∂3 V

∂xi ∂xj ∂xk

∂3 w(0)

∂vi ∂vj ∂vk
= C(1)

(23)

with C(1) to be modeled. We make the following

Assumption 1.

C[w] = C(0)[w(0)] + h̄2 C(1)[w(1)] = CC[w(0)]−h̄2ν
(

w(1) − w(1)
eq

)
+O(h̄4), (24)

with CC[w(0)] the semiclassical collision operator

and ν > 0 quantum collision frequency

Remark 1. At variance with other approaches, only the h̄2 correction to the collision term has a relaxation
form. This assures that as h̄→ 0 one gets the semiclassical scattering of electrons with phonons and impurities.
We note that w(0) > 0 and therefore the semiclassical expression of the collision term makes sense.

The value of the quantum collision frequency ν is a fitting parameter that can be determined by
comparing the results with the experimental data.

We require that C[w] conserves the electron density, that is we make the following

Basic Assumption 2. ∫
R3
C[w] d p = 0. (25)

Proposition 1. The collision operator C[w] of the form (24) satisfies up to termsO(h̄4), the following properties:

1. Ker (C[w]) is given by the quantum Maxwellian

w(eq) = w(0)
eq + h̄2w(1)

eq ,

with w(0)
eq the classical Maxwellian.

2.

−kB

∫
R3
C(0)[w(0)] ln

w(0)

exp(− β m∗ |v|2
2 )

d p = −kB

∫
R3

[
ln w(0) +

βm∗|v|2
2

]
C(0) d p ≥ 0,

3.
−1

2
C(1)[w(1)]

(
w(1) − w(1)

eq

)
≥ 0

Moreover, the equality holds if and only if w is the quantum Maxwellian, defined above.
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Properties 1 and 3 are straightforward. Property 2 is based on the proof in [40–42] valid in the
classical case.

3.1. Quantum Corrections in the High Field Approximation

In the case of high electric fields and effective mass approximation for the dispersion relation

E =
|p|2
2m∗

, v =
p

m∗
,

it is possible to find an approximation for w(1) by a suitable Chapman–Enskog expansion. Let us
introduce the dimensionless variables

x̃ =
|x|
l0

, t̃ =
t
t0

, ṽ =
|v|
v0

,

with l0, t0 and v0 = l0/t0 the typical length, time and velocity. Let lV be the characteristic length of the
electrical potential and 1/tC the characteristic collision frequency. After scaling the collision frequency
according to ν̃ = tC ν, Equation (23) can be rewritten as

1
t0

∂w(1)

∂t
+

v0

l0
v ·∇xw(1) +

v0

lV

[
q

m∗
∇xV ·∇vw(1)− q

24m∗3
∂3 V

∂xi ∂xj ∂xk

∂3 w(0)

∂vi ∂vj ∂vk

]

= − 1
tC

ν
(

w(1) − w(1)
eq

)
.

We will continue to denote the scaled variables as the unscaled ones in order to simplify
the notation.

Let us introduce the characteristic length associated with the quantum correction of the collision
term (a kind of mean free path in a semiclassical context)

lC = v0 tC.

Let us assume that the quantum effects occur in the high field and collision dominated regime,
where drift and collision mechanisms have the same characteristic length. Therefore, we set formally

lC
lV

= 1

and observe that, in the high frequency regime, the Knudsen number

α =
lC
l0

is a small parameter. Substituting it in the previous equation, we get

α
∂w(1)

∂t
+αv · ∇xw(1) +

q
m∗
∇xV · ∇vw(1) − q

24m∗3
∂3 V

∂xi ∂xj ∂xk

∂3 w(0)

∂vi ∂vj ∂vk
(26)

= −ν
(

w(1) − w(1)
eq

)
.

The zero order in α gives

q
m∗
∇xV · ∇vw(1) − q

24m∗3
∂3 V

∂xi ∂xj ∂xk

∂3 w(0)

∂ vi∂vj ∂vk
= −ν

(
w(1) − w(1)

eq

)
, (27)
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and by Fourier transforming, one has

w(1)(x, v, t) = F−1

{
1

ν + iq
m∗ η · ∇xV

[
− iq

24m∗3
∂3 V

∂xi ∂xj ∂xk
ηiηjηkFw(0)(η)

+νFw(1)
eq (η)

]}
(x, v, t). (28)

Approximating w(0) with MEP distribution function, we obtain

w(x, v, t) ≈ fME(x, v, t) + h̄2w(1)(x, v, t). (29)

For example, in the 8-moment case, using the fME found in [10], the following explicit
approximation for the Wigner function is obtained

w(x, v, t) ≈
n exp(− 3m∗ |v|2

4 W )(
4
3

πm∗W
)3/2

{
1−

[(
−21m∗

4W
+ E 9m∗

4W2

)
V(0) +

(
9m∗

4W2 −E
27m∗

20W3

)
S(0)

]
· v
}

+h̄2F−1

 1

ν +
iq
m∗

η · ∇xV

[
− iq

24m∗3
∂3 V

∂xi ∂xj ∂xk
ηiηjηkFw(0)(η) + νFw(1)

eq (η)

] (x, v, t)

(30)

which can be used for evaluating the unknown quantities in the moment system, associated with the
Wigner equation. The vectors V(0) and S(0) represent the velocity and the energy-flux at zero order in h̄2.

3.2. The Quantum Moment Equations

In analogy with the semiclassical case, multiplying (13) by suitable weight functions ψ, depending,
in the physically relevant cases, on the velocity v, and integrating over the velocity space, one has the
balance equations for the macroscopic quantities of interest

∂

∂t

∫
R3

w(x, v, t)ψ(v) d v +∇x ·
∫
R3

ψ(v)vw d v +
q

m∗

∫
R3

ψ(v)Θ[V]w d v

=
∫
R3

ψ(v) C[w] d v. (31)

In the 8-moment model, the basic variables are the macroscopic density, velocity, energy and
energy-flux, that are the moments relative to the weight functions 1, v, 1

2 m∗ |v|2, 1
2 m∗ |v|2v.

By evaluating (31) for ψ = 1, under the assumption that the necessary moments of w(1)(x, v, t)
and ∂3 w(0)

∂ vi vj vk
with respect to v exist, one has

q
m∗

∫
R3

Θ[V]w d v =
q

m∗
∇x ·

∫
R3
∇vw(0) d v + h̄2

[
q

m∗
∇xV ·

∫
R3
∇vw(1) d v

− q
24m3

∂3 V
∂ xi ∂xj ∂xk

∫
R3

∂3 w(0)

∂vi ∂vj ∂vk
d v

]
= 0,

obtaining the continuity equation

∂

∂t
n +

∂(nVi)

∂xi = 0. (32)
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In order to get the other moment equations, we observe that from (27) it follows that

q
m∗
∇xV ·

∫
R3 ψ(v)∇vw(1) d v− q

24m3
∂3 V

∂xi ∂xj ∂xk

∫
R3 ψ(v)

∂3 w(0)

∂vi ∂vj ∂vk
d v

+ν
∫
R3 ψ(v)

(
w(1) − w(1)

eq

)
d v = 0,

(33)

for any weight function ψ(v) such that the integrals exist.
By taking into account (33), multiplying Equation (13) by the weight functions v, 1

2 m∗ |v|2,
1
2 m∗ |v|2v, and after integration, one finds the balance equations for velocity, energy and energy-flux

∂

∂t
(nVi) +

∂(nUij)

∂xj
+ n q Ei = nCVi

(
W(0), V(0)

i , S(0)
i

)
, (34)

∂

∂t
(nW) +

∂(nSj)

∂xj
+ nqV(0)

k Ek = nCW(W(0)), (35)

∂

∂t
(nSi) +

∂(nFij)

∂xj
+

5
3

n
q

m∗
EiW(0) = nCSi

(
W(0), V(0)

i , S(0)
i

)
. (36)

Here, V(0)
i , W(0) and P(0)

i are the zero-order components of the average velocity, energy and
energy-flux. The components of the flux of the velocity and the flux of the energy-flux are defined as

Uij =
1

n(x, t)

∫
R3

vi vj w(x, v, t) d v, (37)

Fij =
1

n(x, t)

∫
R3

1
2

m∗vi vj |v|2 w(x, v, t) d v. (38)

The production terms are defined as

n CVi =
∫
R3

vi C[w] d v, (39)

n CW =
∫
R3

1
2

m∗v2 C[w] d v, (40)

n CSi =
∫
R3

1
2

m∗|v|2 vi C[w] d v. (41)

Remark 2. The quantum corrections affect only the free streaming part, while the drift and production terms
appear only at the zero order.

Therefore, CW(W(0)), CVi

(
W(0), V(0)

i , S(0)
i

)
and CSi

(
W(0), V(0)

i , S(0)
i

)
are the same as in the

semiclassical case.
In the system (32), (34)–(36) are not closed for the presence of the unknown quantities Uij, Fij,

CVi , CW and CSi . We solve the closure problem with the approximation (29), assuming a collision
dominated high field regime for the quantum effects.

In order to evaluate the unknown quantities present in the moment equations, the following
formal lemmas are useful

Lemma 1. ∫
R3

vi1 · · · vik w(1) d v =

[
ik ∂

∂ηi1
· · · ∂

∂ηik
Fw(1)(η)

]
η=0

. (42)
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Lemma 2.

Fw(1)
eq (0) =

∂

∂ηik
Fw(1)

eq (0) =
∂

∂ηi

∂

∂ηj

∂

∂ηk
Fw(1)

eq (0) = 0 (43)

∂

∂ηi

∂

∂ηj
Fw(1)

eq (0) = n(x, t)
h̄2β q
12m∗2

∂2V
∂xi∂xj

(44)

∂

∂ηi

∂

∂ηj
∆η Fw(1)

eq (0) = −n(x, t)
h̄2q

12m∗3

[
∆V δij + 5

∂2V
∂xi∂xj

]
. (45)

The proof follows by a simple computation. With the aid of these lemmas, we get the following
closure relations:

Proposition 2.

Ji = n Vi = n V(0)
i +O(h̄4), (46)

W = W(0) − h̄2β q
24m∗

∆ V+O(h̄4), (47)

Uij =
2
3

W(0)

m∗
δij −

h̄2β q
12(m∗)2

∂2V
∂xi∂xj

+O(h̄4), (48)

Si = S(0)
i −

h̄2β2 q2

24m∗2ν

(
2

∂2V
∂xi∂xr

∂V
∂ xr

+
∂ V
∂ xi

∆V
)
− h̄2 q

8m∗2ν

∂

∂ xi
∆ V+O(h̄4), (49)

Fij =
10

9m∗
(W(0))2 − h̄2β q3

3m∗3ν2
∂ V
∂ x(i

∂2V
∂xj)∂xr

∂V
∂xr

− h̄2 q2

4m∗3ν2
∂3V

∂xi∂xj∂xr

∂V
∂xr
− h̄2 β q3

12m∗3ν2

(
∂V
∂ xi

∂V
∂ xj

∆ V + |∇V|2 ∂2V
∂xi∂xj

)

− h̄2 q2

4m∗3ν2
∂∆V
∂x(i

∂ V
∂xj)
− h̄2 q

24m∗2

(
∆V δij + 5

∂2V
∂xi∂xj

)

− h̄2 q
4m∗2ν

(
∂∆V
∂x(i

Vj) +
∂3V

∂x(i ∂xj ∂xk)
Vk

)
+O(h̄4).

(50)

In the previous relationships, parentheses indicate symmetrization, e.g.,

Ai(jk) =
1
2

(
Aijk + Aikj

)
,

A(ijk) =
1
3!

(
Aijk + Aikj + Ajik + Ajki + Akij + Akji

)
.

For the proof, see [15].

Remark 3. The zero order in h̄2 is the same as that obtained in [10,30].

Remark 4. Since ∫
R3

w(1) d v =
∫
R3

w(1)
eq d v = 0,

we have ∫
R3
C[w] d v = 0,

that is the assumption (25) is fulfilled.
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Remark 5. In the limit of high frequency ν→ ∞ one has the simplified model

Ji = n Vi = n V(0)
i +O(h̄4), (51)

W = W(0) − h̄2β q
24m∗

∆ V +O(h̄4) (52)

Uij =
2
3

W(0)

m∗
δij −

h̄2β q
12(m∗)2

∂2V
∂xi∂xj

+O(h̄4) (53)

Si = S(0)
i +O(h̄4), (54)

Fij =
10

9m∗
(W(0))2 − h̄2 q

24m∗2

(
∆V δij + 5

∂2V
∂xi∂xj

)
(55)

From Equation (28), one sees that in the limit ν→ ∞, w(1) reduces to the quantum correction of
the equilibrium Wigner function w(1)

eq . The resulting quantum corrections to the tensor Uij are the same
as those obtained in [43] by using a shifted Wigner function, but with the semiclassical contribution
which also contains a heat flux, not added ad hoc.

Remark 6. Under the assumption (see [43]) that the equilibrium relation

∇V = (q β)−1∇ ln n +O(h̄2) (56)

is valid, one can recover a formulation of the quantum corrections of density gradient type.

The density gradient version is more familiar because the quantum corrections take a form similar
to the Bohm potential arising in the Madelung model of quantum fluids in the zero temperature limit.
Moreover, some numerical experiments [43] lead to it being considered more robust than the original
formulation in terms of the derivatives of the electric potential. In the limit ν→ ∞, the closure relations
in the density gradient form explicitly read as

Ji = n Vi = n V(0)
i +O(h̄4), (57)

W = W(0) − h̄2

24m∗
∆ ln n +O(h̄4), (58)

Uij =
2
3

W(0)

m∗
δij −

h̄2

12(m∗)2
∂2 ln n
∂xi∂xj

+O(h̄4), (59)

Si = S(0)
i +O(h̄4), (60)

Fij =
10

9m∗
n(W(0))2 − h̄2

24m∗2 β

(
∆ ln n δij + 5

∂2 ln n
∂xi∂xj

)
. (61)

4. Two-Dimensional Electron Gases: The Case of Quantum Confinement

In this section, we consider the case of an ensemble of electrons (the treatment of holes would
be analogous) confined along one dimension, called quasi 2Delectron gas (2DEG) [16,18–20,44].
This situation arises when the length scale in one (the confined) space direction of the semiconductor
device under study is of the order of de Broglie wavelength of electrons, while the nonconfined
directions have a much bigger length scale. In other words, electrons are in a quantum regime in the
confined direction and exhibit a classical behaviour in the nonconfined ones [16] as shown in Figure 1.
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Figure 1. Schematic representation of electron confinement in one dimension due to a potential barrier.

Let us suppose that electrons are quantized along one direction, which we choose as the z direction,
and free to move in the orthogonal x-y plane. Let Ω = [0, Lx]× [0, Ly]× [0, Lz] ⊂ R3 be the spatial
domain. Here, Lx, Ly, Lz > 0 are fixed. More general cases with a variable confining direction can be
easily incorporated.

Let us introduce the parameter σ defined as the ratio between the transversal (perpendicular to
the x-y plane) typical length scale Lt and the longitudinal typical length scale Ll

σ =
Lt

Ll

and assume that σ � 1. Moreover, as is customary, let us assume the following ansatz about the
electron wave function

ψ(k, r) = ψ(kx, ky, kz, x, y, z) =
1√
A

ϕ(σ r||, z)eik|| ·σr|| in Ω, (62)

with k|| = (kx, ky) and r|| = (x, y) denoting the longitudinal components of the wave-vector k and
the position vector r, respectively, and A being the area of the x-y cross-section. The previous wave
function is inserted into the stationary Schrödinger equation in the effective mass approximation[

− h̄2

2m∗
∆ + EC(r)

]
ψ = E ψ, (63)

where m∗ is the electron effective mass, EC is the conduction band minimum, EC = −q(VC + V),
with VC(z) the confining potential and V(r||, z) the self-consistent electrostatic potential.

Under the assumption that the confining potential is so high that it gives rise to a barrier which
can be considered infinite, it enters into the equations only through the boundary conditions

ψ(r||, z) = 0 at z = 0 and z = Lz,

and EC = −q V is taken.
Therefore, introducing the slowly varying variable r̃|| = σr|| and inserting (62) into (63), one has

− h̄2

2m∗
σ2
[
∆r||ϕ(r̃||, z) + 2ik|| · ∇r||ϕ(r̃||, z)− k2

||ϕ(r̃||, z)
]

− h̄2

2m∗
∂

∂z2 ϕ(r̃||, z)− qV(r̃||, z)ϕ(r̃||, z) = Eϕ(r̃||, z).
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In the limit σ → 0+, one formally gets that the envelope function ϕ must solve the reduced
Schrödinger equation[

− h̄2

2m∗
d2

dz2 − qV(r||, z)

]
ϕ(σ r||, z) = εϕ(σ r||, z), 0 ≤ z ≤ Lz, (64)

with boundary conditions

ϕ = 0 at z = 0 and z = Lz. (65)

The solution of (64) and (65) depends only parametrically on r|| (and in a slow way), and more in
general also on time t if a non-steady-state solution is considered. In fact, electrons as waves achieve
equilibrium along the confined direction in a time which is much shorter than the typical transport
time, so that one can adopt a quasi-static description along the z-direction. The couple (64) and (65)
constitutes a one dimensional Sturm–Liouville problem, which admits a countable set of eigen-pairs
(subbands) (ϕν(r||, z), εν(r||)), ν = 1, 2..., whose eigenvalues are simple and do not cross. The potential
V is obtained from the Poisson equation

∇ · (εs∇V) = −q(Nd(r)− n), (66)

where the electron density n is given by

n(r) =
+∞

∑
ν=1

ρν(r||)|ϕν(r||, z, )|2,

with ρν the (areal) density of electrons of the νth subband and for simplicity an n–doped material
has been considered. Of course, the Schrödinger and Poisson equations are coupled and must be
solved simultaneously.

For devices with longitudinal characteristic length of a few tens of nanometers, the transport
of electrons in the longitudinal direction is semi-classical within a good approximation. Therefore,
electrons in each subband can be considered as different populations, the state of each of them being
described by a semiclassical distribution function fν(x,y, kx,ky, t), and electron transport along the
longitudinal direction being determined by adding to the Schrödinger–Poisson system the following
system of coupled Boltzmann equations

∂ fν

∂t
+

1
h̄
∇k||Eν · ∇r|| fν −

q
h̄

Ee f f
ν · ∇k|| fν =

∞

∑
µ=1

Cν,µ[ fν, fµ], ν = 1, 2, . . . (67)

where Ee f f
ν =

1
q
∇r|| εν(r||), and the electron energy in each subband Eν is the sum of a transversal

contribution εν and a longitudinal one

Eν(r||, k||) := εν(r||) + ε ||(k||) = εν(r||) +
1

2α

√1 + 4α
h̄2

2m∗
(

k2
x + k2

y

)
− 1

 ,

where α is the non-parabolicity parameter. Consequently, the longitudinal electron velocity is

v|| =
1
h̄
∇k|| ε || =

h̄k||

m∗
(

1 + 2αε ||

) . (68)
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A formal justification of Equation (67) can be found in [45]. Regarding the collision operator, in the
non-degenerate approximation, each contribution has the general form [18–20]

Cν,µ[ fν, fµ] =
1

(2π)2

∫
B2

[
wµν(k′||, k||) f ′µ − wνµ(k||, k′||) fν

]
d2k′||,

where B2 is the two-dimensional Brillouin zone. When µ = ν, the scattering is intra-subband;
when µ 6= ν, it is the inter-subband. We recall that inter-subband transitions may also happen in
the absence of phonons, by quantum mechanical tunneling induced by the presence of a static field as
has been shown for example in [46]. The term wµν(k′||, k||) is the transition rate from the longitudinal
state with wave-vector k′||, belonging to the µth subband, to the longitudinal state with wave-vector
k||, belonging to the νth subband, and f ′µ ≡ fµ(r||, k′||, t). In Si, the relevant 2D scattering mechanisms
are the acoustic phonon scattering, and the non-polar optical phonon scattering. Their expressions are
the 2D version of those shown in Section 2 and can be found in [18–20,47]. Attempts to directly solve
the Schrödinger–Poisson–Boltzmann system can be found, for example, in [16,17,48] where numerical
schemes based on finite differences have been employed. However, the direct numerical approach
is a daunting computational task and requires very long computing times. This has again prompted
the development of simpler macroscopic models for CAD purposes. These models can be obtained
as moment equations of the Boltzmann transport equations under suitable closure relations [18–20].
The moment of the ν-th subband distribution with respect to a weight function a(k||) reads

Ma,ν =
∫

B2

a(k||) fν(r||, k||, t)d2k||.

In particular, analogously to the previous cases, we take as basic moments

the areal density ρν =
∫

B2

fν(r||, k||, t)d2k||, (69)

the longitudinal mean velocity Vν =
1
ρν

∫
B2

v|| fν(r||, k||, t)d2k||, (70)

the longitudinal mean energy Wν =
1
ρν

∫
B2

ε || fν(r||, k||, t)d2k||, (71)

the longitudinal mean energy-flux Sν =
1
ρν

∫
B2

ε ||v|| fν(r||, k||, t)d2k||. (72)

The corresponding moment system reads

∂ρν

∂t
+∇r|| · (ρνVν) = ρν ∑

µ

Cρ,νµ, (73)

∂(ρνVν)

∂t
+∇r|| · (ρνF(0)

ν ) + ρνG(0)
ν ∇r|| εν = ρν ∑

µ

CV,νµ, (74)

∂(ρνWν)

∂t
+∇r|| · (ρνSν) + ρν∇r|| εν ·Vν = ρν ∑

µ

CW,νµ, (75)

∂(ρνSν)

∂t
+∇r|| · (ρνF(1)

ν ) + ρνG(1)
ν ∇r|| εν = ρν ∑

µ

CS,νµ, (76)
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where  F(0)
ν

F(1)
ν

 =
1
ρν

∫
B2

(
1

ε ||

)
v|| ⊗ v|| fν(r||, k||, t) d2k||, (77)

 G(0)
ν

G(1)
ν

 =
1
ρν

∫
B2

 1
h̄
∇k||v||

1
h̄
∇k||

(
ε ||v||

)
 fν(r||, k||, t) d2k||, (78)

(
Cρ,νµ

CW,νµ

)
=

1
ρν

∫
B2

(
1

ε ||

) [
wµν(k′||, k||) f ′µ−wνµ(k||, k′||) fν

]
d2k′|| d

2k||, (79)

(
CV,νµ

CS,ν,µ

)
=

1
ρν

∫
B2

(
v||

ε ||v||

)[
wµν(k′||, k||) f ′µ−wνµ(k||, k′||) fν

]
d2k′||d

2k||. (80)

Also in this case, the above written fluxes and production terms are extra-variables for which
closure relations are needed. In order to employ MEP, a suitable expression of the entropy for the
system under consideration has to be found. Neglecting the mutual interaction of electrons in different
subbands, considering the phonon gas as a thermal bath and assuming the electron gas is sufficiently
dilute, in each subband the expression of the entropy is the semiclassical limit of that arising from the
Fermi statistics. Eventually, for obtaining the total entropy, one has to consider that electrons have
a quantum behaviour along the z-direction, therefore we define the entropy density of the system as

S [ f1, f2, · · · ] = −kB

+∞

∑
ν=1

|ϕν(r||, z, t)|2︸ ︷︷ ︸
quantum effect

∫
B2

(
fν log (2π2 fν)− fν

)
d2k||︸ ︷︷ ︸

semiclassical contribution

. (81)

Remark 7. The proposed expression of the entropy has been introduced for the first time in [20,47]. It combines
quantum effects and semiclassical transport along the longitudinal direction, weighting the contribution of each
subband with the square modulus of the ϕν(z, t)’s arising from the Schrödinger–Poisson block.

According to MEP, the fν’s are estimated by means of the distributions
f MEP
ν ’s that ∀r|| ∈ [0, Lx]× [0, Ly], t > 0, solve the problem:

max
f1(r||, ·, t) ∈ F2D

f2(r||, ·, t) ∈ F2D

· · ·

S [ f1, f2, · · · ]

under the constraints MaA ,ν =
∫

B2

aA(k||) fν(r||, k||, t)d2 k||,

where the MaA ,ν’s are the basic moments (69)–(72) and F2D is the space of the summable function with
respect to k|| such that the moments appearing in the system (73)–(76) exist.

With the above choice of the functions aA(k||) = (1, v||, ε ||, ε ||v||), the resulting maximum entropy
distribution functions read (the factor kB has been included into the multipliers)

f MEP
ν = exp

[
−
(

λν + λV,ν · v|| +
(

λW,ν + λS,ν · v||
)

ε ||

)]
.

In order to complete the procedure, similarly to the previous case, one has to insert the f MEP
ν ’s into

the constraints (69)–(72) and express the Lagrange multipliers as functions of the basic moments ρν,
Vν, Wν, Sν. In general, in the case considered in this section as well as in that considered in Section 2,
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it is not possible to assure that such a procedure can be accomplished. The solvability of the MEP
problem depends on the band structure and on the choice of the moments, as well known already
in gas-dynamics [14,49]. For example, if the parabolic case (where the energy is a quadratic function
of the wave vector) is considered, the same drawbacks of classical gas-dynamics arise regarding the
lack of integrability of the MEP distribution function. In the case of the Kane dispersion relation,
the solvability of the MEP problem is guaranteed by the following property, proven in [49].

Proposition 3. When the Kane model for the energy band is employed, the corresponding maximum entropy
models are symmetric hyperbolic systems with convex domains of definition and the equilibria are interior points,
guaranteeing the validity of expansions around equilibrium states.

The proof has been given for a 3D electron gas, but it can be extended to a 2DEG in
a straightforward way.

For the 2DEG case, the final expressions of the extra-fluxes and production terms, obtained by
using linearized MEP distribution functions, can be found in [18,47] for the parabolic approximation
and in [19,20] for the non-parabolic one. The resulting moment system has been used to simulate
double-gate MOSFETs in [18,19].

5. Some Numerical Simulations

In this last section, we present some of the numerical results obtained by implementing the models
sketched in the previous sections. The information concerning the numerical schemes will be skipped.
The interested readers are referred to the indicated papers. For optimization of electron devices using
the models presented above, see [50] and references therein.

5.1. p-n Junction

The full model for holes and electrons, presented in Section 2, has been used for the numerical
simulation of a Si p-n junction diode with a doping profile given by [22]

Nd(x)− Na(x) =

{
−c0 if 0 < x < L0

c0 if L0 < x < L,

with an abrupt junction at L0. The physical parameters of the device are reported in Table 1.
The numerical solution has been obtained by resorting to an extension [51] of the traditional central
differencing scheme for one-dimensional balance laws with (possibly stiff) source terms, which has been
developed on the basis of the Nessyhau and Tadmor scheme [52] for homogeneous hyperbolic systems.

Table 1. Physical parameters of the p-n junction.

Parameter Physical Meaning Numerical Value

L device length 10−3 cm
L0 length of p-region 0.7 × 10−3 cm
c0 doping concentration 1015 cm−3

ni intrinsic concentration 1.075 × 1010 cm−3

The bias voltage at the contacts is the superposition of the thermal equilibrium boundary
potential (the built in potential Vbi) and the applied potential Va. In Figures 2 and 3, the stationary
carrier densities and the electrostatic potential are shown for the following applied voltages:
Va = −0.2, 0, 0.75, 1 V, the sign + referring to direct polarization.
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Figure 2. (a,c) Densities and electric potential for Va = −0.2 V, electrons (continuous line), total holes
(dashed line) and heavy holes (dashed–dotted line); (b,d) Densities and electric potential for Va = 0,
electrons (continuous line), total holes (dashed line) and heavy holes (dashed–dotted line).
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Figure 3. (a,c) Densities and electric potential for Va = 0.75 V, electrons (continuous line), total holes
(dashed line) and heavy holes (dashed–dotted line); (b,d) Densities and electric potential for Va = 1 V,
electrons (continuous line), total holes (dashed line) and heavy holes (dashed–dotted line).

5.2. Simulation of a MESFET

In this subsection, we show the simulation of a bi-dimensional Metal Semiconductor Field Effect
Transistor (MESFET) made with the MEP model. The numerical method is based on the discretization
proposed in [53].

The shape of the device is pictured in Figure 4. The device has a 0.4 µm channel. The source and
drain lengths are 0.1 µm and the contact at the gate is 0.2 µm long. The distance between the gate and
the other two contacts is 0.1 µm. The lateral subdiffusion of the source and the drain region is about
0.05 µm. The same doping concentration C(x) as in [53] is considered

C(x) =

{
n+ = 3× 1017 cm−3 in the n+ regions

n− = 1017 cm−3 in the n region
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with abrupt junctions. We take a reference frame with axes parallel to the edges of the device. The
numerical domain representing the MESFET is

Ω = [0, 0.6]× [0, 0.2]

where the unit length is the micron.

n

n+ n+

source gate drain

✲

✻

x (µm)

y (µm)

0 0.1 0.2 0.4 0.5 0.6

0.15

0.2

Figure 4. Schematic representation of a bidimensional MESFET.

The regions of high doping n+ are the subset

[0, 0.1]× [0.15, 0.2] ∪ [0.5, 0.6]× [0.15, 0.2].

ΓD represents the source, gate and drain

ΓD = {(x, y) : y = 0.2, 0 ≤ x ≤ 0.1, 0.2 ≤ x ≤ 0.4, 0.5 ≤ x ≤ 0.6} .

The remaining part of ∂Ω is ΓN . The boundary conditions are assigned as follows. We have ohmic
contacts at the source and drain:

n = n+, W =
3
2

kB TL, V =

{
Φb at drain
0 at source.

(82)

At the gate we have a Schottky contact

n = ng, W =
3
2

kB TL, V = Φg. (83)

Indeed, the potential at the contacts should include the built-in potential and the density at the
gate should be related to the potential. Here, we do not enter into the details of the modeling of the
Schottky contacts and, by using the invariance of the electric field with respect to changes of the
potential for additive constants, we choose as in [54]

ng = 3.9× 105 cm−3, Φg = −0.8 V

In the remaining part ΓN of the boundary, we have

ν · ∇n = 0, ν · ∇W = 0, ν · ∇V = 0. (84)
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Here, ∇ is the bi-dimensional gradient operator while ν is the unit outward normal vector to ∂Ω
in the considered points.

A uniform mesh has been used with 33 × 97 grid points. The stationary solution is reached after
about 5 picoseconds. The numerical results are shown in Figures 5–8. The typical depletion region
close to the gate with the presence of steep gradients is numerically well described.
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Figure 5. Stationary charge density in the MESFET in the case Φb = 1 V.
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Figure 6. Stationary energy per charge carrier in the MESFET in the case Φb = 1 V.
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Figure 7. Stationary velocity of the carriers in the MESFET in the case Φb = 1 V.
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Figure 8. Stationary electric potential in the MESFET in the case Φb = 1 V.

5.3. Simulation of a MOSFET

The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is a largely used device in modern
electronics. The same mathematical model and numerical scheme as for the MESFET is adopted;
the shape of the device is pictured in Figure 9. The device has a 0.2 µm channel. The source and drain
lengths are 0.1 µm and the contact at the gate is 0.15 µm long. The distance between the gate and the
other two contacts is 0.025 µm. The lateral subdiffusion of the source and the drain region is about
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0.05 µm. The gate oxide is 0.15 µm long and 20 nm thick. Of course, smaller devices can be considered
without any substantial modification to the used approach.

p

n+ n+

source drain

-

6

y (µm)

x (µm)0 0.4

0.4

0.35

0.1 0.30.125 0.275

SiO2

gate

Figure 9. Schematic representation of a bidimensional MOSFET.

The doping concentration is

C(x) =
{

n+ = 1017 cm−3 in the n+ regionsp− = 1014 cm−3 in the p region

with abrupt junctions.
At variance with MESFET, there are different built-in potentials which we explicitly take into

account by using the simple model

ΦD
b = ΦS

b =
kBTL

q
ln

n+

ni

at drain and source,

ΦB
b = − kBTL

q
ln

p−
ni

at bulk contact. Here, ni is the intrinsic electron concentration (1010 cm−3). The reference axes are
chosen parallel to the edges of the device. The silicon part of the MOSFET is represented by the
numerical domain

[0, 0.4]× [0, 0.4]

and at the top of the silicon part the silicon oxide domain is

[0.125, 0.275]× [0.4, 0.42]
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where the unit length is the micron.
The regions of high-doping n+ are the subset

[0, 0.1]× [0.35, 0.4] ∪ [0.3, 0.4]× [0.35, 0.4].

A uniform mesh of 64 × 64 grid points has been used in the silicon part. The Poisson equation is
solved on the entire (silicon and oxide) domain. Of course, in the oxide, the Poisson equation becomes
the Laplace one.

We have assumed ohmic contacts at the source, drain, gate and bulk contacts, to be homogeneous
Neumann conditions on the remaining part of the boundary. The surface charge at the oxide interface
is neglected and the continuity of the electric potential and electric field is imposed. The values of
density and energy at the interface are obtained by the interior grid points with a linear interpolation
in the direction orthogonal to the boundary.

In order to reach the desired bias, we have needed to resort to a continuation method on applied
potential. First, we iterate with respect to the difference of the built-in potential between drain and
bulk contacts, keeping at zero VDS. Then, we iterate with respect to the drain–gate potential and finally
we increase the drain–source potential.

All the main features of the electron dynamics are well described, in particular the charge
accumulation beside the oxide, and the pronounced depletion at the drain contact due to the strong
electric field.

Again, the density current presents a singularity at the first edge of the drain and therefore we
evaluated the current by considering, as for MESFET, the regularization from the interior.

As for the MESFET device, current gain and miniaturization are crucial tasks to take into account
when designing this kind of device. However, miniaturization plays a crucial role for MOSFETs for
various reasons; first, a shorter MOSFET helps the current flow, since a small device decreases the
resistance. Second, a small MOSFET helps in reducing gate capacity and, in general, to have a faster
switch on/off operation. The numerical results are presented in Figures 10–12.

0

0.1

0.2

0.3

0.4

0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

d
e

n
s
it
y
 (

1
0

1
7
 c

m
−

3
)

Figure 10. Stationary electron density in the MOSFET in the case Vb = 1 V and Vg = 0.8 V.
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Figure 11. Stationary energy per charge carrier in the MOSFET in the case Vb = 1 V and Vg = 0.8 V.
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Figure 12. Stationary electric potential in the MOSFET in the case Vb = 1 V and Vg = 0.8 V.

5.4. Simulation of a DG-MOSFET

The 2DEG model, illustrated in Section 4, has been employed to simulate the nanoscale silicon
DG-MOSFET represented in Figure 13, including the non-parabolicity effects [18,19]. The length of the
diode is Lx = 40 nm, the width of the silicon layer is Lz = 8 nm and the thickness of each oxide layer is
tox = 1 nm. The highly doped n+ regions are 10 nm long. The gate contacts have the same length as
the n region and are above it. The device is supposed to be infinite in the y direction.
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Figure 13. Simulated double gate MOSFET. Along the y axis, the device is considered as infinite.

The doping in the n+ regions is Nd(x) = N+
d = 1020 cm−3 and in the n region is

Nd(x) = N−d = 1015 cm−3, with a regularization at the two junctions by a hyperbolic tangent profile

Nd(x) = N+
d − d

(
tanh

x− x1

s
− tanh

x− x2

s

)
,

where s = 0.2 nm, d =
N+

d
2

(
1−

N−d
N+

d

)
, x1 = 10 nm and x2 = 30 nm.

Due to the symmetries and dimensions of the device, the transport is, within a good
approximation, one dimensional and along the longitudinal direction with respect to the two oxide
layers, while the electrons are quantized in the transversal direction. The oxide gives rise, with a good
approximation, to an infinitely deep potential barrier; in fact, realistic values of the potential barrier
are more than 3 eV high and it is very unlikely to find electrons with such an energy in the device
under consideration. Six equivalent valleys are considered with a single effective mass m∗ = 0.32me.
For details about the appropriate boundary and initial conditions, as well as the numerical method,
the interested reader is referred to [18,19]. The numerical experiments indicate that it is sufficient to
take into account only the first three subbands.

As the first case, a symmetric situation with VD = 0.5 V and Vgl = Vgu = −3 V is considered,
where VD is the voltage applied at the drain with respect to that at the source, and Vgl and Vgu are
the voltages applied at the lower and the upper gate, respectively. In Figures 14 and 15, the steady
state density and the potential are plotted. The solution does not present any spurious oscillation or
boundary layer and reflects the symmetry of the problem.

As the second case, VD = 0.5 V, Vgl = −3 V and Vgu = 3 V are taken. In Figures 16 and 17,
the density and the potential are respectively plotted, while in Figure 18b the first three subband
bottoms are shown. One can note the depletion region beneath the upper gate.

In Figure 18, the first three subband bottoms are shown. There is a good qualitative agreement
with the other numerical simulations known in the literature [17].

From Figure 19, a very accurate current conservation is evident, proving the robustness of the
numerical method. In the second case, the current is reduced by one half, due to the gate voltage
in agreement with the behaviour of the density. The areal density, the average velocity and the
energy measured from the subband bottom, and the current in the first three subbands are shown in
Figures 20–22. The areal density is not symmetrical between the source and drain within each subband
but the total areal density is so.
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Figure 14. Stationary density in the case VD = 0.5 V and Vgl = Vgu = −3 V.
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Figure 15. Stationary electrostatic potential energy in the case VD = 0.5 V and Vgl = Vgu = −3 V.
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Figure 16. Stationary density in the case VD = 0.5 V and Vgl = −3 V, Vgu = 3 V.
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Figure 17. Stationary electrostatic potential energy in the case VD = 0.5 V and Vgl = −3 V, Vgu = 3 V.
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Figure 18. First three subbands at the steady state in the case VD = 0.5 V and Vgl = Vgu = −3 V (a);
VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (b).
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Figure 19. Average areal current in the first three subbands and global areal current in the case
VD = 0.5 V and Vgl = Vgu = −3 V (a); VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (b).
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Figure 20. Areal density in the first three subbands in the case VD = 0.5 V and Vgl = Vgu = −3 V (a);
VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (b).
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Figure 21. Average velocity in the first three subbands and global mean velocity in the case VD = 0.5 V
and Vgl = Vgu = −3 V (a); VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (b).
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Figure 22. Average total energy measured from the bottom of the first subband Wν + εν − ε1 in the
first three subbands and global mean energy in the case VD = 0.5 V and Vgl = Vgu = −3 V (a);
VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (b).
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The drift (mean) velocity has been evaluated according to the formula

V =
∑ν ρνVν

∑µ ρµ .

Similarly, the global longitudinal mean energy has been evaluated taking as reference value the
bottom of the first subband according to the formula

W =
∑ν ρν (Wν + εν − ε1)

∑µ ρµ .

The maximum drift velocity in the channel is one and half times the saturation velocity when
Vgl = Vgu = −3 V, while it is about two times the saturation velocity when Vgl = −3 V and Vgu = 3 V.
Moreover, in the first case, the velocity in the first subband is lower than that in the first subband in
the second case. Instead, the velocity in the second and the third subbands is higher in the first case,
but with a resulting total longitudinal current which is lower. The energy has an evidently different
value between the source and drain as happens in the semiclassical case.

Eventually, the characteristic curves are shown in Figure 23 by fixing Vgl = −3 V and varying Vgu

from −3 V to 3 V. With increasing Vgu, the average longitudinal current increases as a consequence of
the controlling effect of the gate voltage on the electric characteristics of the device.
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Figure 23. Longitudinal mean current (A/cm) versus the source–drain voltage VD witht Vgl = −3 V
and Vgu ranging from −3 V to +3 V according to the arrow.

6. Conclusions

A review on the exploitation of the Maximum Entropy Principle in the formulation of macroscopic
models able to describe the charge and heat transport in semiconductor devices has been presented.
The models are obtained starting from the Boltzmann transport equations for the charge and
the phonon distribution functions, by taking—as macroscopic variables—suitable moments of the
distributions and resorting to MEP in order to close the evolution equations for the chosen moments.
Firstly, semiclassical models have been reviewed and eventually an approach to also take into account
quantum effects has been shown. The latter consists of using the moment system arising from the
Wigner equation.

In the cases where quantum effects are relevant only along one direction, another strategy has
been introduced. A quasi-static description has been adopted, based on a coupled Schrödinger–Poisson
system, along the confining direction, leading to a subband decomposition of the electron energy
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levels, while the transport along the longitudinal directions is described by a semiclassical Boltzmann
equation for each subband.

Several physical situations, which have been investigated in the last two decades, have been
reported in the paper. For the sake of conciseness, some further applications have been omitted. A MEP
based model for 2D–3D electron gases, of particular interest in the simulation of nanoscale MOSFET,
can be found in [55]. A hydrodynamical model for charge transport in graphene has been formulated
in [56,57].

Apparently, MEP is revealed to be a sound method for devising, in a systematic way, macroscopic
models, e.g., energy–transport and hydrodynamical ones, which are less complex to tackle numerically
but still retain a good accuracy with respect to the results based on the direct solutions of the
transport equations.
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