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Protein–protein interaction (PPI) networks available in public repositories usually represent
relationships between proteins within the cell. They ignore the specific set of tissues
or tumors where the interactions take place. Indeed, proteins can form tissue-selective
complexes, while they remain inactive in other tissues. For these reasons, a great attention
has been recently paid to tissue-specific PPI networks, in which nodes are proteins
of the global PPI network whose corresponding genes are preferentially expressed in
specific tissues. In this paper, we present SPECTRA, a knowledge base to build and
compare tissue or tumor-specific PPI networks. SPECTRA integrates gene expression
and protein interaction data from the most authoritative online repositories. We also
provide tools for visualizing and comparing such networks, in order to identify the
expression and interaction changes of proteins across tissues, or between the normal
and pathological states of the same tissue. SPECTRA is available as a web server at
http://alpha.dmi.unict.it/spectra.
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1. Introduction

In the last 10 years, there has been a rapid growth of available protein–protein interaction (PPI) data.
They represent all known physical interactions between proteins within a cell. The collection of PPI
data yields a network depicting a global overview of the relationships between proteins.

Nowadays, PPIs of species and associated data are stored in many databases, which usually are
weekly or monthly updated. Primary sources of PPI data include BioGRID (Stark et al., 2006), DIP
(Xenarios et al., 2000), HPRD (Peri et al., 2004), IntAct teorchard2013mintact, and MINT (Licata
et al., 2012).

DIP (Xenarios et al., 2000) was the first database, which combined information from mul-
tiple observations and experimental techniques into networks of interacting proteins for dif-
ferent species. HPRD (Peri et al., 2004) contains manually curated proteomic information
regarding human proteins, which are annotated and linked to OMIM database (Hamosh et al.,
2005). BioGRID (Stark et al., 2006) collects protein–protein and genetic interactions for all
major model organisms trying to remove redundancy and create a single mapping of interac-
tions. The IntAct database (Orchard et al., 2013) provides tools for both textual and graphical
representations of protein interactions. Interacting proteins can be annotated with GO terms
for functional analysis. MINT (Licata et al., 2012), which is based on the IntAct database
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infrastructure, collects experimentally verified PPIs by extracting
experimental evidences from the scientific literature.

Some databases integrate PPIs data of human and other
organisms from primary sources, by removing redundancies
and assigning a unique reliability score. These include STRING
(Franceschini et al., 2013), IRefIndex (Razick et al., 2008), Con-
sensusPathDB (Kamburov et al., 2013), andHitPredict (Patil et al.,
2011).

STRING (Franceschini et al., 2013) combines physical
interaction data and curated pathways of different organisms
with predicted interactions from text mining, genomic features
and interactions transferred from model organisms based on
orthology. IRefIndex (Razick et al., 2008) is a set of tools to
index and retrieve proteins and interactions from major public
databases. Indexes are built according to protein sequences and
taxonomy identifiers and mapping scores evaluate the quality
of the mapping. ConsensusPathDB (Kamburov et al., 2013)
integrates human protein–protein interactions, biochemical
pathways, gene regulatory, and drug–target interactions into
a global network, containing genes, proteins, and metabolites,
which can be visualized, analyzed, and annotated. HitPredict
(Patil et al., 2011) combines PPI data from IntAct (Orchard et al.,
2013), BIOGRID (Stark et al., 2006), and HPRD (Peri et al., 2004),
by assigning a confidence score based on sequence, structure, and
functional annotations of the interacting proteins. The reliability
score is calculated using the Bayesian networks.

The analysis of PPI networks has provided novel biological
insights on the function of many previously uncharacterized pro-
teins inHuman throughmodule identification (Bader andHogue,
2003; Adamcsek et al., 2006; Mete et al., 2008; Rhrissorrakrai and
Gunsalus, 2011), network querying (Ferro et al., 2007; Banks et al.,
2008; Bruckner et al., 2010), and network alignment (Flannick
et al., 2006; Kalaev et al., 2009; Liao et al., 2009; Sahraeian and
Yoon, 2013; Micale et al., 2014a) algorithms. Furthermore, the
annotation of PPI networks with external data (i.e., diseases,
expression data, phenotypes) has helped to classify genes accord-
ing to the expression profiles (Dao et al., 2011), predict new
gene–disease associations (Huang et al., 2012; Zhao et al., 2012),
and discover new drugs (Huang et al., 2012; Alaimo et al., 2013;
Csermerly et al., 2013).

These tasks have been accomplished thanks to the availabil-
ity of authoritative repositories of gene expression data in nor-
mal/cancer tissues and at different diseases stages (Uhlen et al.,
2010; Barrett et al., 2013; Rustici et al., 2013). For example,
ArrayExpress (Rustici et al., 2013) and GEO (Barrett et al.,
2013) include gene expression data from microarray and high-
throughput sequencing experiments, which can be easily queried
or downloaded. Users can also submit data directly by using
the standard MIAME format. More recently, new projects have
started with the aim of cataloging tissue or tumor sequencing
data. The Cancer Genome Atlas (TCGA)1 collects complete high-
throughput genome data (clinical information, expressions data,
methylations, mutations) for specific cancer tissues, with the
purpose of helping the diagnosis and the treatment of cancers.
The Human Protein Atlas (Uhlen et al., 2010) is a database with

1http://cancergenome.nih.gov

histological images showing the spatial distribution of proteins in
normal and cancer tissues. Protein Atlas contains also transcrip-
tion expression levels, protein expression profiles, and subcellular
localization data.

All above PPI networks data are constructed by ignoring the
role of proteins in human tissues. On the other hand, human dis-
eases often occur in specific tissues (Lage et al., 2008). Some genes
can be predominantly expressed in one or few tissues and can
control the formation of protein complexes (Emig and Albrecht,
2011). Furthermore, genes can use alternative splicing as a pow-
erful mechanism to enlarge the number of their interactors and
performdistinct functions in different tissues (Emig andAlbrecht,
2011). Therefore, the integration of PPI networks with tissue-
specific gene expression data can help to highlight the role of some
genes in specific disease or tumors. The result of such integration
gives the so called Tissue-Specific PPI (TS-PPI) network (Bossi
and Lehner, 2009), which is a subgraph of a PPI networkwhere the
genes corresponding to both interacting proteins are expressed in
one or more selected tissues.

Some studies focus on the analysis of global and local properties
of TS-PPI networks. In Bossi and Lehner (2009), authors prove
that most housekeeping proteins form highly tissue-specific pro-
tein interactions, suggesting a key role of those proteins in tissue-
specific biological processes. Emig and Albrecht (2011) show that
the number of tissue-specific proteins is very low and the receptor-
activated signaling processes and the transcriptional regulation
are two key factors for tissue specificity. In Souiai et al. (2011),
a gradient model is used to describe the structure of TS-PPI net-
works, containing interactions of regulatory and developmental
functions at the core of the TS-PPI network and physiological
functions at the periphery.

Several recent works highlight the advantages of using TS-
PPI networks. In Lopes et al. (2011), a set of proteins related
to the response of viral infection in a TS-PPI network lead to a
more reliable functional enrichment. Magger et al. (2012) use TS-
PPI networks to improve the prioritization of candidate disease-
causing genes with respect to a generic PPI network. In Chen and
Wang (2012), authors identify functional modules in TS-PPI net-
works using CFinder (Adamcsek et al., 2006) and show that they
exhibit more biological meaning than modules in a PPI network.
Xiao et al. (2014) propose a new method for the identification of
multi-tissue gene co-expression networks associated with specific
functional processes relevant for phenotype variation and disease
in humans. Barshir et al. (2014) show that genes causing hereditary
diseases tend to have higher transcript levels andmore interacting
partners in the TS-PPI network of disease tissues than in the
TS-PPI network of unaffected tissues.

To the best of our knowledge, few tools are available for query-
ing and analyzing TS-PPI networks (Barshir et al., 2013; Nersisyan
et al., 2014). CyKeggParser (Nersisyan et al., 2014) is a Cytoscape
app for generating and analyzing tissue-specific KEGG pathways.
Pathways can be checked for inconsistencies and modified based
on gene expression data from normal and cancer tissues. Tis-
sueNet (Barshir et al., 2013) is a dataset of TS-PPIs in humans,
which integrates a collection of four PPInetworks (BioGRID, DIP,
IntAct, and MINT) with three expression datasets (GEO, Human
Protein Atlas, and Illumina BodyMap 2.0). The database provides
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aweb interface for retrieving tissue-specific interactions of a query
protein. However, it handles only 16 normal tissues and does not
provide any tool for the analyses of TS-PPI networks.

In this paper, we propose SPECTRA (SPECific Tissue/Tumor
Related PPI networks Analyzer), a framework to build and ana-
lyze TS-PPI networks. SPECTRA integrates tissue and tumor-
specific gene expression data from the most authoritative online
repositories such as Protein Atlas, ArrayExpress, GEO, and
TCGA. Expression data are then integrated with high-quality
protein–protein interactions, taken fromHPRD, BioGRID,MIPS,
IntAct, and the work of Havugimana et al. (2012). We provide
a web interface for constructing, visualizing, and comparing TS-
PPI networks, with the aim of identifying differential interac-
tion/expression patterns in TS-PPI networks (i.e., distinct tissues,
or normal and pathological states of the same tissue). The TS-
PPI networks together with the results of differential analysis
can be easily visualized by using Cytoscape facilities (Shannon
et al., 2003) and downloaded as text files for further investigations.
SPECTRA is free for all users and available at http://alpha.dmi.
unict.it/spectra.

2. Materials and Methods

SPECTRA combines protein–protein interactions in human with
gene expressions, by integrating 13 authoritative resources. The
final integrated SPECTRA database contains 16,435 protein cod-
ing genes and 175,841 gene interactions (GIs), 1,350,637 tissue-
specific gene expression data entries covering 107 normal tissues,
and 2,171,808 tumor-specific expression data entries covering 160
different tumors.

2.1. Interaction Datasets
Human protein interaction data were taken from BioGRID2,
DIP3, a recent work byHavugimana et al. (2012), HPRD4, IntAct5,
and MINT6.

Table 1 describes the features of the PPI networks integrated
in SPECTRA. Networks taken from the work of Havugimana
et al. (2012), IntAct and MINT are weighted with edge weights
ranging in [0,1], while the other PPI networks are unweighted.
Proteins of the considered PPI networks, including splicing iso-
forms, were first mapped to the corresponding gene. Next, a
global GI network was built, by collecting all interactions reported

2http://thebiogrid.org
3http://dip.doe-mbi.ucla.edu/dip
4http://www.hprd.org
5http://www.ebi.ac.uk/intact
6http://mint.bio.uniroma2.it/mint

TABLE 1 | Features of PPI networks integrated in SPECTRA.

Network Nodes Edges Type

BioGRID 15,290 135,677 Unweighted
DIP 2,338 3,427 Unweighted
Havugimana et al. (2012) 3,003 13,989 Weighted
HPRD 9,506 37,054 Unweighted
IntAct 11,637 63,030 Weighted
MINT 6,551 18,478 Weighted

in at least one dataset. We assigned to each edge a pair con-
sisting of the average value of weights across the datasets that
report that interaction and the percentage of datasets giving the
interaction (dataset coverage). Average edge weights range from
0.131 to 1.

Figure 1 depicts a Venn diagram of common gene interac-
tions between PPI datasets. Interaction databases generally show
low overlap, with only 25 interactions shared by all datasets and
only 7,783 interactions in common between MINT, BioGRID,
IntAct, and HPRD, which are the biggest ones. The final inte-
grated network has 16,435 nodes, 175,841 edges and 17 connected
components, with a high average diameter (9) and low clustering
coefficient (0.289). The average degree is 21.398 and the degree
distribution follows a power law (Figure 2).

FIGURE 1 | Venn diagram showing the number of common
interactions across PPI datasets in SPECTRA.

FIGURE 2 | Log–log plot of degree distribution of the final integrated
PPI network in SPECTRA.
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TABLE 2 | Features of expression datasets integrated in SPECTRA.

Dataset Platform Tissues Tumors

E-MTAB-62 (Lukk et al., 2010) GPL96 46 110
GDS181 (Su et al., 2002) GPL91 29 6
GDS596 (Su et al., 2004) GPL96 57 5
GDS1096 (Ge et al., 2005) GPL96 36 0
GDS3113 (Dezso et al., 2008) GPL2986 32 0
ProteinAtlas GPL11154 28 33
TCGA Agilent G4502A-07-3 0 27

2.2. Expression Datasets
Gene expression data for various tissues and tumors were
downloaded from ArrayExpress7, GEO8, ProteinAtlas9, and
TCGA (see text footnote 1). Table 2 lists the gene expression
datasets integrated within SPECTRA, the platform used to
detect the expressions and the number of covered tissues
and tumors.

Figure 3 depicts a Venn diagram of common tissues and
tumors across expression datasets. While tissue names are gen-
erally shared, tumor names are much differentiated, resulting
in a poor overlap between datasets. In particular, TCGA con-
tains data for very specific tumors and partially overlap only
with E-MTAB-62 dataset, which is the richest one. Note that
the numbers reported in Figure 3 only refer to specific tumors
and not to tumor classes. So, for instance, “breast carcinoma”
and “breast adenocarcinoma” are considered distinct tumors,
even though they belong to the same class of tumors, “breast
cancer.”

As regards the integration of expression data, we followed the
work of Guo et al. (2013), where authors show that there is a
positive correlation between normalized Affymetrix and RNA-
Seq data. We performed RMA normalization (McCall et al., 2010)
for datasets based on Affymetrix platforms (GDS181, GDS596,
and GDS1096), using the corresponding R Bioconductor pack-
age. For GDS3113, ProteinAtlas, and TCGA, we first computed
the log2 of the number of fragments and then we normalized
values using the quantile normalization method of Bolstad et al.
(2003). For GDS181, GDS596, and GDS1096 datasets, normal-
ized values were computed from raw data. Then, probes, which
were present in a particular microarray dataset, were mapped to
the corresponding genes. Finally, the expression of a gene for
a specific tissue was computed as the average expression value
of probes mapping to that gene in the tissue. For GDS3113,
ProteinAtlas, and TCGA, instead, we directly normalized gene
expression values for different tissues. We did not normalize
EMTAB-62 data, since its source values were already normalized
with RMA.

Finally, we assigned to each pair gene–tissue a unique positive
expression score, given by the average normalized expression
value of the gene in that tissue, according to the different datasets.
Expression scores in SPECTRA range from 3.566 to 17.366 for
tissues and from 0.01 to 17.343 for tumors.

7http://www.ebi.ac.uk/arrayexpress
8http://www.ncbi.nlm.nih.gov/geo
9http://www.proteinatlas.org

FIGURE 3 | Venn diagrams depicting: (A) the number of common
tissues and (B) the number of common cancer types across
expression datasets in SPECTRA. The zero overlap among the
cancer datasets is due to the fact that cancers are considered according
to their specific names and not to their class (breast cancer, prostate
cancer, etc.).

2.3. Data Schema
SPECTRA database is structured as a MySQL relational database
with six tables: Genes, Tissues, Tumors, Interactions, Expr_normal,
and Expr_tumor.

TheGenes table contains the list of all expressed and interacting
genes. Each entry is identified by the gene symbol and contains
associated data, including a description string, aliases, and cross
references to Entrez Gene (if available).

The Tissues and Tumors tables have the same structure. Tissues
and tumors are associated to different classes, depending on the
organism part they refer to. Each entry is identified by a unique
number and contains a description and the corresponding class.
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SPECTRA contains 26 distinct classes of tissues and 32 distinct
classes of tumors.

The Interactions table lists all the PPIs integrated in SPEC-
TRA. Interactions are identified by a couple of gene symbols and
the edge weight for each integrated dataset (when available) is
stored, together with the average interaction weight across dataset
reporting that interaction and the dataset coverage.

Expr_normal and Expr_tumor contain all the gene expres-
sions in normal and cancer tissues. The unique identifier of
Expr_normal is a couple gene–tissue, while entries in Expr_tumor
are uniquely identified by the couple gene–tumor. In both tables,
the normalized expression value for each integrated dataset
(where available) and the average expression score are included
as associated data.

2.4. An Algorithm for Differential Local Alignment
of TS-PPI Networks
TS-PPI networks are compared in SPECTRA for identifying pat-
terns of differential gene expressions between multiple TS-PPI
networks.

Our goal is to find conserved sub-regions in the TS-PPI net-
works, which maximize the difference of expression values of
aligned genes. The problem is related to that of finding maximal-
scoring connected subgraphs, which is NP-hard, even in a com-
mon simpler setting where the aligning TS-PPI networks have the
same set of nodes and edges (e.g., TS-PPI networks built starting
from different expression data and the same interaction datasets)
(Ideker et al., 2002).

In the case of two TS-PPI networks with the same set of nodes
and edges (representing for instance case and control expression
data), heuristic (Ideker et al., 2002; Sohler et al., 2004; Cabusora
et al., 2005; Rajagopalan and Agarwal, 2005; Guo et al., 2007)
and exact (Dittrich et al., 2008) solutions have been proposed.
However, as far as we are concerned, no solutions are known for
the multiple case. Here, we propose an approximate solution to
the multiple differential alignment problem based on a modified
version of the GASOLINE algorithm (Micale et al., 2014a). For
simplicity, we consider TS-PPI networks with no multiple edges
between two nodes.

2.4.1. The GASOLINE Algorithm
GASOLINE (Micale et al., 2014a) is a greedy and stochastic algo-
rithm for multiple local alignment of protein–protein interaction
networks. Flowchart in Figure 4 provides a general description of
GASOLINE.

Given N weighted PPI networks of different species, where
edge weights are probabilities of interaction between proteins,
local alignment aims at finding a set of connected subnetworks,
one from each network, that are conserved in their sequence
and interaction pattern. Such subnetworks could represent evo-
lutionary conserved complexes or pathways across different
organisms.

Such a problem is related to subgraph isomorphism, which is
known to be NP-complete (Cook, 1971). GASOLINE proposes
an approximate solution through a stochastic-greedy strategy
consisting of two phases.

FIGURE 4 | General description of GASOLINE.

In the first step, called bootstrap phase, we look for orthologous
proteins across the networks and build a set of seeds. The set of
seeds initially consists of proteins, one from each network, and
includes all the starting nodes of the suboptimal local network
alignment.

The second step, called iterative phase, repeatedly adds (exten-
sion step) or removes (removal step) nodes in the network align-
ment, trying to maximize the final alignment score. Each exten-
sion step adds, in each network, a single node to the corresponding
seed. During the extension step, the seeds grow up producing a
set of subgraphs, one from each network. The extension process is
regulated by a properly defined degree ratiomeasuring the average
density of the aligned subgraphs with respect to their neighbors
in the networks. The extension is performed until the degree ratio
increases.
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Each removal step replaces from the current alignment the set
of proteins (one from each network) with minimum topology
similarity score.

The bootstrap phase and each extension step are performed
through Gibbs sampling (Geman and Geman, 1984). In both
cases, the Gibbs sampling builds a chain, where each state repre-
sents a combination (i.e., alignment) of single proteins, one from
each network. First, a random initial state is selected. Then, the
sampling method iteratively performs a transition from a state to
another, by replacing a randomly chosen protein of the current
alignment with a protein of the same network, according to a
properly defined transition probability distribution.

Due to its non-deterministic nature, different iterations of
GASOLINE may produce different local alignments. The above
steps are iterated to produce a set of local networks alignments,
which are then ranked according to an Index of Structural Con-
servation (ISC) score. ISC score measures the percentage of con-
served interactions in the final alignment. The higher is ISC, the
better is the alignment.

GASOLINE implements preprocessing and post-processing
steps. During preprocessing, the search space for potential seeds
is reduced. This is obtained by marking only proteins having
orthologs in all aligning networks and with a significant interac-
tion degree in each network. All marked nodes in each network
Gi(1≤ i≤N) are added to a set called Si. These sets will be used
in the initial phase and will be updated at each iteration. Finally,
a post-processing filters the final set of local alignments returned
by GASOLINE by removing highly overlapping complexes.

GASOLINE does not allow many-to-many mapping between
aligned nodes. However, experimental results show that the
algorithm can produce more reliable results than methods
implementing many-to-many mapping. Moreover, GASOLINE is
clearly faster than the state-of-art algorithms (Micale et al., 2014a).

2.4.2. The Adapted GASOLINE
We implemented a customized version of GASOLINE to compare
two or more Tissue-Specific PPI (TS-PPI) networks for local dif-
ferential alignment problem. GASOLINE algorithmwas extended
to deal with gene expressions as weights to the nodes.

LetA andB two genes andExpr(A) andExpr(B) their expression
values, with Expr(A)≥Expr(B). In order to evaluate the expres-
sion difference between A and B, we compute the log fold change,
defined as follows:

LogFold(A,B) = log2

(
Expr(A)
Expr(B)

)
(1)

Given N TS-PPI networks and a set of aligned genes G= {G1,
G2, . . . ,GN}, one for each TS-PPI network, MaxLogFold is the
maximumvalue of LogFold function among all pairs of genes inG:

MaxLogFold(G) = max{LogFold(Gi,Gj) ∀ 1 ≤ i < j ≤ n} (2)

We applied the following changes to original GASOLINE
algorithm:

• We included the LogFold function in the Gibbs sampling
procedure of bootstrap and iterative phases, by multiplying
it by the topology and homology scores in the computation
of node similarities;

• The number of iterations of Gibbs sampling both in the
bootstrap and in the extension phase is governed by a new
parameter, is α, which is a probability threshold related toN,
the number of networks, according to the following formula:

k = max

{
k′ :

(
N− 1
N

)k′

> α

}
(3)

where P =
(N−1

N
)k′ is the probability that a gene is never

selected in k′ consecutive iterations of Gibbs sampling. The
idea is to stop Gibbs sampling when an alignment does not
change for k consecutive iterations. The lower isα, the higher
is k, so the more precise and slower will be the sampling
procedure:

• We introduced a new threshold, MaxLogFoldThreshold, for
the value of MaxLogFol function, and we used it to tune the
extension process in place of the degree ratio: in particular,
we extend the current alignment until the average value of
MaxLogFold between the sets of aligned nodes is above such
a threshold;

• In the remove phase, the set of aligning nodes with mini-
mum value of MaxLogFold is deleted from the current local
alignment;

• Given a local alignment A= {A1, A2, . . . ,Aw}, where w is the
size of the alignment and A1, . . . ,Aw are the set of aligned
genes, an average value of MaxLogFold(Ai) is computed
together with the ISC score to evaluate the quality of the
alignment.

3. Results

SPECTRA is a framework for retrieving and analyzing pro-
tein–protein interaction data specific for a given set of normal or
cancer tissues. The underlying graph model in SPECTRA is the
Tissues-Specific PPI network (or TS-PPI network), in which the
genes of corresponding interacting proteins are both expressed in
one or more tissues. The architecture of SPECTRA is composed
by (i) the searching tool, which allows to build TS-PPIs; (ii) the
comparison tool to look for shared differential expressions patterns
between genes of two or more TS-PPI networks. Results can be
graphically visualized by using Cytoscape.js or downloaded as
text files.

3.1. SPECTRA Search Tool: Building TS-PPI
Networks in SPECTRA
SPECTRA builds TS-PPI networks starting from a user-defined
set of genes, tissues, expression data, and interaction data.Figure 5
depicts the search interface of SPECTRA.

In the “Gene data” section (Figure 5A), the user can look for all
genes expressed in a set of tissues or restrict the search to a specific
list of genes. Genes can be provided with their official names or
Aliases (e.g., Ensembl Gene, Entrez Gene, Affy).

In the “Expression data” section (Figure 5B), the user limits
the search to a set of tissues/tumors and to a set of expression
datasets or uploads a text file with custom expression data. Note
that the two options are mutually exclusive, that is, all the settings
concerning datasets and tissue/tumors will be ignored if the user
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FIGURE 5 | SPECTRA search tabbed panel. Red boxes highlight the three
sections: (A) “Gene data,” (B) “Expression data,” and (C) “Interaction data.” In
this case, the parameters have been set to indicate that we want to retrieve all
the interactions that are present at least in Havugimana and HPRD, involving

genes that are expressed in adrenal gland” tissue according at least to
GDS3113 and ProteinAtlas. In this example, we neither restrict our search to a
predefined set of genes nor provide a threshold for interaction weights, dataset
coverage, and expression scores.
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provides a custom text file. Available tissues and tumors in SPEC-
TRA are listed in a table and can be easily included in the input
query list with a double click in each entry. When no data are
provided, all the tissues and tumors in SPECTRA are considered.
Tissues and tumors are also mutually exclusive, meaning that a
TS-PPI network built-in SPECTRA cannot contains interactions
defined on both normal and tumor tissues. However, two TS-
PPI networks defined upon a specific set of tissues and tumors,
respectively, can be always compared for differential analysis
with the adapted GASOLINE. The user can also select one or
more datasets from which the expression have to be reported.
When the expression is in other datasets it will be also given.
When no dataset is selected, all expression data in SPECTRA are
considered.

Finally, a further filter on genes can be applied by indicating a
threshold for the minimum normalized value of gene expressions
to be considered.

The “Interaction data” section (Figure 5C) contains the param-
eters for filtering interaction data. As above, the user can select one
or more datasets where protein interactions have to be reported.
If no interaction dataset is selected, all PPIs in SPECTRA are
considered. A threshold can be provided to select interaction
weights above a given value and a minimum dataset coverage.

When all input parameters have been specified, the user clicks
on the “Search” button. At the end of the process, all the TS-PPIs
found are listed in a result table (Figure 6). For each TS-PPI, we
show the interacting genes, the tissues where they are expressed,
the expression values of genes in tissues, the average interaction
weights and dataset coverages of corresponding proteins. Results
are ordered by dataset coverage and average interaction weight.
Expression values and interaction weights are depicted with col-
ored progress bar, where colors range from cyan (low values) to
red (high values).

By selecting a specific TS-PPI in the result table, additional
data about the interaction and the interacting genes are shown
(Figures 6 and 7). A list of datasets reporting the interaction
and the corresponding interaction weight is reported on the right

of the result table (Figure 6). Below the result table, two panels
with details about the interacting genes are shown (Figure 7). For
each gene, description and aliases are provided, together with the
lists of tissues and tumors where the gene is expressed, accord-
ing to the different expression datasets, ordered by expression
score.

3.2. SPECTRA Comparison Part: Compare
TS-PPI Subnetworks
TS-PPI networks can be compared in SPECTRA for identifying
patterns of differential gene expressions between multiple TS-PPI
networks. The goal is to find conserved sub-regions in the TS-PPI
networks, which maximize the difference of expression values of
aligned genes.

Figure 8 shows the “Compare” tabbed panel in SPECTRA.
Before running the adapted GASOLINE, the user has to upload
at least two TS-PPI networks. For each network, the number of
nodes and edges are reported. Networks can also be renamed by
double clicking on the corresponding cell. Note that uploaded
TS-PPI networks with multi-edges between nodes will be always
treated as simple networks, where multi-edges are replaced by a
single edge with weight equals to the average weight of multi-
edges and label given by the concatenation of the multi-edge
labels.

Once the networks have been uploaded, the user can click on
“Run GASOLINE” button to set the input parameters for the
adapted GASOLINE (Figure 8).

We briefly describe their meaning (default values are reported
in brackets):

• “Sigma”: the minimum degree of candidate nodes for the
initial alignment of seeds (1);

• “Alpha”: a value between 0 and 1, which regulates the number
of iterations of Gibbs sampling in the bootstrap and extend
phases (default 0.05);

• “Overlap threshold”: a maximum average overlap threshold
between local alignments, which is used to remove highly

FIGURE 6 | Result table for the query of Figure 5. For each interaction in the
table we report, the tissue, the average expression scores of interacting genes,
and the total interaction weight. Expression scores, weights, and dataset
coverage are represented with a colored progress bar (from cyan to red). By

selecting a row (in the example the interaction between NCBP2 and NCBP1),
detailed data about the interaction are shown to the right. For each dataset, the
corresponding interaction weight (when available) is reported (for example, 0.71
for IntAct database).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2015 | Volume 3 | Article 588

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Micale et al. SPECTRA database

FIGURE 7 | The panel with detailed information of a gene. When an
interaction is selected from the result table (Figure 6), two panels with
additional data, one for each interacting gene, are shown. This example
refers to the detailed panel for gene NCBP2, which appears when the row
table of Figure 6 is selected. In the detailed panel, the gene symbol, the

description, the corresponding ID in Entrez Gene database (when available),
and aliases (including references in other databases) are reported. Finally,
two tables with the set of tissues and tumors where the gene is expressed
are shown. These are shown in decreasing order with respect to the average
expression scores.

overlapping alignments. It takes values between 0 and 1
(default 0.5, which means 50%);

• “Refine iterations”: the number of iterations of the iter-
ative phase, i.e., extend steps followed by a removal step
(default 10);

• “Minimum alignment size”: the minimum size of a local
alignment. Local alignments with size lower this minimum
size are not reported in final list (default 3);

• “Minimumgene expression log fold change threshold”: value
forMaxLogFoldThreshold, which controls the extension pro-
cess (default 0.6).

According to the experiments reported in Micale et al.
(2014a,b), we assigned to each parameter default values, which
guarantee a good tradeoff between speed and accuracy of
GASOLINE.

“Alpha” and “Refine iterations” parameters are strictly related to
the stochastic nature of the algorithm. Lower values for “Alpha”
and higher values for “Iter Refine” can be assigned to improve
accuracy; however, the suggested default values are enough to
yield good alignment results. Higher values of “Sigma” can be used
to restrict the search to alignments starting from central genes in
the input networks and to speedup the algorithm. Lower values of

“Overlap threshold” and higher values of “Minimum alignment
size” allow to prune the final set of local alignments.

MaxLogFoldThreshold is themost critical parameter for GASO-
LINE. By increasing this threshold, the number and the size of
final local alignments can be highly decreased and the algorithm
could become much faster. Notice that there is no constant ideal
value for MaxLogFoldThreshold, because it is highly dependent
on the properties of input expression data. For log-transformed
gene expression data, like the one which are present in SPEC-
TRA database, low values of MaxLogFoldThreshold (0.2–1) are
recommended.

Before running the adapted GASOLINE by clicking on “Run
GASOLINE” button, the user has to indicate an homology scoring
scheme between proteins of different aligning TS-PPI networks
(Figure 8). The default naive solution is to use gene names for
computing similarities: if two nodes have the same label, then
they are considered homologs. Otherwise, user can upload an
homology score file.

When the adapted GASOLINE ends, it gives as output a list
of local alignments (if any, see Figure 9). For each alignment,
the size, the average value of MaxLogFold, and the ISC score are
reported.
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FIGURE 8 | The SPECTRA compare panel. In this example, we first loaded
4 different TS-PPI networks from files using the “Add networks” button. Then
by clicking on “Run Gasoline” the form for the selection of the adapted
GASOLINE input parameters appears.

By selecting an alignment, its details are reported on the right
(Figure 9). Alignment data include the set of nodes and edges
attributes. The final mapping of aligned nodes is represented as a
matrix in which columns contain nodes of the same network and
rows represent the mapped genes.

3.3. Alternative Input for SPECTRA
User can upload text files in SPECTRA for building and com-
paring network. Expression data can be provided as text files
in the “Expression data” section (Figure 5B) by selecting the
Üpload expression data” option. Expression data files should have
a matrix format with a row header representing tissues, a column
header representing genes, and matrix elements indicating the
gene expression value in a tissue.

There are two ways to provide input TS-PPI networks for
comparison. User can either upload a text file or create the TS-
PPI network with the SPECTRA searching tool and pass it to the
comparison page. In the first case, network files are uploaded by
clicking on “Add networks from files” in the “Compare” tabbed
panel (Figure 8).

TS-PPI network files for comparison follows the same format
of the result table in SPECTRA (Figure 6), except for the dataset
coverage, with fields separated by tab characters. In the second
case, one or more TS-PPI networks for specific tissues are passed
to the comparison tool, by clicking on the “Add to compare list”
button. The network is then added as input to the comparison
list (Figure 8). By default, networks are added with the name

of the corresponding tissue, optionally followed by a progressive
number whenever two or more TS-PPI networks for the same
tissue are already present in the table. Anyway, networks can
be later renamed by the user from the comparison table, before
running GASOLINE.

In the homology file, needed to run the adapted GASOLINE
algorithm, each row contains a pair of nodes of different TS-PPI
networks, followed by a positive score value.

3.4. SPECTRA Output
TS-PPI networks (or subnetworks of them) are downloadable
from the result panel, by clicking on “Download network” button
(Figure 6). The user can filter the set of tissues upon which the
TS-PPI network is defined. TS-PPI networks will be saved into
different text files, one for each selected tissue or tumor. The
file format is the same of the result table (Figure 6), with fields
separated by tab characters.

The set of differential alignments returned by the adapted
GASOLINE can be saved as .zip archive. The archive will contain a
text file for each alignment. Each file contains the same alignment
information reported in Figure 9.

Results can also be visualized by using Cytoscape.js10, a
JavaScript library for the analysis and visualization of networks.
In the 2D visualization, TS-PPI networks can be navigated and
zoomed. A TS-PPI network can be visualized from the result
panel (Figure 6). Figure 10 shows two different examples of
visualizations of TS-PPI networks within SPECTRA, with one
(Figure 10A) or more (Figure 10B) tissues. Nodes and edges are
differently colored according to the tissues of the TS-PPI network.
Nodes are represented as pies with multiple colored slices. The
diameter of the pie is proportional to the total expression score
of the gene (considering all tissues of the TS-PPI network) and
the size of each pie slice is proportional to the expression score
of the gene in the corresponding tissue. Edge line widths are
proportional to the interaction weights.

The alignments can be visualized in 2D (Figure 11), by select-
ing them from the list of local alignments and clicking on the
“Show alignment network” button (Figure 9). Aligned nodes are
colored according to the network they belong to and their sizes are
proportional to the genes expressions. Edges are divided into two
categories: intra-edges and inter-edges. Intra-edges connect nodes
of the same subnetwork and are represented with solid lines with
variable width, depending on the interaction weights. Inter-edges
connect aligned nodes of different networks and are drawn with
dashed black lines. In both cases, we used the Constraint-Based
Layout (COLA) for network visualization.

3.5. Case Study
In this section, we show a practical usage of SPECTRA through
a case study. We compared a set of four TS-PPI networks, built
from genes expression data in normal and well differentiated,
moderately differentiated, and poorly differentiated breast can-
cer tissues. The aim is to identify subnetworks of differentially
expressed genes across the normal breast and the three different
grades of breast tumors.

10http://js.cytoscape.org
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FIGURE 9 | Result table for the differential local alignment of the four
TS-PPI networks of Figure 8 with the Adaptive GASOLINE. The table
reports, for each alignment, the size (i.e., the number of aligned nodes), the
average expression difference between aligned nodes, and the ISC (Index of
Structural Conservation) score. When the user selects a row in the table, a panel
with alignment details is shown to the right. Details include the list of aligned

subnetworks (defined by the set of nodes and edges) and the mapping between
aligned nodes. Nodes of aligned networks are represented by the corresponding
ids, followed by their weights, while edges are represented by the ids of
interacting proteins, followed by the interaction weights and the corresponding
tissues. Alignment mapping is represented as a matrix where rows contain
aligned proteins and columns represent nodes of the same subnetwork.

3.5.1. Data Preprocessing
We downloaded four breast cancer expression datasets for which
information about the stage of breast tumors were available:
GSE2361 (Ge et al., 2005), GSE2990 (Sotiriou et al., 2006),
GSE4922 (Ivshina et al., 2006), and GSE7390 (Desmedt et al.,
2007).Wenormalized data usingRMA inRBioconductor package
(McCall et al., 2010).

The four expression datasets were then combined using COM-
BAT (Johnson and Li, 2007) into the R InSilicoDbMerging pack-
age. Finally, we grouped samples of the integrated dataset into four
categories according to the grade of breast tumor (0 for normal
tissue, 1 for well-differentiated tumor cells, 2 for moderately dif-
ferentiated cells, and 3 for poorly differentiated cells). For each
category, we computed the average expression value of each gene
among samples. Results are stored into four different files (one per
category).

3.5.2. Uploading Data in SPECTRA and Building
Breast TS-PPI Networks
We loaded the expression files in the “Expression data” panel in
SPECTRA (Figure 5B) and we selected BioGRID and IntAct as
PPI datasets in the “Interaction data” panel (Figure 5C). SPEC-
TRA builds four TS-PPI networks, each of them has 7,472 nodes
and 29,765 edges. We added each network to the comparison list
of GASOLINE (Figure 8), by clicking on Add to compare list from
the Result panel (Figure 6).

3.5.3. Results of GASOLINE on TS-PPI Networks
Networks have been aligned by clicking on Run GASOLINE with
the following parameters:

• Sigma= 1;
• Alpha= 0.05;
• Overlap threshold= 0.5;

• Refine iterations= 10;
• Minimum complex size= 2;
• Maximum gene expression log fold change threshold= 0.3;
• Use gene names for homology score.

GASOLINE took 27 s to complete the task and returned 20
local alignments. In Figure 11, the two biggest alignments are
shown using the SPECTRA visualization tool. Both alignments
contain genes that are known to be involved in breast cancer at
different stages.

More precisely, themajor group of aligned nodes in Figure 11A
is formed by the chemokine proteins (CXCL10, CXCL9,
CXCL11, CCL5) and the chemokine receptors CXCR3 and
CCR1, which are all highly overexpressed across the different
grades of breast tumor. Chemokines can be responsible for
leukocyte migration during processes of tissue development and
formation, or can attract immune cells to a site of inflammation.
Chemokines and chemokine receptors are known to have an
important role on cancer metastasis, by facilitating tumor
dissemination (Muller et al., 2000; Karnoub and Weinberg,
2007). DPP4 gene has a lower expression variation but
ensures the communication between CCL5, CCR1, and the
other chemokine proteins. This result agrees with the key
role of DPP4 in signal transduction and tumor progression
(Pro and Dang, 2004).

The alignment of Figure 11B is characterized by the Human
Leukocyte Antigen (HLA) system (HLA-DRB1, HLA-DMB,
HLA-DMA, HLA-DRA). The HLA system is composed by pro-
teins on cell surface that are responsible for regulation of the
immune system. HLA genes exhibit very high differential expres-
sion between normal and tumor cells and their overexpression in
breast cancers is confirmed by several papers (Bartek et al., 1987;
Kaneko et al., 2011; Da Silva et al., 2013).
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FIGURE 10 | The Network visualization in SPECTRA. (A) A TS-PPI network
for a single tissue; (B) A TS-PPI network for multiple tissues. In this case, nodes
are represented as pies with slice sizes proportional to the expression of

corresponding gene in a tissue. Nodes and edges are colored according to the
corresponding tissue and node dimensions are proportional to the total gene
expression score.
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FIGURE 11 | The two biggest local differential alignments found by
the Adaptive GASOLINE for the TS-PPI networks of normal breast
cells (grade 0), well-differentiated cells (grade 1), moderately
differentiated cells (grade 2), and poorly differentiated cells (grade 3).
(A) A complex of chemokine proteins. (B) The Human Leukocyte Antigen

(HLA) system. Nodes and edges are colored according to the corresponding
network. Edge widths are proportional to the strength of interaction. Node
dimensions are proportional to the gene expressions. Solid lines (intra-edges)
connect the nodes of the same network, while dashed lines (inter-edges)
connect the aligned nodes.

The above case study highlights the capability of SPECTRA in
helping researchers in producing novel biologically soundhypoth-
esis and insight in the study of tissue-specific diseases.

4. Discussion

SPECTRA is a knowledge base to build and compare tis-
sue or tumor-specific PPI networks. It overcomes the current
PPI network analysis limitations mainly due (i) to the spread-
ing of data in several databases with low overlap; (ii) to be
unaware of the role of proteins in human tissues and dis-
eases. SPECTRA integrates 13 databases of both protein–protein
interactions and expressions data. Moreover, it provides an
algorithm to compare built-in or custom tissue and tumor-
specific PPI networks and identify subnetworks of differentially
expressed genes. Finally, the results can easily browsed trough

a lightweight web application equipped with a 2D visualization
network tool based on Cytoscape.js. Experiments performed on
four TS-PPI networks built from gene expression data consist-
ing of normal and breast cancer tissues show that the com-
parison algorithm can produce biologically significant results.
SPECTRA database will go under update twice a year, with a
semi-automatic curation of data downloaded from the online
repositories. Future developments of SPECTRA aim to provide
further network mining algorithms devoted to the analysis of
expression data and the validation and annotation with ontologies
of results.
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