
JOURNAL OF THE GEOLOGICAL SOCIETY PROOFS

Article DOI: 10.1144/jgs2020-008

Article number: jgs2020-008

When citing this article please include the DOI provided above.

Instructions
1. We need to clearly see the changes you have made.

Do: annotate PDF using the comment facility, or provide a separate list of your corrections using line numbers.
Don’t: send a revised word file of your manuscript or internally edit the PDF. Help on making proof corrections is available at http://www.geolsoc.org.uk/
ProofCorrections

2. Proofs (typeset version) should not be posted to any website or server. You can post the accepted (pre-typeset) manuscript 12 months after online
publication or the original (i.e. not peer reviewed) manuscript now. These proofs are for checking purposes only. They should not be considered as final
publication format and must not be used for any other purpose. Please do not print and distribute multiple copies. Neither excerpts nor the article in its entirety
should be included in other publications until the final version has been published and citation details are available. Please see our Terms and Conditions at
https://www.geolsoc.org.uk/Publications/Lyell-Collection/Using-the-Lyell-Collection/Copyright-Permissions-and-Terms-of-Use/Copyright-Policy-and-
Terms-of-Use-for-Authors

3. Permissions: Permission to reproduce any third-party material in your paper should have been obtained prior to acceptance. If your paper contains figures,
tables or text requiring permission to reproduce, and you have not already obtained that permission, please inform me immediately by email.

4. Check this proof carefully for errors: Once it is published online no further changes can be made.

5. Figures and tables: Please check that they are complete and the correct content and legend are present. Figures in the proof are low-resolution versions that
will be replaced with higher resolution versions when the paper is published. If you need to replace/resupply any figures, please indicate this in your proof
amends and upload them to the following ftp site:

Site Name: ftp.novatechset.com

username: gsl_guest

Password: Gst!@#090418

If you have FTP software (such as Filezilla) you can place the figures directly onto the FTP site detailed above. If you do not have FTP software, a free version
of Filezilla can be downloaded from here: https://filezilla-project.org/. Or, you can send your figures to your GSL Production Editor (reply to your proof
email) and they will upload the figures on your behalf.

6. Special characters: Please check that special characters, equations, taxonomy and units, if applicable, have been reproduced accurately.

7. ORCID IDs: Only those supplied at submission stage appear on this proof. Additional ORCID IDs can be added as part of your corrections.

Funding information
• Only funding information supplied at submission (shown in the table below) will be transmitted to CrossRef, assuming the mandatory fields are complete.
Please provide additional information in the table below if required.

• Instructions on how to add missing or additional funding information can be found at http://www.geolsoc.org.uk/ProofCorrections

• Please note that providing additional funding information does not alter the text in the Funding section of your proof. If you have any changes to this section,
please provide as part of your corrections.

Funding agency (mandatory) Funding agency ID (mandatory) Grant number (optional) Principal award recipient

Shell United Kingdom (GB) Author to provide ID not applicable Not Applicable

CNPq Author to provide ID Patricia Pinter

University of catania Author to provide ID not applicable Rosanna Maniscalco

Please answer all queries

No Query

1 Please check this proof carefully for errors; once it is published online no further changes can be made. In particular, check author names,
affiliations & corresponding e-mail address, and that figures are correct

2 Reference Critelli et al. (2018) does not appear in the reference list. Please provide full publication details or delete all citations.

3 Reference von Hinsbergen et al. (2019) does not appear in the reference list. Please provide full publication details or delete the citation.

4 Reference Speranza et al. (2012) does not appear in the reference list. Please provide full publication details or delete the citation.

5 Reference Dewever et al. (2010) does not appear in the reference list. Please provide full publication details or delete the citation.

6 Reference Lentini & Carbone (2012) does not appear in the reference list. Please provide full publication details or delete the citation.

7 Reference De Capoa et al. (2012) does not appear in the reference list. Please provide full publication details or delete the citation.

http://www.geolsoc.org.uk/ProofCorrections
http://www.geolsoc.org.uk/ProofCorrections
https://www.geolsoc.org.uk/Publications/Lyell-Collection/Using-the-Lyell-Collection/Copyright-Permissions-and-Terms-of-Use/Copyright-Policy-and-Terms-of-Use-for-Authors
https://www.geolsoc.org.uk/Publications/Lyell-Collection/Using-the-Lyell-Collection/Copyright-Permissions-and-Terms-of-Use/Copyright-Policy-and-Terms-of-Use-for-Authors
ftp.novatechset.com
https://filezilla-project.org/
http://www.geolsoc.org.uk/ProofCorrections


8 Please note that the reference citation Bianchi et al. (1989) has been changed to Bianchi et al. (1987) as per the reference list. Please confirm
this is correct.

9 Reference Carbone et al. (1987) does not appear in the reference list. Please provide full publication details or delete the citation.

10 Please note that the reference citation Breton et al. (2017) has been changed to Le Breton et al. (2017) as per the reference list. Please confirm
this is correct.

11 Reference Stephenson et al. (2015) does not appear in the reference list. Please provide full publication details or delete the citation.

12 In Funding section, please add grant numbers

13 Reference "Accaino et al. 2011" is not cited in the text. Please cite or delete it.

14 Reference "Balogh et al. 2001" is not cited in the text. Please cite or delete it.

15 Reference "Cassola et al. 1992" is not cited in the text. Please cite or delete it.

16 Reference "Cassola et al. 1995" is not cited in the text. Please cite or delete it.

17 Reference "Civile et al. 2016" is not cited in the text. Please cite or delete it.

18 Reference "Critelli 1991" is not cited in the text. Please cite or delete it.

19 Reference "de Capoa et al. 2000" is not cited in the text. Please cite or delete it.

20 Reference "de Capoa et al. 2002" is not cited in the text. Please cite or delete it.

21 Reference "de Capoa et al. 2004" is not cited in the text. Please cite or delete it.

22 Patacci et al. 2020 - please update if possible (volume number, page numbers of paper)

23 Reference "Pedley 1981" is not cited in the text. Please cite or delete it.

24 Fig. 2 - if any figures have been reproduced from elsewhere please obtain permission from original publisher and add suitable
acknowledgement to caption/s

25 Fig. 2 caption - reference Meulenkamp et al. (2003) does not appear in the reference list. Please provide full publication details or delete the
citation.

26 Fig. 11 caption - please confirm change to ‘left’ is correct



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Deep-water sand-fairway mapping as a tool for tectonic
restoration: decoding Miocene central Mediterranean
palaeogeography using the Numidian turbidites of southern ItalyQ1

¶
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Abstract: As turbidity currents are sensitive to the geometry of the substrate across which they flow, the sedimentology of
turbidites can chart the development of submarine structures and reveal regional palaeobathymetric connections. This rationale
is applied to understand the tectonic evolution of the central Mediterranean in the early Miocene, using the African-sourced,
hyper-mature Numidian sandstones and their immature, orogen-derived time-equivalents. In both Sicily and the southern
Apennines, the Numidian sequence displays characteristics of confined–uncontained turbidites: grain-size breaks and coarse
bedload indicative of ubiquitous flow bypass; short-range grain-size fractionation across flow; stacked sandy bed-sets in the
flow axes. We reconstruct sand fairways for over 300 km across the region and propose that their causative flows, axially fed
from north Africa, were confined along sinuous corridors created by active submarine thrusting. In contrast, orogen-derived
turbidites (e.g. Reitano flysch, confined–contained turbidites) were ponded in mini-basins higher on the thrust wedge. The
composite Apennine–Calabrian–Maghrebian orogen with its submarine thrust belt had occluded deep-water Tethyan
connections through the central Mediterranean by early Miocene times. Palaeobathymetry across the submarine thrust belt
increased northwards into the future Apennines. This study illustrates the utility of turbidite sedimentology, especially
reconstructing sand fairways, in building palaeogeographical reconstructions of complex tectonic regimes.

Received 14 January 2020; revised 29 February 2020; accepted 3 March 2020

This paper aims to illustrate how the sedimentology of sandy
turbidites can inform palaeogeographical reconstructions in tecton-
ically complex regions. The relative positions of the plate interiors
and the major continental blocks are well constrained globally,
certainly for the Mesozoic to present day (e.g. Müller et al. 2016).
Interpretations of the tectonic evolution of these regions are
commonly illustrated on time-series of palaeogeographical maps
that display transient arrangements of continental fragments, oceans
and sedimentary basins (e.g. Stampfli and Borel 2002; van
Hinsbergen et al. 2020). These in turn can underpin 3D models
of plate interactions and associated geodynamic processes such as
rates of slab roll-back (e.g. Lucente et al. 2006). They are also used
to erect models of past oceanographic circulation and as inputs to
climate models. However, constraining the positions of smaller
blocks and basins within complex areas of plate convergence, such
as in SE Asia (e.g. von Hagke et al. 2016), the southern Caribbean
(e.g. Meschede and Frische 1998) and in the western Tethyan
regions (e.g. Le Breton et al. 2017), is far less certain. Testing the
variety of different palaeogeographical reconstructions, and choos-
ing between alternatives, necessarily involves adding new data and
syntheses. Here we use a case study from the central Mediterranean
during the early–middle Miocene, building upon exceptional
studies of sandstone provenance (e.g. Thomas et al. 2010;
Fornelli et al. 2015, 2019; Critelli et al. 2017, 2018Q2

¶
). In doing so,

we bridge the scale gap between outcrop and plate configurations by
integrating observations and interpretations from several field
studies. New insights arise from applying concepts developed in
recent years on the deep-water sedimentology, especially concern-
ing structurally confined turbidity currents.

As examples of subaqueous gravity flows, turbidity currents seek
bathymetric lows. Therefore, tracking their pathways provides
powerful constraints, not only on the relative bathymetry of their
substrate but also on the bathymetric relief (structure) of the pathways
they follow. In this paper, we use the Numidian deep-water
sandstones and associated deposits that are preserved in Sicily and
the southern part of peninsular Italy to understand relationships
between the southern Apennines and eastern Maghrebian orogenic
belts, which now host these strata. Our aim is not only to revise
palaeogeographical restorations of the central Mediterranean during
the Miocene but also to provide a rationale for the general application
of stratigraphic and sedimentological methods applied to deep-water
deposits in the study of orogens and their associated basins.

Syntectonic turbidites have been widely used to calibrate
palaeogeographical reconstructions; for example, in dating collision
between India and Asia (e.g. Rowley 1996; Hu et al. 2016). These
studies have used classical approaches, treating the deposits as
blankets that seal tectonostratigraphic units and establish the timing
of their juxtaposition. Alternatively, turbidite provenance has been
used to inform the proximity between land-masses at the time of
deposition and thus date impending collision (e.g. Hu et al. 2016),
including in the central Mediterranean (e.g. Critelli et al. 2017).
However, substantial further information can be gleaned from the
sedimentology of turbidites, and deductions of the deep-water
sediment processes derived from these studies. Advances in
understanding turbidites have accelerated in the past decade: by
deducing sediment processes, we are able to infer the character of
the pathways along which the causative turbidity currents flowed.
These deductions can be used to identify the location, amplitude and
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continuity of structures in the syndepositional seabed and in turn,
inform palaeogeographical models.

Significant insights on the scale of deepwater depositional systems,
their depositional architectures and relationships to evolving seabed
structures have come frommodern systems, using both high-resolution
bathymetric maps and 3D seismic volumes. In ancient, deformed
basin systems that inform palaeogeographical reconstructions of
tectonically complex regions such as the central Mediterranean,
seismic-scale features are only rarely preserved or recognized.
Consequently, it is the outcrop-scale sedimentology that yields the
critical information, equivalent to utilizing well penetrations without
seismic data for investigations in modern examples. Despite this
limitation, we aim to show that significant insights are still possible.

This paper first outlines the key sedimentological elements of
deep-water turbidites before introducing the tectonic setting of our
case study in the central Mediterranean (Miocene). We then focus
on the sedimentological and stratigraphic data of the Numidian
turbidites of Sicily and southern Italy, building a depositional
framework that informs discussion of palaeogeographical recon-
structions in the region. This case study illustrates the general
approach we take and that could be applied elsewhere.

Confined turbidite systems: a brief introduction

Concepts of turbidite sedimentology have been developed over
many decades (e.g. Mutti 1992; Meiburg and Kneller 2010, and

references therein). Our challenge is to use turbidite deposits and
their inferred transport processes to deduce the morphology of their
host basins. In the following section (Fig. 1) we use the terminology
and approach of Southern et al. (2015), who classified the shapes of
basin morphology, their controls on turbidite systems and resultant
facies distributions.

Traditional understanding of turbidite systems, as typically
reported in textbooks and reviews (e.g. Mutti and Ricci Lucchi
1978; Reading and Richards 1994; Stow and Mayall 2000;
Pickering and Hiscott 2016; amongst many others), uses concepts
largely dating from what Shanmugam (2016) termed the ‘heydays
of submarine fan models’ (1970s–1980s). In these models,
sediment volumes build out onto open, laterally continuous basin
plains. These unconfined turbidite systems (Fig. 1a) characterize
some of the largest depositional bodies on Earth. Modern examples
include the mega-fans that are building into ocean basins (e.g.
Niger, Indus, Ganges–Brahmaputra, Amazon). Large flows in large
basins generate deposits across which lateral facies variations occur
over long distances. These systems can have locally auto-confined
flows, within submarine channel systems that build levees. Classical
descriptions argue that outside these channels, flows are free to
expand and wane and the reduction in the capacity of flows to carry
grains generates simple fining-upwards beds that are characteristic
of the classical so-called Bouma sequence (e.g. Bouma 1962;
Bouma and Ravenne 2004; Fig. 1a). Recent work has suggested that
flow transformations can generate facies changes over short

Fig. 1. A compilation of turbidite sedimentology, for sandy siliciclastic systems. Flow routing is shown by blue arrows. (a–c) Definitions of turbidite
systems with some diagnostic facies. (a) An unconfined system, characterized by fining-upwards deposits. (b) A confined and contained (ponded) system
with the integration of mud, both as thick bed caps and within complex ‘hybrid’ beds within the sand. (c) A confined but uncontained system where coarse-
grained fairway of sand and gravel indicative of flow bypass is fractionated from the finer grains. (d) The distribution of facies on an unconfined fan;
contrasted with facies distributions on a structurally confined but uncontained system (e). (f ) The relationship between facies within a confined, uncontained
sand fairway and the marginal facies along a structured corridor.

R. W. H. Butler et al.
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distances (e.g. Kane et al. 2017). Nevertheless, unconfined systems
tend to build sediment bodies that broadly fine outwards, away from
the fan apex. Fine-grained facies fringe the fans with coarser sands
closer to the fan apex and its distributor fan-top channels (Fig. 1d).

A contrasting scenario exists where turbidity currents are
restricted laterally by confining slopes so that they flow along
structurally controlled corridors. These are confined systems (in the
sense of Southern et al. 2015: Fig. 1b and c). It should be noted that
the distinction between unconfined and confined turbidites relates
the size of the causative flow to the size of the basin into which they
flowed. It is probable that many ancient outcropping turbidite
systems that have been studied, certainly in syn-orogenic and other
active basin settings, are confined by the architecture of their host
basin. Southern et al. (2015) divided confined systems into
contained (ponded) or uncontained (Fig. 1b and c).

Mutti et al. (2009, p. 305) argued that, until their review, ‘studies
have shown the importance of structurally induced submarine
topography in controlling facies distribution patterns’, noting that
investigating these interactions would require ‘close cooperation
between stratigraphers, sedimentologists and structural geologists’.
Although, at their time of writing, few such multidisciplinary
studies had been attempted (indeed Mutti et al. were sceptical that
such co-operation would ever happen), there has since been
substantial work on confined turbidites. Much of this effort has been
directed at forecasting sandstone distribution as possible hydrocar-
bon reservoirs in the subsurface, by using combinations of scaled
analogue and numerical experiments (e.g. Albertão et al. 2015; de
Leeuw et al. 2018), observations and measurements from active
natural systems (e.g. Gamberi and Rovere 2011; Stevenson et al.
2013) and studies of outcrops of ancient deposits (e.g. Southern
et al. 2015; Liu et al. 2018). In uncontained confined systems,
turbidity currents tend to flush down sinuous corridors (Fig. 1e). In
this regard, flows tend to overrun significant parts of their confining
conduit without leaving deposits, a process generally termed flow
bypass.

Building on pioneering studies such as that by Kneller and
McCaffrey (2003), Stevenson et al. (2015) described the critical
sedimentological observations needed to establish flow bypass, the
transit of turbidity currents after the partial deposition of some of its
sediment content. These include abrupt grain-size breaks in vertical
sections that imply flows only dropping coarse parts of their
sediment load, with the remaining finer grained fractions continuing
down-system (Fig. 1c). Other deposit characteristics include coarse-
grained lags of granule- and pebble-grade clasts at the base of beds.
These form by the reworking of bed-loads by multiple flow-events
without being buried by fallout from the overriding suspension
cloud. Isolated pebbles in sandstones are here interpreted as clasts
that were stripped out from lags, entrained as saltating outsized
grains towards the base of the turbidity current (including within
plugs of coarse clasts constituting traction carpets, in the sense of
Mutti 1992; Sohn 1997) and then dropped out downstream onto
aggrading sand left by a weakly waning flow. These features are
generally common in confined turbidites where individual flows
can experience complex velocity variations and interaction with
submarine structures (created by not only submarine channels but
also the margins of basins). The various combinations of different
spatial and temporal accelerations produce markedly different
vertical and lateral variations in the resulting turbidite deposit.

Experiments, with reference to channel–levee complexes (de
Leeuw et al. 2018), show that confined turbulent flows develop
vertical fractionation of grain sizes. The lower part of the flow is
represented by a fast-moving, high-concentration component with
increasingly dilute, finer-grained and slower-moving components
above. Deposition from these flow components creates coarser,
sand tracts in the channel base and builds finer-grained levees on the
flanks. Levees aggrade by flows overtopping them andwaning away

onto the unconfined slopes beyond. For flows that are fully confined
by structured bathymetry, the grain sizes equivalent to levees will
accumulate up the confining slopes, or be flushed through the
system. The coarse sand components will accumulate along the axis
of the conduit. Finer-grained deposits, falling out from higher in the
turbidity current, tend to accumulate higher on the flanks of the
confining bathymetry (Fig. 1f). The result is that turbidite facies can
vary over short distances (hundreds of metres) when compared
laterally, across the flow direction.

Turbidite sand fairways are the geological record of preferential
pathways of confined flows. Their deposits are characterized by
clean, coarse-grained sandstones (e.g. Joseph and Lomas 2004)
with common parallel lamination indicative of aggradation as the
residual flow continues to pass. Abrupt bed tops with grain-size
breaks are indicative of bypassed fine-grained fractions (e.g. Kneller
andMcCaffrey 2003). Here we consider the grain size of sandstones
containing primary bed forms such as parallel lamination to be
representative of the maximum available grain size that could be
carried by turbulent suspension at that point in the causative flow.
Larger clasts were therefore presumably carried as dense bed-load
and transported at a slower velocity than that of the turbulent
suspension cloud, as a traction carpet (in the sense of Mutti 1992;
Sohn 1997). The presence of coarser sediment (very coarse sand,
granules, pebbles, etc.) in deposits far down-system presumably
requires that they have been carried by multiple flows. Most
critically, the occurrence of pebbles originating from the original
source area in distal deposits requires the upstream regions across
which the turbidity currents passed to have been confined so that
their capacity to carry coarse sediment was retained. The high-
concentration components of the flows should hug bathymetry,
moving continuously downslope along the basin fairways.
Therefore, it is the distribution of coarse sandstone fractions
across a depositional system that is the most informative of the
relative bathymetric variations within a basin.

Contained (ponded) systems retain the entire grain-size range
carried by the turbidity current (Fig. 1b) including the mud, silt and
very fine sand along with coarser fractions. Individual flows
therefore leave beds with muddy and silty caps as the suspension
cloud is trapped into the basin (e.g. Patacci et al. 2015, 2020).
Southern et al. (2015) noted that this tendency increases the
opportunities for subsequent flows to entrain mud. This can change
flow dynamics, increasing the propensity of forming so-called
hybrid beds (Haughton et al. 2009; Baas et al. 2011) where clean
sands, deposited from turbulent suspension clouds, are interleaved
with muddy debrites that record cohesive flow mechanisms.

A challenge in understanding ancient turbidite systems is to track
clast provenance. When energetic enough, turbidity currents can
erode the substrate across which they transit. The entrained clasts
contaminate the resultant deposit and can confuse interpretation of
sediment source and basin morphology. The problem is avoided if
the turbidites of interest are composed of sands rather distinct from
the substrate; for example, quartz-rich turbidity currents routed and
deposited upon substrates exclusively composed of carbonates. In
orogenic systems, it may be that such turbidites will be the first to
enter an otherwise sediment-starved deep-water basin system just as
that basin is beginning to be deformed by the orogen. This is the
ideal scenario in which to use turbidites to decode the basin
geometry.

Geological setting of the Numidian system

To illustrate how the concepts from sedimentary geology outlined
above can inform tectonic studies, we use the Numidian (Miocene)
turbidite system of Italy. These rocks are found through Sicily and
the southern Apennines (Wezel 1970; Critelli 1999, 2018; Guerrera
et al. 2005, 2012; Fig. 2), incorporated into the eastern Maghrebian

Numidian sand fairway (Miocene)
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chain, part of the Alpine orogeny, which was developed by
convergence between the African and Eurasian continents from the
late Mesozoic into the Cenozoic (e.g. Elter et al. 2003). The region

is a complex collage of continental blocks and former ocean basins
of various ages that are caught between the continental interiors of
Africa and Europe. Although the relative motion between these two
bounding continents is well established within a globally
compatible plate-tectonic reference frame (e.g. Muller et al.
2016), there are many competing models for the evolution of
blocks and basins between them (e.g. Meulenkamp and Sissingh
2003; Handy et al. 2010; Zarcone et al. 2010; Guerrera et al. 2012;
Puglisi 2014; von Hinsbergen et al. 2019 Q3

¶
; and many more).

The early Miocene is generally considered to be a pivotal time for
the regional tectonic framework of the ancestral Mediterranean, with
significant reorganization of continental blocks (e.g. Corsica and
Sardinia), opening of oceanic basins (e.g. Gulf of Lion, Balearic Sea)
within the broad area of plate convergence between Africa and
Europe, and the initiation of the modern Apennine chain (e.g.
Lucente et al. 2006; Le Breton et al. 2017; and references therein).
Different models imply different linkages of ocean basins through the
region, a key element of which is the westward extent of oceanic
lithosphere now represented by the floor of the deep basin holding the
Ionian Sea (Speranza et al. 2012 Q4

¶
). Many palaeogeographical models

consider this to be a remnant of a vestigial arm of the Tethyan ocean
that once entirely separated north Africa from Apulia and various
other micro-continental blocks (e.g. Fig. 2a, modified after Thomas
et al. 2010; and references therein). For Guerrera et al. (2012;
Fig. 2b), this inferred corridor became occluded by convergence
between a composite continental block (the so-called Mid-
Mediterranean ‘microplate’) and the north African margin, with
detritus shed from these blocks forming the fill to a ‘flysch basin’.

Turbidites of the Numidian system, part of the flysch basin fill,
are composed of generally well-sorted medium to coarse, very
mature quartz sandstones. Historically, their provenance has been
contested (see Parize et al. 1986; Thomas et al. 2010). However,
petrological studies, including zircon compositions, now clearly
indicate that they have been derived from cratonic northern Africa
(Fornelli et al. 2015, 2019; Critelli et al. 2017, 2018). As such, the
Numidian system is a prime example of a craton-derived sand
system, and its deposits are found widely around the margins of the
SW Mediterranean.

For Guerrera et al. (2012), the Numidian turbidites were fed by a
variety of fans that were small compared with the size of the basin
(Fig. 2b). For Critelli et al. (2017) and Fornelli et al. (2019), the
Numidian sandstones were deposited in elongate strips (fairways) fed
from a narrow entry point (broadly along what is now northern
Tunisia; Fig. 2c). In both scenarios illustrated in Figure 2b and c, the
ocean basin also received sediment from the fledgling orogen to the
north. Neither provides explanations for how deposits from these
systems remain distinct from each other, an issue we address below.

TheNumidian deposits have been swept upwithin tectonic units of
the Maghrebian chain and southern Apennines and carried onto the
orogenic forelands of Apulia and the Hyblean plateau of SEmainland
Italy and Sicily respectively (Fig. 3a). These translations involved
substantial tectonic rotations, of up to c. 100° (e.g. Speranza et al.
2003; Monaco and De Guidi 2006; Barreca and Monaco 2013). The
Sicilian outcrops experienced clockwise rotations whereas those in
the southern Apennines have experienced an anti-clockwise rotation
(Fig. 3b), essentially corresponding to ‘double saloon doors’ (in the
sense of Speranza et al. 2003; Martin 2006). Restoring the Numidian
outcrops by applying counter-rotations reveals that they define a
broad SSW–NNE-trending tract (Fig. 3c), similar to part of that
proposed by Critelli et al. (2017; Fig. 2c).

In the eastern Maghrebian and southern Apennine orogens
described here, the Numidian system was deposited upon Mesozoic
and early Cenozoic substrata exclusively comprising carbonates,
marls and mud-rocks. These attributes, as introduced above, make
the Numidian sandstones ideally suited for use as tectonic tracers:
we can deduce that all quartz clasts must have transited the basin

Fig. 2. A compilation of palaeogeographical models for the early Miocene
in the central Mediterranean. (a) Depiction of the Numidian in Burdigalian
times, forming a single unconfined fan opening into a large seaway
(from Thomas et al. (2010)Q24

¶
, modified after Meulenkamp et al. (2003)

Q25
¶

).
(b) Representation of the Numidian and associated turbidite systems in the
early Miocene, fed by fans that are significantly smaller than the size of the
composite basin (from Guerrera et al. (2012)). It should be noted that the
fans shown crossing Sicily (and to its east) are incompatible with the
geological record (no source area, as discussed in text), and this is corrected
by the model of Critelli et al. (2017; (c)). (c) Critelli et al. showed the
Numidian system for the Langhian forming a narrow depositional tract,
ahead of the active orogenic front, and sourced from the African margin to
the SW of modern Sicily. C, Corsica; S, Sardinia; Ca, Calabria; Ap,
Apennine platform; I, Ionian Sea; MMM, ‘Meso-Mediterranean microplate’.

R. W. H. Butler et al.
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system between their source area and their ultimate site of
deposition without contamination from other clastic sources.
Therefore, we can use the deposits to infer flow processes and the
nature of the pathways down which the causative flows were routed.

The Numidian system in Sicily

The most widely studied parts of Numidian system in the Central
Mediterranean are those in Sicily where they are incorporated into the
thrust belt of the eastern Maghrebian chain (Fig. 4). The thrust belt is
largely composed ofMesozoic and Paleogene carbonates, mudstones
and marls generally inferred to have formed parts of the rifted
continental margin of Africa into the Tethyan ocean. These pre-
orogenic strata, apparently from distinct palaeogeographical domains
from the margin, are now stacked in a series of thrust sheets that
juxtapose Mesozoic platform and basin systems (Butler et al. 2019,

and references therein). In most reconstructions these juxtapositions
are assumed to reflect displacements during thrust sheet emplacement
(e.g. Guerrera et al. 2012). However, deep-water Paleogene strata (the
Argille Varicolori Formation; e.g. Ogniben 1960) locally overlie all
the various Mesozoic palaeogeographical domains, indicating a
period of restructuring before the Maghrebian thrust systems
developed (Butler et al. 2019). The Numidian successions were
deposited upon these complex substrates and represent the first influx
of quartz sand into this part of the Mediterranean basin for over
200 myr. Regional palaeoflow was from west to east, in the modern
reference frame (Pinter et al. 2016, 2018).

Stratigraphic context

The lower to middle Miocene strata show significant variations
across Sicily, illustrated in a series of schematic composite
stratigraphic columns (Fig. 5a) and tied in a chronostratigraphic
chart (Fig. 5b). Until recently, the age of the Numidian succession
has been significantly misinterpreted, largely because of the
inclusion in published fossil assemblages of microfauna reworked
from older strata (a common source of contamination in turbidites)
and the lack of relative stratigraphic control of sample sites. To
correct this, in our precursor studies we collected microfossil
assemblages from logged sections where simple stratigraphic
superimposition provided tests of relative age. Microfossil assem-
blages were screened for reworked material. The resultant age
patterns (Fig. 5b) are reproducible and resolve the Numidian of the
Nebrodi basin of northern Sicily (Fig. 4) to be Aquitanian to late
Burdigalian in age (Pinter et al. 2016). In central–east Sicily, the
Numidian is slightly younger with ages of up to late Langhian
(Pinter et al. 2018).

In the Nebrodi Mountains, northern Sicily (Fig. 4), the Numidian
successions (Pinter et al. 2016) chiefly lie unconformably upon
Cretaceous platform carbonates of the Panormide palaeo-tectonic
domain (e.g. Dewever et al. 2010 Q5

¶
; Fig. 5a, column A). The

Numidian is capped by a distinctive series of turbidites, termed the
Reitano Flysch (Grasso et al. 1999). Outliers of Reitano Flysch
unconformably overlie Numidian turbidites that are folded into their
substrate of Argille Varicolori Formation (Fig. 5a, column B). These
Numidian rocks include Langhian fauna (Pinter et al. 2018), as does
the Reitano Flysch above, indicating that significant deformation
and erosion happened during this short stage.

In central Sicily (column B in Fig. 5b), many parts of the
Numidian succession build up from brown claystones, which we
infer to represent deposition from turbidity currents that carried their
coarser grain-size fractions elsewhere (Pinter et al. 2018). The first
influx of medium to coarse sand (Burdigalian) represents switching
of the main pathways of turbidity currents into these parts of the
basin. In central Sicily, higher in parts of the Numidian successions

Fig. 3. Simplified location map for sedimentary basins in the western–
central Mediterranean. The boxed area shows the more detailed map of
(c). (b) Palaeomagnetically determined tectonic rotations for Mesozoic–
Paleogene strata in Sicily and the southern Apennines (after Critelli et al
2017). Palaeo-north indicated by yellow arrows. (c) Location of the main
outcrops of Numidian sandstones in Sicily and the southern Apennines,
modified after Pinter et al. (2018). The restoration uses the tectonic
rotations in (b).

Fig. 4. Simplified geological map of
Sicily showing location of schematic
stratigraphic sections (A–G; Fig. 5) and
simplified logged sections (V–Z; Fig. 6).
MJ, Monte Judica. Modified after Lentini
and Carbone (2014).

Numidian sand fairway (Miocene)
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the units are capped by siliceous marlstones, dated as Langhian
(Pinter et al. 2018). These deposits we interpret as recording the
deviation of the main turbidity currents to other parts of the basin,
leaving the marlstone areas relatively sediment-starved.

In eastern Sicily, around the thrust culmination of Monte Judica
(MJ in Fig. 4), Burdigalian strata are characterized by thick series of
brown claystones, inferred to be part of the Numidian succession
(Fig. 5a, columns C, D and E; e.g. Lentini & Carbone 2012Q6

¶
),

presumably deposited off the main conduits for sand flux. Here,
significant sand bodies are restricted to Langhian-aged parts of the
series (Pinter et al. 2018). They pass up into further mudstone and
thin-bedded fine sandstones of Serravallian to Tortonian age.

The frontal (currently southern) parts of the thrust belt,
represented by the so-called Gela Nappe (location shown in
Fig. 4), contain a rhythmically banded marl with hard-grounds, the
Licata Formation (Fig. 5, column F; Grasso et al. 1997). This deep-
water unit essentially charts very limited deposition and is
interpreted to have lain laterally far from and above the routes

followed by the Numidian turbidity currents. It lies on multi-
coloured mud-rocks (the Argille Varicolori Formation) of
Oligocene and older age. Any lateral transition between the Licata
Formation and the brown clays is unrecognized, potentially hidden
by subsequent thrusting. The foreland area of the Hyblean Plateau
saw shallow-water carbonate deposition (Fig. 5a, column G).

Northern Sicily contains a variety of Miocene turbidites,
including the Capo d’Orlando ‘flysch’ (Bonardi et al. 1980).
These lie unconformably upon Variscan metamorphic basement
and metamorphosedMesozoic cover, generally inferred to represent
part of the Calabrian orogenic belt (e.g. Lentini 1982), preserved
within the Peloritani Mountains of Sicily (Fig. 4). The Capo
d’Orlando turbidite succession includes pebbles of crystalline
basement but is generally characterized by thick beds of medium-
grained immature sandstone with lithic fragments and detrital mica
derived from the Calabrian basement rocks. The Capo d’Orlando
turbidites are locally unconformably overlain by late Burdigalian to
early Langhian ‘Calcareniti di Floresta’ (Aldega et al. 2011). These

Fig. 5. (a) Schematic stratigraphic columns across Sicily showing the relationships between the Numidian system and encasing strata (modified after Butler
et al. 2019). The locations of these sections are shown (A–G) in Figure 4. (b) Chronostratigraphic diagram for Sicily (using information given by Butler
et al. 2019, and references therein).

R. W. H. Butler et al.
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carbonate sandstones are reworked from earlier carbonate forma-
tions preserved within the Peloritani Mountains. Collectively the
Floresta and Capo d’Orlando units are broadly the syntectonic cover
to the Calabrian thrust sheets, deposited in thrust-top basins.

Calabria-derived turbidites that overlie the Numidian system or
its immediate substrate are termed ‘Reitano flysch’; Fig. 5a, A and
B; Grasso et al. 1999). These unconformable units include thin
medium- to fine-grained volcaniclastic sandstones generally
referred to as the ‘Troina–Tusa flysch’ (‘Tufiti di Tusa’ of
Ogniben 1960). De Capoa et al. (2012)Q7

¶
showed that at least some

material was derived from Miocene volcanic rocks in Sardinia
(essentially part of the Calabrian orogen).

The Calabrian-derived flows (feeding the Troina–Tusa, Reitano
and Capo d’Orlando turbidites) and those from north Africa
(feeding the Numidian turbidites) remained distinct. That these
systems do not mix indicates that the broad basin area between the
fledgling Calabrian orogen and the foreland was structured. At least
some of this structuring must have happened during the Langhian
(Fig. 5b) so that Numidian sand deposition could continue in the
Mont Judica area (Fig. 5a, column C) whereas Reitano turbidites
were restricted to the north (Fig. 5a, columns A and B). Coeval strata
now preserved in thrust sheets to the south in Sicily are dominated
by mudrocks and marlstones (and carbonates on the foreland)
indicating that the sandy turbidity currents did not transit these areas
of the basin. There are no purely African-derived sandstones
younger than Langhian that have been identified in Sicily. Where
preserved, the Numidian successions pass up into mudstones.
Younger sandstones in Sicily (Serravallian and younger) exclu-
sively rework previous deposits from the thrust wedge or are derived
from the Calabrian orogen.

Several existing facies models have been erected for the
Numidian that use variations in the proportion of sand to silt/mud,
thicknesses and stacking pattern of beds, and these schemes have in
turn been tied to models of unconfined turbidite fans (e.g. Guerrera
et al. 2012). This approach has assumed that different facies were
deposited in distinctly separated parts of submarine fans and their
current proximity has resulted from tectonic juxtaposition of later,
far-travelled thrust sheets (e.g. Bianchi et al. 1987Q8

¶
). Thus, Numidian

stratigraphy has directly influenced cross-section-scale interpreta-
tions of structural geometry (Butler et al. 2019). However, recent
stratigraphic and sedimentological field research on the Numidian
of Sicily, allied to geological mapping (Pinter et al. 2016, 2018), has
revealed continuous, transitional stratigraphic sections and lateral
connectivity between different facies previously interpreted as
having been far removed. There are mappable lateral pinch-outs of
sandstone bed-sets and onlap onto substrate. These short-range (3–
5 km) facies changes and substrate relationships are not consistent
with unconfined submarine fan models.

Sedimentology

Full detailed descriptions and interpretations have been provided by
Pinter et al. (2016, 2018) and only a brief summary is provided here.
As noted above, the Numidian turbidites in Sicily are characterized
by exceptionally mature quartz sandstone (Fig. 6a). There are
significant thicknesses of coarser material with quartz granules and
pebbles up to 5 cm in diameter (e.g. Thomas and Bodin 2013;
Fig. 6b). Classically described as structureless or massive (e.g.
Johansson et al. 1998, and references therein), this outcrop character
reflects the exceptional sorting and locally extensive dewatering and
local liquification of the deposits (Fig. 6c). When not dewatered, the
majority of the sandstones contain parallel lamination (e.g. Fig. 6d).
In some locations, the coarse facies contain clasts of fine-grained
carbonates and mudstones (Fig. 6e) that can be readily correlated
with substrate lithologies from the basin floor (Pinter et al. 2018).
There are also rare, well-rounded clasts of Numidian sandstone. We

interpret these clasts as recording erosion by the causative turbidity
currents both of basin-floor substrate and of slightly older Numidian
sediment.

The Numidian facies contrast markedly with the Capo d’Orlando
(Fig. 6f) and Reitano turbidites (Fig. 6g), which are characterized by
diverse sand compositions with lithic fragments that include
metamorphic and granitic material indicative of a source from the
fledgling Calabrian orogen. These too have coarser-grained
components including thick conglomerates. As with the back-
ground sandstone, conglomerate clast types are highly variable
(Fig. 6h).

Typically, sandstones of the Numidian system form units several
tens of metres thick that can commonly be shown to be
amalgamated (Fig. 7a), with individual depositional units generally
between 50 and 200 cm thick. The amalgamated bed-sets show
various stacking patterns. In places, especially within northern
Sicily, the bed-sets combine to create units several hundred metres
thick (e.g. Fig. 7b). More commonly, the sandstone bed-sets are
separated by finer-grained, thinner-bedded units (Fig. 7c).
Individual bed-sets can be traced for several kilometres, through
continuous Numidian outcrop. The outcrop of Numidian strata
includes finer-grained, more thinly bedded sandstones (Fig. 7d),
siltstones and mudstones (e.g. Fig. 7e). Early studies (referenced by
Guerrera et al. 2012) interpreted the various facies of the Numidian
to originate from widely separated parts of unconfined submarine
fans and they have been assigned to distinct stratigraphic formations
and interpreted to lie in different thrust sheets. Our mapping in
northern Sicily (Pinter et al. 2016) demonstrates that the
amalgamated sandstones (specifically the outcrops in Fig. 7b)
pass laterally into the thin-bedded facies over 3–5 km, approaching
an unconformity with Mesozoic substrate. We therefore conclude
that the various facies represent lateral changes in the behaviour of
causative flows, with the amalgamated sandstones lying in the main
flow path and the thin beds being marginal to the flow pathway.

Stratigraphic sections of Numidian sandstone vary in thickness
from up to 1500 m to less than 200 m (Fig. 8). Full detailed logs
have been provided by Pinter et al. (2016, 2018). Beds invariably
show abrupt grain-size breaks with coarse sand grade material
passing directly into very fine sand and silt. Even in thin sandstone
facies (e.g. Fig. 7d), medium to fine sand grade passes abruptly up
into silt. Collectively these relationships, as laid out by Stevenson
et al. (2015), imply substantial sediment bypass. The main
amalgamated sandstone bed-sets (e.g. Fig. 7a–c), especially where
they contain granule- to cobble-sized grain suites, represent the
main conduits for the causative turbidity currents. They represent
parts of sand fairways that, prior to later tectonic disruption, would
have formed continuous ribbons across the basin. Several locations
contain thick, marly intervals that imply transient shut-downs in
sand supply. This is interpreted as reflecting temporary re-routing of
causative turbidity currents and clastic starvation in parts of the
basin. A general migration of sand fairways from, in current
orientation, north to SE across eastern Sicily is inferred from the
diachroneity of thick sandstones established from the biostratig-
raphy of the associated mudstones (Pinter et al. 2018). Collectively,
we deduce that the Numidian system in Sicily was confined but
uncontained, with the causative flows directed along sinuous
corridors across the basin.

The sedimentology of the Reitano turbidites is significantly
different from that of the Numidian (Fig. 9a). As noted above, the
Reitano is preserved in distinct stratigraphic outliers, in places
unconformably overlying a deformed substrate of Numidian
turbidites and its own substrate of Argille Varicolori Formation
(e.g. Fig. 9b). As a system, it too shows significant variations in
grain size, with coarse fractions up to cobbles (20–30 cm diameter
clasts). Sandstone beds can be amalgamated into thick bed-sets
(Fig. 9a). However, where bed tops are not eroded by younger units

Numidian sand fairway (Miocene)
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they commonly grade upwards from coarse sand through finer sand
grades into silty bed caps. Generally, the sandstones are dewatered
but primary parallel lamination is common. Finer sand-fractions
towards bed tops commonly show convolute lamination. Away from
amalgamated bed-sets, individual sandstone beds commonly have
with mud caps locally attaining thicknesses of several metres
(Fig. 9c). ‘Sandwich units’, where individual beds have interiors of
muddy debrites and remobilized laminated sands contained
between bed tops and bases of well-sorted sandstone, are
common (e.g. Fig. 9d). These hybrid beds (in the sense of
Haughton et al. 2009) are common constituents of ponded
turbidites, as might be expected in confined–contained systems
(Southern et al. 2015). The presence of thick mud-caps and the

associated propensity for hybrid beds is consistent with our
deduction that the causative flows of the Reitano turbidites were
ponded within mini-basins developed above a deforming thrust
wedge that had incorporated earlier Numidian turbidites.

Summary

The sedimentology and map geometry of Numidian deposits in
Sicily indicate that they are part of a confined but uncontained
turbidite system. The present-day outcrop has been strongly
modified by later thrusting but the overall disposition of units
from north to south across the island has not been (Butler et al.
2019). Pinter et al. (2016) showed that the Numidian sand system in

Fig. 6. The character of Numidian and
time-equivalent units in Sicily. Where
visible, the coins are all 2.5 cm in
diameter. Younging directions shown by
black arrows. (a) Coarse-grained, well-
sorted quartz sandstone typical of the
Numidian sandstone. (b) Pebbly facies in
the Numidian comprising granules to
large pebble-grade quartz clasts, Finale,
northern Sicily. (c) Liquified medium to
coarse Numidian sandstone with
foundered bodies of small to medium
pebbles. Remobilization and associated
dewatering are common in much of the
Numidian Sandstone, obscuring primary
depositional fabrics; lower Troina valley,
eastern Sicily. (d) Primary depositional
lamination in Numidian sandstone, Finale,
northern Sicily. (e) Detail of a coarse bed
base with outsized clasts of micritic
limestone (x, interpreted to be ripped-up,
poorly lithified fragments of the Eocene
Polizzi Formation; micritic limestones,
part of the basin floor; see Pinter et al.
2018), together with rip-up clasts of
earlier parts of the Numidian sandstone
(labelled Z), Pietra Pirciata, eastern Sicily.
(f ) Coarse facies of Capo d’Orlando
turbidites in their type area on the north
coast of Sicily. Both the medium
sandstone (below) and granule–small-
pebble unit above contain diverse clast
compositions. (g) Typical coarse facies
from the Reitano turbidites with diverse
clast compositions. (h) Conglomeratic
facies within the Capo d’Orlando units in
the southern Peloritani Mountains
(Malvagna area). gr, granite; m,
metamorphic clasts. Otherwise the bulk
lithic clast type here comprises
limestones.
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Fig. 7. Numidian outcrops in Sicily. (a) illustrates the amalgamated nature of the thicker sandstone units, near Mistretta, northern Sicily. (b) The Pollina
section (see Pinter et al. 2016). (c) Monte Salici, central Sicily (see Pinter et al. 2018). (a–c) show strata interpreted to typify the main sand fairways for the
Numidian turbidites. (d) Thin-bedded sandstones and siltstones, representative of off-fairway deposition, inferred to lie on the flanks of the main conduits
for causative turbidity currents. These outcrops lie c 5 km lateral to (SSW of) the Pollina section (b). (e) Brown siltstones and fine sandstones, again lateral
to (b) and (d). (See Pinter et al. (2016) for further details.)

Fig. 8. Schematic logs contrasting various
parts of the Numidian system in Sicily with
the broadly time-equivalent turbidites of
the Capo d’Orlando and Reitano systems.
The detailed logs upon which these
schematic versions are based were
published and their locations given by
Pinter et al. (2016, 2018). The locations
are shown schematically in Figure 4 (V–Z).

Numidian sand fairway (Miocene)
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Sicily was deposited in structurally confined conduits, apparently
controlled by embryonic thrust structures that deformed the basin
floor. The development of thick sandy bed-sets without significant
incision is consistent with these being deposited from confined–
uncontained turbidity currents (e.g. Liu et al. 2018). These sand
fairways are locally controlled by active thrusting. The chronostra-
tigraphy of the Numidian system (Fig. 5b) shows a southward
migration of the principal sand fairways through time (from
Burdigalian to Langhian) and the northern parts of the system are
overlain by the orogen-derived Reitano turbidites. That the
sedimentology of the Reitano is consistent with deposition by
confined–contained flows indicates that thrust-top basin morph-
ology remained during subsequent deformation. Active thrusting
therefore served to keep the orogen-derived (Reitano) and
African-derived (Numidian) sand systems distinct at least within
the preserved outcrops of Sicily. The effect of active thrusting was to
confine the causative turbidity currents of the Numidian so that
suspension clouds could carry medium to lower coarse sand grains
through the conduits and, by entraining bed-load, deliver pebbles
and granules to the furthest parts of the system exposed in eastern
Sicily. The Numidian of western Sicily (back upstream) remained a
deep-water deposit. Any coastline in the early Miocene must have
lain yet further upstream. The present minimum separation between
the downstream Numidian outcrops of eastern Sicily and the closest

possible coastline exceeds 200 km. Therefore, we deduce that the
causative turbidity currents flowed at least this far into the ancestral
Mediterranean. However, more outcrops of Numidian strata lie in
the southern Apennines (Fig. 3c) and these provide further insights
on the extent of the system and the efficiency of its causative flows.

The Numidian system of the southern Apennines

The outcrops of Numidian in the southern Apennines are found in
the eastern part of the Campania–Basilicata region, where they
occur as a series of ridges from Monteverde to Valsinni (Fig. 3c).
That these sandstones form part of the same depositional system as
found in Sicily is confirmed by the African sand provenance (e.g.
Fornelli et al. 2015, 2019; Critelli et al. 2018). The Numidian in the
southern Apennines lies upon a Cretaceous–Oligocene succession
of mudstones and marlstones with thin interbedded carbonates, the
so-called Flysch Rosso (e.g. Zuppetta et al. 2004). Clay chemistry
indicates a weathered Archean basement source, presumably the
African craton (Mongelli 2004). This succession is part of
the Lagonegro–Molise basin and it is time- and facies-equivalent
to the basinal mudstones of the Argille Varicolori Formation
described for the central–east Sicilian Numidian basin. Collectively
the Numidian and its Mesozoic substrate evolved into a major thrust
sheet, the Lagonegro allochthon, that was emplaced onto the

Fig. 9. Characteristics of the Reitano system. (a) A log from the Reitano outlier on the north coast of Sicily (UTM coordinates 436023.00 m E,
4207089.00 m N) showing the typical grading within sandstone beds (key as in Fig. 8). (b) One of the stratigraphic outliers, cropping out around the town
of Cerami, eastern Sicily. The Reitano turbidites (Langhian) lie in an open syncline and unconformably overlie deformed Argille Varicolori Formation
together with tightly infolded Numidian sandstone (as represented in column B in Fig. 5a). (c) The preservation of thick mud caps interbedded with fine to
medium sandstones, Cerami town. Younging direction indicated by black arrow. (d) A typical sandwich hybrid bed (extent of single bed shown by bar),
Cerami town.

R. W. H. Butler et al.
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Apulian foreland by counter-clockwise rotational overthrusting,
chiefly in the late Miocene and Plio-Quaternary (e.g. Mazzoli et al.
2006). These results concord with the Numidian sandstones of the
southern Apennines having been deposited during the Langhian
(Patacca et al. 1992; D’Errico et al. 2014; Critelli et al. 2017). These
age constraints are supported by the age of successor deposits in
southern Italy (e.g. Zuppetta et al. 2004; Critelli et al. 2018).

The data collected from the Numidian sections of the southern
Apennines comprise three sedimentary logs, which represent key
parts of the system. We use these data together with sedimentary
observations to evaluate facies and then depositional processes. The
selected sections are described from the northernmost part of
outcropping succession (Monteverde) to the southernmost part
(Valsinni section).

Monteverde (Elephant House section)

The Numidian succession in Monteverde (location X in Fig. 3c)
chiefly comprises a thick interval of fine-grained sandstones and
siltstones at the base that coarsens upwards. This locality has proven
important for establishing a north African provenance for the
Numidian of the southern Apennines (Fornelli et al. 2015).
Notwithstanding rather sparse outcrop, a stratigraphic thickness is
estimated to exceed 100 m.

The lower parts of the Monteverde section are characterized by
medium- to thick-bedded sandstones of 0.1–1 m thick, composed by
clean quartz grains of medium to fine grain sizes (Fornelli et al.
2015). The sandstones are generally ungraded or weakly graded and
present a typical grain-size break in the top contact (in general, from
medium sands to silts). The basal contact is generally concordant or
slightly erosive (c. 1 cm). The sandstones are interbedded with finer-
grained intervals of siltstones, with rare thin-bedded sandstones of
maximum 2 cm thickness. The siltstone intervals are laminated or
massive, with common debritic aspect. Rare quartz granules are
found encased in the debritic intervals. These interbedded fine-
grained intervals are concordant with the sandstone bedding, which
overall forms a tabular geometry for the deposits.

The stratigraphic top of the Monteverde section and passage to
younger formations is unknown. The upper part of the preserved
section is characterized bymore amalgamated coarse sandstones with
pebbly intervals. The short section, at the Elephant House in
Monteverde town (Fig. 10a), is representative of this facies.
Amalgamated bed-sets form a 7 m thick package of sandstone.
Depositional banding defined by grain-size variations occurs in this
amalgamated package and individual sandstone beds are a maximum
of 1 m thick. The sandstones are poorly graded to ungraded,
composed of well-sorted, very coarse to granular sands. Although
beds appear to be massive and unstructured, careful observation
reveals weak parallel lamination and banding (Fig. 10b), which is
otherwise obscured by diffuse pipes, dish and disaggregation textures
indicative of dewatering processes. Although the sands are otherwise
well sorted, there are many outsized granules and isolated pebbles (up
to 2 cm in diameter) dispersed through the sandstone (e.g. Fig. 10c).
These coarse fractions are also present as lags at the base of the
sandstone beds, with shallow erosional relief of a maximum of 5 cm.
Otherwise, bed bases are flat.

Salandrella section, Accettura

The Numidian succession in the Accettura area (location Y in
Fig. 3c; Selli 1962; Boenzi et al. 1968) is steeply dipping, with a
stratigraphic thickness exceeding 450 m (D’Errico et al. 2014), and
generally coarsens upwards. A representative log for the upper part
of the section is provided here (Fig. 11a). It is characterized by
alternations of thick-bedded sandstones and thin-bedded fine-
grained sandstones and siltstones. The lower part of the section is

characterized by amalgamated bed-sets of sandstones up to 10 m
thick, with individual sandstone beds of at most 2 m thickness.
Further amalgamation of stacked sandstone beds characterizes the
preserved top of the section (e.g. Fig. 11b). The sandstones are
ungraded or slightly graded, well sorted and medium grained, with
parallel lamination and rare convolute lamination towards bed tops.
However, most bed tops are sharp, with distinct grain-size breaks
from medium sand passing abruptly into siltstones (e.g. Fig. 11c).
These sandstones are characterized by weakly normally graded
coarse sands with granules and small pebbles on bed bases.
Outsized quartz granules are distributed through beds that otherwise
show parallel lamination defined by weak alignment of coarser
grains. Bed bases are slightly erosive (c. 5 cm). The thick sandstone
beds are interbedded with thin-bedded fine to medium sandstones
with siltstones up to 1 m thick. The thin-bedded sandstones are
ungraded or slightly gradedmedium to fine grained with tabular, flat
bed bases and tops. Where exposed, the siltstones are grey,
laminated or massive.

The Numidian of the Salandrella section passes upwards into the
arenaceous–calcareous deposits of the Serra Palazzo Formation.
The Serra Palazzo sandstones comprise texturally and compos-
itional diverse clasts (metamorphic, granite together with quartz,
including angular pebble-grade material). They are interpreted to
represent the first significant input of coarse clastic material into this
part of the basin from the developing orogen.

Colobraro–Valsinni

The Numidian succession at Colobraro in Valsinni (location Z in
Fig. 3c; Lentini et al. 2002; Zuppetta et al. 2004) crops out in a ridge
that forms a NNW–SSEmonocline structure and the section reaches
800 m in thickness (Carbone et al. 1987 Q9

¶
). The site was important for

establishing a mid- to late Langhian age of Numidian sand
deposition in the southern Apennines (D’Errico et al. 2014). A
representative part of this succession is shown in Figure 12. It is
characterized by amalgamated bed-sets of sandstones of up to 15 m

Fig. 10. Sedimentology of amalgamated Numidian sandstone bed-sets at
the ‘Elephant House’ outcrop, Monteverde (UTM coordinates
544902.00 m E, 4539451.00 m N). (a) Sedimentary log (key as in Fig. 8).
(b) Diffuse depositional banding (at c. 4 m on log). (c) Example of
granules and dispersed pebble (at c. 3.2 m on log). Coin in both
photographs is 2.5 cm in diameter.

Numidian sand fairway (Miocene)
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thick, with individual sandstone beds of a maximum of 1 m thick
separated by thin intervals of fine-grained facies (a few centimetres
thick). The sandstones are generally composed of ungraded well-
sorted medium sand, with coarse sand intervals restricted to bed
bases and lags. Crude parallel lamination is observable in most
beds, but is otherwise obscured by dewatering pipes. The fine-
grained facies are characterized by thin-bedded sandstones of a
maximum of 3–4 cm thick, interbedded with laminated siltstones.
The thin beds are ungraded medium-grained sandstones with rare
convolute lamination.

The Numidian of the Colobraro–Valsinni section passes upwards
into a thick sequence composed of marlstones and arkosic
sandstones called the Serra Cortina Formation (Lentini et al.
2002). We interpret these strata as being derived from the fledging
Calabrian–Apennine orogen, essentially equivalent to the Serra
Palazzo Formation in the Salandrella section. However, these
orogen-derived successions need not be fed from the same
submarine fan system. Understanding their depositional systems
alongside the tectonic controls would be an interesting study but is
one that lies beyond the scope of our paper.

Other Miocene deep-water successions in the southern
Apennines

The Albidona flysch includes upper Burdigalian to Langhian
turbidites (Selli 1962; Cesarano et al. 2002) and so is broadly time-

equivalent to the Numidian. It was sourced principally from the
Calabrian arc (Cavuoto et al. 2004, 2007) and lies unconformably
on the obducted Ligurian subduction–accretion complex preserved
along the Tyrrhenian coast of the southern Italian mainland. The
Albidona flysch changes in character up-section, from chaotic
immature siliciclastic deposits at the base to turbiditic arenaceous–
clayey material with thick intervals of marlstones towards the top
(Finetti et al. 2005).

Further west in the orogen, the Burdigalian–Langhian turbidites
of the Cilento group unconformably overlie strongly deformed and
weakly metamorphosed deep-water successions ascribed to the
Ligurian accretionary prism (Cammarosano et al. 2004). Cavuoto
et al. (2007) described the Cilento Group as being orogen-derived.
The system contains thick sandstones that are locally amalgamated.
Strikingly, the Cilento system also contains rare calciturbidites with
primary algal clasts and exceptionally thick (tens of metres) mud-
caps. These megabeds are analogous to similar deposits in the
Marnoso–Arenacea basin of the northern Apennines (e.g. the
Contessa megabed; Gandolfi et al. 1983) and may have a similar
provenance (a proto-Abruzzo carbonate platform in what is now the
central Apennines). Their thick mud-caps indicate that these
carbonate-rich flows were entirely contained (Fig. 1b), and therefore
that the Cilento basin was isolated from the basin system that hosted
the Numidian system.

Both the Albidona and the Cilento turbidites may represent a
structurally equivalent unit to the Reitano and Capo d’Orlando
turbidites of Sicily. As with the Sicilian examples, the Albidona–
Cilento and Numidian systems do not appear to have mixed.
Therefore, a similar explanation is proposed. The orogen-derived

Fig. 11. Sedimentology of the Numidian succession in the Salandrella
valley, north of Accettura town (UTM coordinates 598039.00 m E,
4483247.00 m N). It should be noted that the section is subvertical owing
to later tectonic deformation, and youngs to the SW (leftQ26
¶

in photographs,
as arrowed). (a) Sedimentary log (key as in Fig. 8). (b) Oblique view onto
amalgamated sandstone beds (top part of section). (c) Typical sandstone
bed (mid-section in (a)) showing planar base and top, with abrupt
transition at top into silt to very fine sand cap (compass for scale).

Fig. 12. Representative log of stacked bed-set in the Numidian at east of
Colobraro village, Valsinni (UTM coordinates 621273.00 m E,
4449771.00 m N). Key as in Figure 8.

R. W. H. Butler et al.
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turbidites of the southern Apennines formed systems ponded in
thrust-top basins. Their causative turbidity currents were contained
by these basins and did not contaminate the Numidian sand fairway.

As noted above, in the southern Apennines, the Numidian is
overlain by the Serra Cortina and Serra Palazzo formations, together
with further orogen-derived sandstones of the Gorgoglione
Formation (Critelli et al. 2017; and references therein). This
indicates that by the Serravallian the Numidian sand system was not
able to reach the southern Apennines.

Finally, mature quartz sandstones forming the Bifurto Formation
unconformably overlie parts of the shallow-water limestones of the
‘Apennine platform’ (Selli 1957). Traditionally these sandstones are
considered to be a distinct unit. However, zircon compositions
reported by Fornelli et al. (2019) show the Bifurto and Numidian
sandstones to have the same, African provenance, uncontaminated
by clasts from the fledgling Calabrian orogen. For our purposes, the
Bifurto can be considered to simply be part of the Numidian sand
fairway. The variations in the Mesozoic geology of its substrate are
similar to those discussed above for Sicily and imply substantial
restructuring of the platform and basin morphology that was
initiated during the Mesozoic. Consequently, the distributions of
these Mesozoic rocks are unreliable guides to Miocene palaeo-
geography (Butler et al. 2019).

General observations

The Numidian outcrops of the southern Apennines are characterized
by thick, tabular bodies that can be traced laterally for at least several
kilometres, this extent being limited by outcrop quality and later
deformation. Erosional features are limited to a few centimetres at
the base of individual beds; there are no major incisional features
into the underlying deposits. The sandstone-rich intervals are
characterized by intense amalgamation of typically ungraded coarse
to medium sandstones (e.g. Fig. 11b). These intervals pass abruptly
into cogenetic very fine sandstones and siltstones, without showing
a transition through intermediate grain sizes (medium and fine
sands). In many cases, internal structures such as primary banding
and parallel lamination are evident, suggesting that the beds were
formed by progressive aggradation. There are no obvious associa-
tions with stacked finer sands as associated constructional levees.
D’Errico et al. (2014) reported a general grain-size decrease from
south to north in the southern Apennines. However, the major sand
bodies are remarkably homogeneous across the region. Indeed,
medium to coarse sands still represent the predominant grain sizes
even in relatively distal areas, which also include pebbles (e.g.
Fig. 10c from the Monteverde section; X in Fig. 3c).

Collectively the sedimentology, as for the Numidian sandstones
of Sicily, suggests that the turbidity currents continued to largely
bypass the basin floor. We deduce that the causative turbidity
currents were strongly confined so that they maintained their
sediment-carrying capacity. Although outcrop in the southern
Apennines is not sufficient to demonstrate the lateral facies changes
and relationships with substrate that we have been able to show in
Sicily (Pinter et al. 2016, 2018), the apparent absence of significant
incisional relationships or associated constructional levee facies
suggests that confining bathymetry was provided by structures on
the basin floor.

Through the Langhian, the Numidian sand fairway remained
uncontaminated by orogen-derived sediments. Therefore, orogenic
detritus (Albidona and Cilento turbidites) was ponded, presumably
within enclosed thrust-top basins located higher on the westward
slope of a seaway that lay east of the ancestral Calabrian mountain
belt. The Numidian system lay towards the base of this seaway.
However, this does not constitute a simple foredeep basin (see
Guerrera et al. 2012). Rather, the basin floor was structured,
presumably by fledgling thrust systems that went on to develop into

the imbricate systems now found within the Lagonegro allochthon
(e.g. Zuppetta et al. 2004).

The Numidian as a confined turbidite system across the
central Mediterranean

The sedimentology of the Numidian sand system is not compatible
with the depiction of Numidian fans as small and unconfined, with
multiple input points both east and west of modern Sicily (Guerrera
et al. 2012). Nor is it compatible with the single unconfined fan
depiction of Thomas et al. (2010); Critelli et al. (2017; Fig. 2c)
showed the Numidian system as forming elongate sand ribbons
across a deep ocean basin then running up onto the Mesozoic
Apulian platform (Fig. 2c). Fornelli et al. (2019) modified this
model by showing the Numidian sandstone ribbons running across
rift-related relict topography ahead of the Apennine–Maghrebian
thrust front. We concur with Critelli et al. (2017) and Fornelli et al.
(2019) that the Numidian systemwas fed axially, from the SWof the
Sicilian thrust belt. As the foreland area, SE of modern Sicily, was
essentially marine we deduce that there was no significant sediment
influx from this direction. However, both of these other studies
imply that turbidites lie in narrow pathways across an open marine
basin (e.g. as illustrated in Fig. 2c) without discussing the basin
structure necessary to generate these fairways. We now examine the
relationship between the confined Numidian turbidites and the
inferred basin structure.

The Numidian system conforms to models of confined turbidites,
where causative turbidity currents are preferentially routed along
elongate, structurally controlled conduits. This structural confine-
ment of the causative turbidity currents was most plausibly provided
by active thrust anticlines that developed within a deep-marine
seaway. In our model (Fig. 13) the routing of turbidity currents
effectively fractionates coarse sand and larger clasts from the finer-
grained fractions. Sand was preferentially deposited along the main
pathways taken by turbidity currents, forming fairways. Finer
fractions, as well as being flushed through the system, accumulated
on the flanks of the fairways and over-spilt into adjacent parts of the
basin floor. Where fold amplification continues, sediment routing
can evolve, delivering coarse sand to previously largely depleted or
bypassed parts of the basin. Abandoned parts of previously active
flow paths can become starved of significant detrital input. This
evolution is broadly supported by the chronostratigraphy of the
Numidian system in Sicily (Fig. 5b).

Not only do folds and the resultant seafloor relief control the
behaviour and routing of the main Numidian turbidity currents, they
can also serve to hold back detritus shed from the fledgling
Calabrian orogen (Fig. 13). In the Sicilian part of our study, these
orogen-derived materials include the Reitano turbidites. In the
southern Apennines the Cilento turbidites, which also unconform-
ably overlie deformation structures, represent a tectonostratigraphic
unit equivalent to the Reitano of Sicily. Both systems are interpreted
here to have been restricted to distinct thrust-top basins. There are no
indications that significant sand components from these orogen-
derived systems entered the flow pathways for the Numidian. Again,
sediment type was fractionated by the structure of the basin.

As noted in our previous work in Sicily (Pinter et al. 2016, 2018),
the Numidian sandstones overlie a variety of strata that originally
were deposited under significantly different palaeobathymetries.
Traditional accounts of Italian geology emphasize the importance of
these distinct, pre-Numidian successions in defining tectonostrati-
graphic domains, and assume particular arrangements for their
palaeogeographical disposition during Numidian deposition and in
reconstructing tectonic displacements in the southern Apennines
and Sicily. For example, the designation in Sicily of ‘internal
Numidian’ and ‘external Numidian’ by Guerrera et al. (2012) and
many others relies exclusively on characterizing their immediate

Numidian sand fairway (Miocene)



1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

substrata. As noted elsewhere, deposition of Numidian turbidites
upon rocks deposited originally on the carbonate platform (the so-
called Panormide units) of Sicily requires this former platform to
have experienced substantial subsidence prior to Miocene times.
Thus, the definition of palaeogeographical domains such as
platforms and basins, defined by Mesozoic strata, is an unreliable
guide to basin geometry in the Miocene (Butler et al. 2019). The
same deduction arises from accounts of the southern Apennines.
Not only do Numidian turbidites overlie Flysch Rosso of the
Lagonegro basin but, by including the Bifurto Formation within the
Numidian system, also shallow-water Mesozoic carbonates (e.g.
Fornelli et al. 2019). These are generally conflated into the
contiguous Alburno–Cervati–Pollino platform (e.g. Iannace et al.
2005, and references therein; otherwise termed the Apennine
Platform). However, for the causative flows of these far-transported
Numidian sands to reach these substrates of the southern Apennines
they must have crossed the Sicilian system together with the
intervening basin. The southern Apennine Numidian would have
deposited in deeper water than these up-system locations. Clearly
then, the Apennine ‘platform’ was not a platform during the
Langhian; indeed, it lay at greater bathymetries than the Argille
Varicolori of central Sicily. This implies that, notwithstanding
Miocene thrusting, the Mesozoic array of platforms and basins of

this part of Tethys were significantly restructured, with new
palaeogeographical juxtapositions presumably at some time in the
early Tertiary.

A palaeogeographical sketch

The confined nature of the Numidian turbidites can be traced across
both Sicily and the southern Apennines. In neither case did the
turbidity currents, as recorded by the deposits discussed here, enter
an unstructured foredeep or a broader deep-marine basin. We infer
therefore that thrust systems provided structural continuity between
the Maghrebian system of north Africa and Sicily and the southern
Apennines (Fig. 14). The Numidian turbidity currents that reached
the southern Apennines must have passed along the fairways in
Sicily. Therefore, bathymetry increased from SW to NE around the
thrust belt. During the Langhian the strata of the southern
Apennines lay under deeper water than the thrust system of Sicily.

A challenge remains in defining the required confining slope to
the SE of this thrust belt, such that turbidity currents from the
Numidian system did not break out into the Ionian Sea basin (hence
the question mark in Fig. 14). This inferred confining feature lies
within what we refer to here as the ‘Calabrian Gap’. Most existing
palaeogeographical reconstructions depict the Calabrian Gap as

Fig. 14. Regional model for the continuity
of the Numidian depositional system,
routed across a thrust system connecting
the southern Apennines, through Sicily
into the Maghrebian orogen of north
Africa.

Fig. 13. Schematic representation of the
Numidian turbidite system in Sicily and
the southern Apennines. Thrust systems
provided sinuous corridors that act to
confine, but not contain, the causative
turbidity currents for the Numidian,
effectively fractionating highly elongate
sand fairways from finer-grained sediment
fractions. Coarse, amalgamated sandstones
are inferred to have been deposited in
distinct bar-form patches, elongated along
the sand fairways. The thrust system also
ponded relatively immature orogen-
sourced sediment into thrust-top basins.
These turbidites are inferred to have been
both confined and contained, in the sense
of Southern et al. (2015).
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containing an arm of the Tethyan ocean floor projecting westwards
from the site of the modern Ionian Sea (e.g. Fig. 2a), separating the
two orogenic foreland blocks of Hyblea and Apulia (Fig. 3b and c).
Notwithstanding its widespread adoption in palaeogeographical
reconstructions for the central Mediterranean, it seems unlikely that
such a continuous seaway existed, certainly during the Langhian, or
presumably the Numidian flows would have navigated a pathway
through the structured seabed to this bathymetric low.

A variety of palaeogeographical reconstructions can satisfy the
requirement for a confining slope to the SE of the Numidian sand
fairway to fill the Calabrian Gap between Sicily and the southern
Apennines. Le Breton et al. (2017)Q10

¶
suggested that Hyblea and

Apulia were in close proximity at 20 Ma and that the two blocks
have separated as Apulia experienced a counter-clockwise rotation
and convergence with the eastern side of the Adriatic Sea
(Dinarides). Restoration of this displacement closes the Calabrian
Gap. The confining slope to the Numidian system is provided by a
near continuous platform and associated NW-facing slope. It is the
subsequent rotation of Apulia and its divergence from Hyblea that
opened the Calabrian Gap for the Calabria arc to migrate
southeastwards into the Ionian basin. However, this model requires
substantial right-lateral displacements to cut the Ionian basin and
would be expected to offset the escarpment that now defines the SW
edge of the Apulian platform and Adriatic Sea. No such structure
has been recognized (e.g. Catalano et al. 2001). It seems most likely
that Hyblea and Apulia have remained in the same relative position,
at least since the Mesozoic.

Rather than displace Apulia relative to Hyblea, the Calabrian Gap
may instead have been filled by the continuation of continental crust
from these two blocks, much of which now lies buried and partially
telescoped by the southern Apennine and Sicilian thrust systems. In
this model the western limit of Ionian Tethys coincided with the
modern Malta escarpment. That there has been continuity between
Apulia and the Mesozoic carbonate platforms of the southern
Apennines and continental north Africa is strongly indicated by the
dispersal of terrestrial megafauna during the late Cretaceous (e.g.
Zarcone et al. 2010).

A third alternative, and our preferred model, for filling the
Calabrian Gap is to invoke a submarine thrust belt largely occluding
the deep basin lying on Ionian oceanic crust (Fig. 14). The
challenge with this model is to create a scenario where Numidian
turbidites are entirely restricted to lie on the thrust belt. Their flows
cannot have breached the thrust belt and accessed the deep ocean
basin that would have lain ahead of it.

One remaining challenge facing our model for a structurally
confined Numidian turbidite system lies in accounting for the
volumes of finer-grained sediment that is presumed to have been
carried over the coarser grain fractions through flow bypass. Earlier
flows that deposited their coarse sand in Sicily could of course have
carried their finer sand and mud into what is now the southern
Apennines. However, the significant bypassed sediment inferred
here to have been associated with the coarser fractions of the
southern Apennines has no obvious down-system continuation
within which it might have accumulated. One possibility is that the
distal flows broke out of their thrust-top confinement to enter a true
foredeep. In Sicily, for example, the more forelandward strati-
graphic sections are dominated by mud and very fine sands (Fig. 5,
column E). Although some of this material may represent lateral
overspill from confined flows on the thrust belt, it is possible that
some may also represent distal deposits from older flows.

A modern analogue for the palaeogeography proposed here for
the central Mediterranean during earlyMiocene times lies in the SW
Caribbean. Drainage from South America enters the Caribbean at
the Gulf of Uraba and encounters a seabed structured by folds of the
North Panama Thrust Belt (e.g. Silver et al. 1990). Thrust-top
basins (e.g. the San Bias basin) are trapping at least part of the

detritus being shed from the rising Panama orogen. Other examples
could include the NW Arafura Sea, where the eastern part of the
Banda arc impinges on western Papua, Indonesia.

Turbidites as tectonic tracers

The central tenets of our paper are that turbidites, as the products of
subaqueous gravity flows, can map out bathymetric lows, and that
their sedimentology may be used to infer the shape of the basins
within which they are contained. Our work is consistent with other
studies indicating that structurally confined but uncontained
turbidite systems leave sand-rich fairways comprising stacked
bed-sets (e.g. Liu et al. 2018; Casciano et al. 2019). These turbidite
sand fairways reflect not only the connectivity between arrays of
basins but also the relative elevation of parts of the basin floor.
These are first-order elements that can be used to infer
palaeogeography, especially charting parts of the history of vertical
movement, in our case study, of the complex array of blocks and
basins that have become incorporated into the Maghrebian–
Apennine orogenic system. That coarse sand has been carried a
long distance across the basins requires the causative turbidity
currents to maintain their capacity to carry sediment, a deduction
reinforced by the presence of large grains in the more distal deposits
together with distinct grain-size breaks throughout (indicative of
flow-stripping and bypass; Stevenson et al. 2015). This behaviour is
characteristic of deposits from flows that were confined laterally. In
the absence of autogenic channel–levee complexes, turbidites with
these characteristics presumably reflect confinement by basin
structures.

A key assumption in our analysis has been that the sand and
coarse grain-size fractions within the Numidian turbidites have been
derived from north Africa. This could be invalidated if the causative
flows entrained sand from older successions that originally lay in
their paths. However, for the Numidian system in Sicily and the
southern Apennines, its substrate is represented by carbonates with
their associated mudstones. There are no significant coarse
siliciclastic successions from which quartz sand might have been
entrained. Therefore, the Numidian sediment effectively acts as a
tracer or dye, uncontaminated from its north African source, that
tracks turbidity currents down-system. This is an important
constraint. For our approach to be applied elsewhere, turbidite
systems should be chosen that represent an early influx of
siliciclastic material into an array of basins that otherwise, and
previously, were starved of such sediment compositions. In
orogenic systems, especially those of the western Tethys, where
carbonate deposition dominated much of the Mesozoic, it is the
earlier synorogenic strata that may prove the most amenable to our
approach.

Conclusions

Coarse-grained quartz sandstones of the Numidian turbidite system
(Burdigalian–Langhian in age) are found in Sicily and the southern
Apennines of mainland Italy. These outcrops have been carried on
tectonic allochthons and partially dismembered by rotational
thrusting through the later Miocene and Pliocene. When these
displacements are reconstructed, the Numidian sandstone defines a
composite fairway that can be traced for over 300 km.

Both in Sicily and the southern Apennines, the Numidian
sandstones have abrupt bed tops that show distinct grain-size breaks.
The deposits include quartz pebbles and lags. This suggests not only
that the capacity of the causative turbidity currents to carry coarse
sand and bed-load was maintained for many hundreds of kilometres
down-system but also that much of the flow bypassed the seabed.
Flow bypass on this scale strongly suggests that the turbidity
currents were confined (e.g. Stephenson et al. 2015 Q11
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). Our previous
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work in Sicily (Pinter et al. 2016, 2018) indicates that confinement
was provided by active folding associated with the Maghrebian
thrust belt.

We conclude that the Numidian turbidites were deposited in
structurally controlled tortuous corridors, developed along syn-
forms associated with a submarine thrust system, and that the
Numidian turbidity currents flowed across an evolving tectonic
allochthon (see also Butler et al. 2019). Structural evolution will
have influenced the path taken by the flows, an inference consistent
with the system’s biostratigraphy for Sicily (Pinter et al. 2016,
2018). This shows diachronous migration of the main sand fairways
through the Burdigalian and Langhian.

The Numidian turbidity currents were fed axially, derived from
the SW corner of the thrust belt. The southern Apennine outcrops of
Numidian sandstone show the same sedimentary characteristics as
their Sicilian counterparts. Therefore, the thrust system and its
bathymetric relief was continuous, from the main Maghrebian
chains of northern Africa into the Apennine chain. Presumably the
Langhian-aged sandstones of the southern Apennines were
deposited by flows that bypassed through the sand fairways of
that age in Sicily. Bathymetry increased anticlockwise around the
thrust system. It is unlikely that there was deep bathymetric
connection between this arcuate thrust system and the Ionian Sea
basin to the SE. Certainly, by Burdigalian and Langhian times, any
residual arm of the Tethyan ocean through this region had
effectively closed.

The Numidian sandstones stratigraphically overlie various
substrata representative of different Mesozoic palaeogeographical
units (Butler et al. 2019, and references therein). For example,
Numidian turbidites locally overlie Mesozoic rocks in platform
facies in the southern Apennines but the causative turbidity currents
from which these sandstones were deposited must have transited
through the sand fairways in Sicily, and these lie on apparently
deep-marine strata (Argille Varicolori Formation). This implies
significant restructuring of the Mesozoic palaeogeographical
framework. The Mesozoic units are not, of themselves, indicative
of the palaeogeography of blocks and basins in the central
Mediterranean, certainly during the Miocene and probably
through the early Tertiary.

Stratigraphy has long been used to inform palaeogeographical
reconstructions. The Numidian case study developed here illustrates
the utility of using the sedimentology of turbidites to gain
understanding of basin structure that can inform palaeogeographical
models on the scale of hundreds of kilometres. Our study benefits
from using strata with distinctive sediment compositions, in this
case hyper-mature quartz sand derived from north Africa that
entered a seaway floored by carbonates, claystones, mudstones and
marls. The distinct provenance reduces possible confusion with
other, orogen-derived, more locally sourced turbidites. The
approach is therefore most applicable to understanding systems
using the first siliciclastic clastic inputs into otherwise sediment-
restricted marine basins.
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