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Abstract 

The aim of this paper is to propose a new strategy to optimize the performance and to reduce the emission levels of 
Internal Combustion Engines by varying intake valve lift profile and timing. The object of the study was an ICE – SI, 
GDI, 1.4 l, four cylinders, 16V, turbocharged. It was equipped with an electrohydraulic VVA system which allows 
the intake valves to vary, at the same time, lift and timing in order to realize early IVC and/or late IVO. Thanks to 
this, the engine can always operate in the optimal fluid dynamics conditions in order to achieve the best performance 
and emission levels. A model of the engine was implemented in GT-Power™ for several operating conditions (partial 
load, full load, low and high engine speed), and then coupled with a single-objective genetic algorithm, evolved 
subsequently into a multi-objective genetic algorithm. Two different analysis were carried out: the first one for 
reducing CO2 emissions at partial load and low engine speed (single-objective optimization), and the second one for 
increasing the brake torque at full load (multi-objective optimization). The proposed model shows the possibility to 
quickly find optimal solutions for the test cases considered, and it let the opportunity to be further developed and 
improved in order to optimize many other parameters of the ICE. 
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1. Introduction 

Nowadays the ICE design process, but in general design processes for all engineering fields, is 
definitely dependent on CAE techniques such as CFD, FEA, CAD, CAM and so on. These techniques 
allow to create mathematical models of the engine in order to either entirely design it or to optimize pre-
existent one. In the first case the process is obviously quite long and needs to be validate through 
experimental tests, on the other hand the optimization process is definitely faster because in general it 
needs just “few adjustments” of the mathematical model. 

One common optimization technique used is based on Genetic Algorithms (GAs), which are search 
algorithms based on the mechanics of natural selection and natural genetics, proposed by John Holland as 
a heuristic method based on “survival of the fittest”. [1-3]. Currently GAs can be easily coupled with one 
or more CAE tools mentioned above, and thanks to their potentiality is relatively simple to find the 
optimal solution for the mathematical model considered. 

In this paper the authors proposed a method to optimize engine parameters by coupling a GA 
implemented in Matlab™ with a 1D GDI – VVA engine model implemented in GT-Power™ [4], 
working at different operating conditions such as: 2000, 2500 r/min at partial load (respectively at about 
10% and 50% compared to the maximum value of bmep); 1500, 1750 and 5000 r/min at full load. The 
main features of the considered engine are summarized in Table 1 while fig. 1 shows the comparison 
between the experimental and numerical data for 5000 r/min full load, normalized with respect to the 
maximum value of in-cylinder absolute pressure of the engine. For the sake of synthesis and space the 
comparison between experimental and numerical data for the others operating points was omitted. 

Table 1: Engine main features 

Model FIRE 

Type GDI, Turbocharged, 4 cyl., 16 valves, electrohydraulic VVA 

Displacement  1368 cm3 

Bore/Stroke 72 mm / 84 mm 

Compression ratio 10 

 
Thanks to the so called “MultiAir” VVA system controlling the inlet valves, it is possible to vary both 

lift and timing in order to realize only EIVC, or EIVC and LIVO (Fig. 2) and consequently regulate the 
load of the engine to adapt it to the different demands of the driver. Furthermore “MultiAir” let the 
possibility of realizing a “pre-lift” [5-7] of the valves during the exhaust stroke to increase the overlap and 
either achieve internal EGR at part load to reduce NOx emissions, or increase the volumetric efficiency at 
high load to maximize the brake torque. This second strategy was implemented for 1500 and 1750 r/min 
at full load. Exploiting the potentiality of Genetic Algorithm matched with such VVA system, it was 
possible to explore different configurations of the intake valves lift and timing for the operating 
conditions considered. 

For each operating points considered, a Wiebe function, which gives the mass fraction burned versus 
crank angle curve, was imposed. Each of these functions was determined on the base of experimental 
measures, thus they already take into account the anti-knock strategies (e.g. retarded spark timing, 
mixture enrichment, etc.) [8].  

Since the goal of the present work was to create a mathematical model which would allow the 
optimization of ICE, the first analysis was a single-objective optimization focused just on the reduction of 
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CO2 emissions at partial load and low engine speed. The second one indeed was focused on the 
maximization of brake torque at full load maintaining at least the same level of CO2. 

The proposed model is found to be useful for the purpose that had been set, and results flexible 
because it requires just few adjustments to be further developed in order to optimize other engine 
parameters. 

Because of obvious confidentiality reasons, the valve lift reported are normalized by the maximum 
value of lift, such as only the absolute variations of brake specific CO2 and brake torque are specified as 
results. For other engine parameters the percentage variations were reported. 

 
 

  
Fig. 1.: Comparison between experimental and numerical in-cylinder 

pressure 
Fig. 2.: Achievable lift profiles with MultiAir VVA 

system [7] 
 
Nomenclature  

 i-th coefficient of amplitude [-] bsCO2 Brake specific fuel consumption 

[g/kWh] 

 i-th coefficient of timing [-] btq Brake torque [Nm] 

 i-th coefficient of shape [-] bmep Brake mean effective pressure [bar] 

 Number of peaks to fit [-] θ2 Start angle of pre-lift [deg] 

y Valve lift [-] y0 Pre-lift high [-] 

θ Crank angle [deg] VVA Variable Valve Actuation 

n Rotational speed [r/min] LIVO Late Inlet Valve Opening 

RMSE Root Mean Squared Error EIVC Early Inlet Valve Closing 

EGR Exhaust Gas Recirculation  GDI Gasoline Direct Injection 

2. Mathematical model description 

The basic idea to create the mathematical model was to fit the lift profile of the valves with a 
parametric equation, whose parameters would have been the input for the GA. Thanks to this strategy the 
optimizer would be able to handle with the valve lifts, create new ones and find the optimal solution for 
the operating condition considered. The new valve lifts would be the input for the 1D model of the engine.  
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Within the GA two types of constraints were implemented: physical and numerical. The first one to 
ensure that all new valves lift profiles generated would follow the geometry of the cam, the second one to 
avoid that one or more lift profiles that worsened the original performance (CO2 or brake torque) may be 
select for mating [9].To find the parametric equations needed the Gaussian model within the Curve Fitting 
tool of Matlab™ was used, the equation of the model is given by: 
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The valve lift profiles of the implemented engine refer to its actual operating conditions in terms of 
actual geometry of the cam, inertial data, spring preload, thermo-physical properties of the lubricant oil 
and VVA strategy [5]. All this leads the lift profiles to result slightly asymmetrical with respect to their 
maximum value. For this reasons different values of k were assumed in Eq. (1) in order to maximize the 
correlation factor R2 and minimize consequently the RMSE, in particular for 2000, 2500 r/min at partial 
load and 5000 r/min at full load, k = 3; for 1500 r/min at full load, k = 6; for 1750 r/min at full load, k = 8. 
It means that the number of input for the GA were 9 in the first three cases, 20 in the fourth case (18 from 
Eq. 1 plus the start angle and high of pre-lift) and 26 for the fifth case (24 from Eq. 1 plus the start angle 
and high of pre-lift). Note that all fittings obtained with Eq. (1) are valid for 7200  and for each 
of them a value of R2 greater than 0.99 was obtained. 

At the end of each 1D simulation the post-processing tool of GT-Power, named GT-Post™, provided to 
automatically generate a text file containing the results of bsCO2 and btq that would be read by GA [10]. 
In this way the GA was able to store and compare the variables to optimize. Figure 2 shows the original 
(solid blue line) and fitted (dashed red line) lift profiles for 1500 r/min full load, while fig. 3 shows how 
the parameters y0 and θ2were defined within the algorithm. For reasons of simplicity the others fitting 
were omitted but the results are quiet similar. 

 

  
Fig. 3.: Comparison between original and fitted lift profile for 

1500 r/min 
Fig. 4.: Start angle of pre-lift and pre-lift high explanation 

 
Figure 5 shows how the entire optimization tool works. For the bi-objective optimization cases the GA 

provided also to mark all individuals that did not observe numerical constraints as unfeasible, in order to 
divide all individuals of the objective space into three categories: unfeasible, feasible (dominated) and 
Pareto front (non dominated) [9].It is known that the performance of GAs are strongly influenced by the 
value of population size, number of generations and the other typical GAs’ parameters [11]. Currently a 
depth study about these parameters were not conducted, so it took about three days to perform each 
simulation on a HP h8-1301el desktop, with Intel Quad Core i7-3770 processor (3.4 GHz), assuming a 
population size of 200 individuals and a max number of generations of 100 [12-14]. 
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Fig. 5.: Flowchart of the optimization tool 

3. Results of numerical simulations 

3.1. 2000 r/min partial load 

As mentioned before, for partial load simulations the target of GA was just the reduction of CO2 
emissions. Figure 6 shows the trend of CO2 level for each generation, while fig. 7 shows the optimized 
valve lift that realizes the minimum CO2. A reduction of about 108 g/kWh of CO2was obtained with the 
optimized lift profile, an increase of brake efficiency (+2.5%) and a higher brake mean effective pressure 
(+33.8%) were obtained too. 
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All this was probably due to the severe conditions of partialization to which the engine is subjected for 
this operating conditions with a very small lift profile. As shown in fig 7. the optimized lift allows the 
engine to “deeply breathe” and definitely to increase the work per cycle. The values of bsCO2 in fig. 6are 
normalized with respect to the starting emitted level by the engine for this case. Note that the optimization 
process for this operating point led to an increase of bmep. Trying to maintain the original value of 2 bar, 
a second optimization was carried out, in which the numerical constrain imposed was just this value. In 
this case the GA did not achieve any improvement in terms of bsCO2, this probably means that the valve 
lift was optimized yet, and a reduction of CO2 level is obtainable just with a variation of the load. 

 

  
Fig. 6.: Reduction of CO2 vs. number of generations Fig. 7.: Optimized lift profile at 2000 r/min  

3.2. 2500 r/min partial load 

Even for 2500 r/min the procedure and the considerations were the same of the previous case but a 
reduction of just 3 g/kWh of CO2 was realized with the GA, accompanied by an increase of brake 
efficiency (+0.1%) and brake mean effective pressure (+6.4%). The minor improvement compared to the 
2000 r/min case was probably due to the fact that the original valve lift for this case was more similar to 
the maximum lift obtainable with the cam geometry, so the engine is definitely less partialized and 
already works consequently in a quasi-optimal condition. 

3.3. 5000 r/min full load 

In this case, the valve lift is very close to the maximum lift achievable with the cam, for this reason the 
bi-objective optimizer was not able to find any better configuration. Figure 8 shows that all the individuals 
created by GA were marked as unfeasible because they did not respect at least one of imposed physical 
constraints. The brake torque and brake specific CO2 reported in figure 8are normalized with respect to 
the starting emitted level for this case. 

 

 

Fig. 8.: Objective space for 5000 r/min full load 
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3.4. 1500 r/min full load 

As mentioned before, either for this case or for the next one, a pre-lift strategy was applied to increase 
brake torque. As the valve lift profile was almost at its maximum value for both cases (see fig. 3) it did 
not make sense to vary it entirely, so the only parameters that varied within the algorithm were the start 
angle of pre-lift and its high (see fig. 4). The optimized pre-lift strategy leads to a higher volumetric 
efficiency (+9.7%) with consequent increase of about 8 Nm of the brake torque and a reduction of 2 
g/kWh of CO2. Figures 9 and 10 show the results obtained. In particular on the top left of fig. 9 it can be 
noted a red square representing all individuals which did not respect at least one of imposed constraints as 
shown in fig. 5. 

 

  

Fig. 9.: Objective space for 1500 r/min full load Fig. 10.: Optimized lift profile at 1500 r/min full load 

3.5. 1750 r/min full load 

Following the same procedure of the previous case, for this operating point the improvement of 
performance in terms of brake torque was of about 4 Nm with a reduction of 10 g/kWh of CO2 and an 
increase of the volumetric efficiency of about 3%. 

4. Conclusions 

In the present work an optimization tool was proposed to evaluate and then improve the performances 
of ICE. The study was focused on a GDI engine equipped with an electro-hydraulic variable valve 
actuation system for the inlet valve, called “MultiAir”. This system allows to vary the inlet valve lift 
profile and to realize consequently different actuation strategies for the inlet valves such as late opening, 
early closure and a pre-lift to increase the overlap. A genetic algorithm was implemented and matched 
with a 1D model of the engine for several rotational speed and load, in order to find, under different 
constraints, new valve lift profiles which led to a reduction of brake specific CO2 or to an increase of 
brake torque.  

For partial load of 2000, 2500 r/min, a single-objective optimization was performed. The target of the 
optimization was the reduction of brake specific CO2. The optimization process showed that by varying 
the valve lift profile, depending on the rotational speed considered, it was possible to obtain a substantial 
reduction of carbon dioxide. For full load cases at 1500, 1750 and 5000 r/min, a bi-objective optimization 
was carried out instead, with the aim of maximize brake torque maintaining at least the same level of 
brake specific CO2. At low rotational speed an increase of brake torque was obtained exploiting the pre-
lift strategy, conversely at 5000 r/min the genetic algorithm did not find any valve profile that improved 
the starting performances. 



118   S. Brusca et al.  /  Energy Procedia   82  ( 2015 )  111 – 118 

The optimization tool resulted adaptable for the different cases considered and it could be easily 
modified in order to evaluate and optimize other engine parameters. One interesting evolution of the 
proposed model is to extend the pre-lift strategy also at partial load, and after a proper calibration of the 
predictive combustion model of the 1D code, evaluate the reduction of NOx emissions due to the internal 
exhaust gas recirculation. 
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