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Abstract. Analytical functions for the propagators of QCD, including a set of chiral
quarks, are derived by a one-loop massive expansion in the Landau gauge, and are studied
in Minkowski space, yielding a direct proof of positivity violation and con�nement from
�rst principles. Complex conjugated poles are found for the gluon propagator.

1 ntroduction

Most of the non-perturbative approaches to QCD rely on numerical calculations in the Euclidean
space, where a clear picture for the propagators of QCD emerges in Landau gauge by lattice simu-
lations, by numerical solution of Schwinger-Dyson equations and, more recently, by unconventional
variational methods[1–3].

However, since physics happens in Minkowski space, many important dynamical information
cannot be extracted by the Euclidean formalism, unless we have an analytic function that can be
continued to the physical space or the whole numerical analysis is carried out in Minkowski space[4].
Even the concept of a dynamical mass has no obvious meaning for con�ned particles like gluons and
quarks. Thus, it is still questioned if the gluon propagator has poles, while some evidence of positivity
violation has only been shown by indirect arguments.

Even if the analytic continuation of a limited set of data points is an ill-de�ned problem, a Källen-
Lehmann spectral function was reconstructed in Ref.[5] from the lattice data of the gluon propagator,
giving some direct evidence for positivity violation and the absence of any discrete mass pole on the
physical real axis.

Quite recently, an analytical approach has been proposed that is based on a di� erent expansion
point for the exact Lagrangian of pure Yang-Mills theory in the Landau gauge[6, 7]. The new ex-
pansion is around a massive free-particle propagator, yielding amassiveloop expansion with massive
particles in the internal lines of the Feynman graphs. From �rst principles, without adding spurious
counterterms or phenomenological parameters, at one-loop the expansion provides analytical univer-
sal functions for the dressing functions, predicting some scaling properties that are satis�ed by the
data of lattice simulations[8]. In the Euclidean space and Landau gauge, the massive expansion is in
impressive agreement with the lattice data and the one-loop propagators are analytic functions that
can be easily continued and studied in Minkowski space. Moreover, the massive expansion has been
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extended to full QCD by the inclusion of a set of chiral quarks in the Lagrangian[9] and the dynamical
breaking of chiral symmetry is described on the same footing of gluon mass generation, providing a
uni�ed picture from �rst principles. Since analytic functions are derived for the one-loop propagators
in the Landau gauge, they can be easily continued to Minkowski space where the spectral functions
can be studied in detail. In this paper, a concise review is given of the main features of the propagators
in Minkowski space, where theirdarkside emerges by the optimized massive expansion of Refs.[7, 9].

2 The Optimized Massive Expansion

The full Lagrangian of QCD, includingNf massless chiral quarks, can be written as

LQCD = LYM + L f ix + LFP + Lq (1)

whereLYM is the Yang-Mills term

LYM = −
1
2

Tr
(

F̂�� F̂ ��
)

(2)

L f ix is a covariant gauge �xing term,LFP is the ghost Lagrangian arising from the Faddev-Popov
determinant andLq is the quark Lagrangian

Lq =
Nf
∑

i=1

	̄ i

[

i 6@− g 6AaT̂a

]

	 i : (3)

The total action isStot = S0 + SI , where the free-particle termS0 is the usual quadratic part that
can be written in terms of the standard free-particle propagators of gluons, quarks and ghosts, namely
� 0, S0 andG0, respectively.

As shown in Refs.[7, 9] a shift of the pole in the propagators can be introduced by an unconven-
tional splitting of the total action. We may add and subtract the arbitrary terms�S g, �S q in the total
action

S0 → S0 + �S q + � Sg; SI → SI − �S q − � Sg (4)

and take

� Sg =
1
2

∫

Aa� (x) � ab � ��
g (x; y) Ab� (y)ddxddy

� Sq =
Nf
∑

i=1

∫

	̄ i(x) �  q(x; y) 	 i(y)ddxddy (5)

where the vertex functions� g, � q are given by a shift of the inverse propagators

� ��
g (x; y) =

[

� −1
m

��
(x; y)− � −1

0
��

(x; y)
]

� q(x; y) =
[

S−1
M (x; y)− S−1

0 (x; y)
]

(6)

and� m
�� , SM are massive free-particle propagators

� −1
m

��
(p) = � m(p)−1t�� (p) +

−p2

�
` �� (p)

� m(p)−1 = −p2 + m2; SM(p)−1 = 6p− M: (7)
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Heret�� , l �� are Lorentz projectors and the massesm andM are totally arbitrary. Since�S q and�S g

are added and subtracted again, the total action cannot depend on the masses, but any expansion in
powers of the new shifted interactionSI → SI−� Sq−�S g is going to depend on them at any �nite order
because of the truncation. Thus, while we are not changing the content of the theory, the emerging
perturbative approximation is going to depend on the masses and can be optimized by a choice ofm
andM that minimizes the e�ects of higher orders, yielding a variational tool disguised to look like a
perturbative method[7, 9]. The idea is not new and goes back to the works on the Gaussian e�ective
potential[10–19] where an unknown mass parameter was inserted in the zeroth order propagator and
subtracted from the interaction, yielding a pure variational approximation with the mass that acts as a
variational parameter.

The shifts�S q, �S g have two e�ects on the resulting perturbative expansion: the free-particle prop-
agators are replaced by massive propagators and new two-point vertices are added to the interaction,
arising from the counterterms that read

�  ��
g (p) = m2t�� (p); �  q(p) = −M: (8)

The Landau gauge is the optimal choice for the massive expansion[7] and from now on we will
take the limit� → 0. In Eq.(7) the gluon propagator becomes transverse and we can simplify the
notation and drop the projectorst�� everywhere whenever each term is transverse. Moreover we drop
all color indices in the diagonal matrices.

We can use the standard formalism of Feynman graphs with massive zeroth order propagators� m,
SM and the counterterms�  g = m2, � q = −M that must be added to the standard vertices of QCD.

Assuming that the e�ective coupling never reaches values that are too large[7], we may neglect
higher loops and take a double expansion in powers of the total interaction and in powers of the
coupling, retaining graphs withn vertices at most and no more than` loops.

The graphs contributing to the quark and ghost self-energy and to the gluon polarization are shown
in Fig. 1 up to the third order and one-loop. Their calculation is straightforward and explicit analytical
expressions are reported in Refs.[7, 9].

=Σ +gh

= +qΣ + +

++= + + +Π

++ + +

Figure 1. Two-point graphs with no more than three vertices and no more than one loop. The crosses are the
counterterms� g = m2, � q = −M. In this paper, the quark and ghost self energy and the gluon polarization are
obtained by the sum of all the graphs in the �gure.
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3 Analytic continuation: pure Yang-Mills theory

The dressed propagators of pure SU(N) Yang-Mills theory can be written as

�( p)−1 = −p2 +
5
8

�m 2 −
[

�( p) − �(0)
]

; G(p)−1 = p2 − � gh(p) (9)

where the ghost self-energy� gh and the gluon polarization� were evaluated in Ref.[7] as a sum of
the graphs in Fig. 1 (omitting quark loops) and� is an e�ective coupling. The one-loop gluon and
ghost propagators are made �nite by standard wave function renormalization and explicit analytic
expressions were derived by dimensional regularization in Ref.[7].

It is useful to introduce the adimensional ghost and gluon dressing functions

�( p) = p2G(p); J(p) = −p2�( p): (10)

They can be written as

[

� �( s)
]−1 = G(s) + G0 [� J(s)]−1 = F(s)+ F0 (11)

wheres = −p2=m2 is the Euclidean momentum and the two adimensional functionsF(s), G(s) are
given by the polarization and self energy graphs in Fig. 1, while all the constants are grouped together
in the �nite one-loop renormalization constantsF0 andG0 that are the only free parameters to be opti-
mized. Being equivalent to a variation of the subtraction point, any change of the additive constant can
be seen as a variation of the renormalization scheme yielding a special case ofoptimized perturbation
theorythat has been proven to be very e�ective for the convergence of the expansion[20].

A very important consequence of Eq.(11) is that, up to an arbitrarymultiplicativerenormalization
constant, the inverse dressing functions are given by the universal functionsF(s) andG(s) up to an
additive renormalization constant. Such scaling property is satis�ed quite well by the lattice data
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Figure 2. The real and the imaginary part of the gluon propagator are displayed together with the lattice data of
Ref.[21] (N = 3, � = 5:7,L = 96). The propagator is normalized by its �nite value atp2 = 0 and is evaluated by
Eq.(11) with the optimal choiceF0 = −1:05 andm = 0:73 GeV.
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Figure 3. The real and the imaginary part of the gluon propagator (enlargement of Fig. 2).
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Figure 4. Real part Re� and imaginary part− Im � = � p2� of the ghost dressing function according to Eq.(11)
for m = 0:73 GeV and several values ofG0 in the range 0:2 < G0 < 0:3. The points are the lattice data of Ref.[21]
(N = 3, � = 5:7, L = 80). The best agreement with the data points is obtained forG0 = 0:24 (solid line). The
dressing function is scaled by a �nite renormalization constantZG.

for SU(2) and SU(3) that collapse on the same universal curvesF(s),G(s) in the infrared[6–9], thus
con�rming that higher order terms can be made negligible by an optimized choice of the constants
F0, G0.

For S U(3) and−p2 < 4 GeV2 the lattice data of Ref.[21] are very well reproduced by setting
F0 = −1:05 andm = 0:73 GeV in Eq.(11). Some deviation occurs for−p2 > 4 GeV2 because of the
large logs that require a resummation by RG equations in the UV.
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Figure 5. Imaginary part− Im � = � p2� of the ghost dressing function in the complex plane form = 0:73 GeV
andG0 = 0:24

The gluon propagator can be continued to Minkowski space by settings = −p2=m2 − i" and the
resulting complex function is shown in Fig. 2. The imaginary part has a cut forp2 > 0 where it de�nes
a spectral function. The lack of any sharp peak or pole on the real axis and the violation of positivity
can be regarded as a direct proof of con�nement.

Out of the real axis, in the complex plane, the propagator has two conjugated poles atp2 ≈

(0:16± 0:60i) GeV2, close to the imaginary axis, as predicted by thei-particle scenario[22] emerging
from the re�ned version[23–25] of the Gribov-Zwanziger model[26].

The one-loop ghost propagator, by Eq.(11) mantains a pole atp2 = 0. The analytic continuation
s = −p2=m2 − i" yields

ReG(p2 + i") =
Re� (p2)

p2

ImG(p2 + i") =
Im � (p2)

p2
− ��(0) � (p2) (12)

and we can de�ne a spectral function on the cut

�( p2) = −
1
�

ImG(p2 + i") = �(0) �( p2) −
1
�

Im �( p2)
p2

(13)

which has a continuous term given by the imaginary part of the dressing function divided by−p2.
The details of the continuous term of the spectral function are shown in Fig. 4 by the direct plot of
− Im � , together with the real part Re� and the lattice data of Ref.[21] (N = 3, � = 5:7, L = 80).
We observe that the discrete and the continuous terms have opposite sign in Eq.(13), violating the
positivity condition. In the Euclidean rangep2 < 0, the ghost dressing function is not too much
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Figure 6. The real part of the gluon propagator is evaluated by settings = −p2=m2 − i", for m = 0:80 GeV and
several values ofM = 0:48;0:52; 0:56;0:65 GeV. The constantF0 varies in the range−0:65< F0 < −0:6 in order
to keep all curves on the lattice data in the Euclidean space, forp2 < 0. The data points are extracted from Fig. 1
of Ref.[27] forNf = 2. The propagator is normalized by its �nite value atp2 = 0.

sensitive to a change of the additive constantG0. In Fig. 4, a change ofG0 in the range 0:2< G0 < 0:3
is compensated by a change of the �nite renormalization constantZG, so thatZG�( p2) stays on the
lattice data points. The best agreement is found forG0 = 0:24 and is shown as a solid line in Fig. 4.
The imaginary part has a wide peak atp2 ≈ (0:56)2 GeV 2 and never changes sign. As shown in
Fig. 5, it is �nite in the whole complex plane, with a cut on the real axis where the spectral function is
de�ned by Eq. (13).

4 Analytic continuation: chiral QCD

The inclusion of a set of chiral quarks requires the calculation of the quark loops contributing to the
gluon polarization and the quark self-energy� q as shown in Fig. 1. Since there are no one-loop graphs
with quark lines that contribute to the ghost self-energy� gh, the one-loop ghost dressing function of
QCD is the same of pure Yang-Mills theory.

The gluon polarization of the full theory is obtained from the result for pure Yang-Mills theory by
just adding the quark loops of Fig. 1. Explicit analytical expressions are reported in Ref.[9].

The real part of the gluon propagator is shown in Fig. 6 fors = −p2=m2 − i". While rather
insensitive to the choice ofM in the Euclidean space, the shape of the propagator depends onM when
plotted as a function of the time-like momentump2 > 0. The data points in the �gure are the lattice
data of Ref.[27] for two light quarks, having no lattice data for the gluon propagator in the chiral limit.
We observe the presence of a positive peak atp2 ≈ m2 and a negative peak just before the two-particle
thresholdp2 ≈ (2M)2 where the real part of the propagator changes sign and becomes positive. As
shown in Fig. 7, where the imaginary part of the propagator is displayed, the spectral density becomes
negative and its positivity violation is a direct proof of con�nement. At variance with pure Yang-Mills
theory, there is a two-particle threshold atp2 ≈ (2M)2 where the spectral function turns positive for
a while. Besides being more rich on the real positive axisp2 > 0, for Nf = 2 the unquenched gluon
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Figure 7. The imaginary part of the propagator is evaluated by settings = −p2=m2 − i" for the optimal set
m = 0:80 GeV, M = 0:65 GeV,F0 = −0:65 (solid line). The dashed line is a detail of the real part. The
propagator is normalized by its �nite value atp2 = 0.

propagator has more poles in the complex plane. For the optimal setm = 0:8 GeV,M = 0:65 GeV We
�nd two pairs of conjugated poles atp2 ≈ (1:69;±0:1) GeV2 andp2 ≈ (0:54;±0:52) GeV2.

The quark self energy� q is evaluated by the tree term� q = −M and the three one-loop graphs
in Fig. 1. In the dressed quark propagatorS(p) the massM is canceled by the tree term� q = −M.
However, even in the chiral limit, a mass function is generated for the quarks by the interaction
terms[9].

The dressed quark propagator can be written as

S(p) = Sp(p2) 6p + SM(p2) (14)

where the scalar functionsSp, SM follow from the one-loop self energy, yielding explicit analyti-
cal expressions that can be easily continued to Minkowski space by settings = −p2=m2 − i". The
imaginary parts have a cut on the real positive axisp2 > 0 where we can de�ne two spectral densities

� M(p2) = −
1
�

Im SM(p2)

� p(p2) = −
1
�

Im Sp(p2) (15)

so that the propagator reads

S(p) =
∫ ∞

0
dq2 � p(q2) 6p + � M(q2)

p2 − q2 + i"
: (16)

Any observable fermion must satisfy the positivity conditions

� p(p2) ≥ 0 (17)

p � p(p2) − � M(p2) ≥ 0 (18)
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Figure 8. Details of the quark spectral functions for� s = 0:9, M = 0:65 GeV,m = 0:7 GeV.
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Figure 9. The quark spectral function [p � p(p2) − � M(p2)] is shown as a function of the physical momentum
p2 = −p2

E for m = 0:7 GeV,� s = 0:9 andM = 0:65 GeV. The positivity condition of Eq.(18) is violated for
p2 > q2

1 ≈ M2 below the two-particle thresholdq2
2 ≈ (m+ M)2.

that are strongly violated by the quark propagator, yielding a direct proof of con�nement.
The spectral functions are shown in Figs. 8, 9 for� s = 0:9, M = 0:65 GeV. We recognize a

discrete term atp ≈ 0:32 GeV, that arises from the pole of the propagator. We can identify two
di� erent thresholds. A �rst thresholdq2

1 ≈ M2 at the onset of anegativecontinuum spectral density
(q2

1 ≈ (0:65)2 ≈ 0:42 GeV2 in Figs. 8, 9). A second thresholdq2
2 ≈ (M+m)2 where the spectral density

turns positive (q22 ≈ (1:35)2 ≈ 1:82 GeV2 in Figs. 8, 9). While this second threshold can be identi�ed
with the usual two-particle threshold and the high-energy states have a positive spectral density above
q2 ≈ (m + M), the negative spectral density aboveq1 ≈ M has no obvious physical meaning. It
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violates the positivity condition (17) and cannot be related to any kind of free-particle behavior. Thus
the quark propagator can only describe con�ned particles. No complex poles are observed for the
quark propagator.

5 Concluding remarks

The massive expansion that was developed for pure Yang-Mills theory in Refs.[6, 7] and extended to
full QCD in Ref.[9] has been reviewed and used as a tool for exploring the dark side of the propagators
in Minkowski space.

By a direct comparison with the lattice data, the expansion is optimized in the Euclidean space
yielding accurate analytic propagators that can be easily continued to Minkowski space. Thus the
method provides a powerful tool for the study of dynamical properties and spectral functions that can
be hardly extracted from any numerical data set. From this point of view, the massive expansion is
very predictive and gives a direct proof of positivity violation and con�nement for all the particles
involved.

While no direct dynamical content can be given to the gluon mass and to the mass parameters, the
discrete one-particle term in the quark spectral functions can be identi�ed as the (con�ned) physical
mass of the constituent quarks. On the other hand, the mass parametersm, M are strongly related to the
thresholds of the spectral functions and determine their rich behavior that is observed in Minkowski
space.
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