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Topological pumping in Aharonov–Bohm rings
Tobias Haug1*, Rainer Dumke1,2,3, Leong-Chuan Kwek1,3,4,5 & Luigi Amico1,3,6,7,8

Topological Thouless pumping and Aharonov–Bohm effect are both fundamental effects

enabled by the topological properties of the system. Here, we study both effects together:

topological pumping of interacting particles through Aharonov–Bohm rings. This system can

prepare highly entangled many-particle states, transport them via topological pumping and

interfere with them, revealing a fractional flux quantum. The type of the generated state is

revealed by non-trivial Aharonov–Bohm interference patterns that could be used for quantum

sensing. The reflections induced by the interference result from transitions between

topological bands. Specific bands allow transport with a band gap scaling as the square-root

of the particle number. Our system paves a new way for a combined system of state

preparation and topological protected transport.
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Topological matter defines an important field in fundamental
physics with far reaching implications for quantum tech-
nology: the correlations encoded in the topological matter

are a precious resource for quantum technology; at the same time,
quantum technology can be exploited to study topological matter
with unprecedented precision and control 1–4. Among the several
important contributions given by David Thouless in this field, the
idea of topological pumping is particularly relevant for quantum
technology: charge is transported through a one dimensional
system using the topological band structure of an extended
(many-body) system5,6. This is realized by driving the system
periodically in time while protecting the band gaps.

Topological pumping has been studied experimentally in various
systems, including cold atoms7–9, photonic waveguides10 and
superconducting circuits11. Due to interference effects, topological
pumping displays very interesting features in ring-shaped
networks12,13. Here, we couple topological bands in interacting
Aharonov–Bohm (AB) rings attached to leads. The lead-ring
interfaces act as non-linear beam-splitters. We demonstrate how
interaction in such beam splitters can generate highly entangled
states, that can be revealed through interference patterns char-
acterized by a fractional flux quantum.

Among other quantum technology implementations, we want
to highlight Atomtronics: cold atoms matter-wave circuits14–17

guided by laser generated fields to realize arbitrary potential
configurations. These systems have reduced decoherence rate
due to charge neutrality, and allow one to manipulate carrier
statistics and inter-atom interaction. Rectilinear circuits have
been used to study quantum transport18–21. More complex
networks can be fabricated, trapping Bose–Einstein condensates
in versatile potentials. Such potentials can be changed in shape
and intensity at time scales of tens to hundreds microseconds,
and therefore opening the way to modify the features of the
circuit in the course of the same experiment (typically involving
tens of milliseconds)22–35. Such remarkable advances on the
flexibility and control of cold-atoms quantum technology, in
turn, has been opening up exciting possibilities for atomtronics
to study transport. Previous studies on bosonic AB attached to
leads have demonstrated that fundamentally new effects
emerge36,37. We shall see that, accordingly, topological pumping
in these networks displays peculiar features as well.

We now summarize our results. The system is characterized by
topologically distinct bands that can be controlled by changing

the parameter of the driving (its phase ϕ0). We investigate the
limit where the lattice potential is sufficiently large so that par-
ticles are confined to each site during the transport.

Our device works as a non-linear interferometer, in which the
source-ring and the ring-drain interfaces act as “beam-splitters".
We identify the mechanism behind the AB effect in topological
pumped systems with interaction: AB interference affects particle
reflections by inducing specific transitions between the topological
bands. Interaction adjusts the transmission and the reflection
coefficients. In addition, it can create NOON-type entanglement
comprising of particles being in upper and lower arm of the ring.

The speed of state preparation in our protocol is limited by
the band gap and Landau–Zener transitions between bands.
The topological pumping through the two branches forming the
anti-crossing is bound to be characterized by two different
mechanisms: Pumping through the upper (lower) branch occurs
via off-resonant (resonant) tunneling. Our result shows that the
transport of N particles is best done in the lowest band since the
band gap here scales as ΔE / ffiffiffiffi

N
p

(the band gap in the upper
band decreases exponentially with N instead).

The states are transported through the ring, and interfere at the
ring-drain interface; this results in a partial transmission of the
particles, which is modified by the applied AB flux. We observe
that the periodicity of the flux is reduced compared to its single
particle value depending on the type of (entangled) state and
particle number. This suggest that the flux quantum Φ0 becomes
a fraction of its single-particle value38. Specifically: in the lowest
topological band, even number of particles are transmitted
independently of the flux while odd number of particles show AB
oscillations; in the highest topological band, AB flux periodicity
changes with particle number due to the formation of NOON-like
entangled states; in the central band, different types of partial
transmission and (entangled) states occur depending on the
initial phase shift of the driving and the length of the ring.
Entangled states of NOON-type of several particles can be created
with nearly unit fidelity.

Results
The setup. A sketch of the ring-lead system is presented in
Fig. 1a. It is composed of a lattice ring attached to two leads
(source and drain) symmetrically at two opposite sites of the ring
loaded with N particles.
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Fig. 1 Description of setup. a Sketch of the ring-lead system. The dots indicate lattice sites j with a space and time-dependent potential VjðtÞ ¼
P0 cosð2π=3j� ΩtÞ with a period of three lattice sites (A : j ¼ 0, B : j ¼ 1, C : j ¼ 2). Particles tunnel between different sites along the black lines with
strength J. U denotes the on-site interaction and Φ the flux of the ring. With topological pumping, particles can be transported from the initial position
through the ring to the target drain position. The circled lead-ring junctions act as effective beam-splitters of incoming particles. b Topological pumping of
particles on lattice sites by adiabatic modulation of the periodic potential VjðtÞ with Chern number C ¼ �1. The cosine potential (black line) is varied
adiabatically in time t with a frequency Ω ¼ 2π=T, where T is the time of one driving period. Particles are initialized at A. At time t ¼ 0 no tunneling occurs
due to a large potential difference to neighboring sites. At time t ¼ 1=6T, potential at A and B becomes degenerate, and particles are adiabatically
transferred to B. This process continues and after one period T the particles have moved by 3C sites
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One particular experimental realization is possible using a
combination of experimentally demonstrated technologies for
cold atom systems. Spatial light modulators and digital mirror
devices (DMD) can be employed to generate arbitrary light fields
in a 2D plane32,39,40. With DMD, the potential can also be
dynamically varied with a refresh rate of tens of μs. Similar
structures can also be achieved by painting these geometries with
a focused laser beam34. A confinement in a 2D plane is realized
by an additional blue detuned standing wave lattice25. These
technologies would enable the experimental realization of the
proposed confining structures with feature sizes limited by the
optical resolution. With these technologies, a ring lattice of tens of
atoms, with a typical lattice spacing of few μm has been realized25.
The phase of the confined atoms for artificial gauge fields can be
manipulated by direct phase imprinting41 or transferred with a
two-photon Raman transition42.

Superconducting cavities with microwave photons can realize
Bose–Hubbard Hamiltonian, while allowing full control of the
cavity potentials and even couplings in time11,43. Ring structures
and synthetic magnetic fields have been realized44.

Our model lead-ring Hamiltonian is H ¼ HR þHS þHDþHI þHP. The ring Hamiltonian is

HR ¼ �
XLR

j¼1
Jei2πΦ=Lâyj âjþ1 þ H:C:

� �
þ U

2

XLR

j¼1
n̂ a
j ðn̂ a

j � 1Þ;
ð1Þ

where âj ðâyj Þ are the annihilation (creation) operator at site j in

the ring, LR the number of ring sites, n̂aj ¼ âyj âj is the particle
number operator of the ring, J is the inter-site hopping, U is the
on-site interaction between particles and Φ is the total flux
through the ring. Periodic boundary conditions are applied for
the ring with âyLR ¼ ây0. In the following, we set J ¼ 1 and all
values of U , Ω are given in units of J . The Hamiltonian for the
source (similar for drain HD) is given by

HS ¼ �
XLS

j¼1
Jŝyj ŝjþ1 þ H:C:

� �
þ U

2

XLS

j¼1
n̂ s
j ðn̂ s

j � 1Þ; ð2Þ

where LS (LD) is the length of the source (drain) and ŝj (d̂j) the
source (drain) annihilation operator. We set LS ¼ LD ¼ 1 in the
following. The coupling Hamiltonian between leads and ring is

HI ¼ �J ây0 ŝ0 þ âyLR=2d̂0 þ H:C:
� �

. We modulate the potential

landscape adiabatically to pump particles

HpðtÞ ¼ P0

X
j
cos

2πj
3

� ϕ0 �Ωt

� �
n̂j; ð3Þ

with the driving frequency Ω, the particle number operator n̂j
and phase shift ϕ0. The potential has a period of three sites and
its arrangement in the ring-lead system is shown in Fig. 1a. In
the case of zero interaction and no flux, the Hamiltonian is
known to be topological nontrivial. The system has three bands
and non-zero Chern numbers6 (top band +1 and bottom band
−1 with Chern number C ¼ �1 and central band 0± with
C ¼ 2). The pumping is induced by breaking time-translational
symmetry via driving. The topological properties hold true even
in the interacting case11,45. Similar systems have been studied in
refs. 11,46. After one period of adiabatic time evolution
T ¼ 2π=Ω, particles move by 3C sites (see Fig. 1b). The protocol
is as follows: Initially, a Fock state with N particles at a single
site in the source lead is prepared. Here, we initialize the
particles at the first source lead site that directly neighbors the
ring and tune ϕ0 to select the band (see Fig. 1a).

In the following, we investigate positive interaction U > 0
without loosing generality. For U < 0, simply switch the results of

band +1 with −1, and 0+ with 0−. We operate in the limit of
P0 � J;U , such that the eigenstates are strongly localized within
single sites. Thus, tunneling between neighboring sites is
suppressed unless close to a resonance (since they have in
general a widely different local potential energy), as well as
effective tunneling across three sites (to the nearest site with the
same potential). The effective tunneling dynamics can be
understood in this limit by including the nearest neighboring
site only. We define the transmitted density as the expectation
value of the number of particles in the drain at the time the
particles arrive in the drain (see final position in Fig. 1a).

Non-interacting topological pumping. First, we discuss the
single-particle dynamics for the ring-lead system. The particles
are prepared in the source at a single site as shown in Fig. 1a. The
dynamics of the non-interacting case is plotted in Fig. 2. We
investigate two cases: For bands ± 1 with Chern number C ¼ �1,
and band 0 with C ¼ 2. We highlight that the dynamics both
bands ±1 are identical. We now evolve the system under the
time-dependent Hamiltonian. The particles are transported
towards the ring via adiabatic driving. The speed depends on the
Chern number of the respective band. At the ring, the path splits
into two ways: The upper and lower part of the ring. Here, the
particles split into a superposition state, going along both paths at
the same time. At the end of the ring, the two paths merge and
interfere. We can control this interference using the artificial
magnetic flux Φ. Depending on Φ, we observe constructive or
destructive interference. For constructive interference, particles
leave the ring and move into the drain. For destructive inter-
ference at Φ ¼ 1=2, particles are reflected. In this case, we observe
that the particles move back the way they came at a different
speed. If the particles are initially in a band with Chern number
C ¼ �1, the reflection occurs via the band with C ¼ 2, and vice
versa. From this, we can understand the mechanism how reflec-
tions in topological pumped AB rings arise: Reflections caused by
destructive AB interference arise by transferring particles to
bands with a Chern number of opposite sign. However, we find
that these AB reflections occur independently of the driving
frequency, indicating that they are distinct from Landau–Zener
transitions. We can understand the reflection and transmission by
looking at the dynamics at a reduced lead-ring junction consisting
only of three sites: two sites of the ring ( C1j i and C2j i) connected
via hopping to a single drain site ( Bj i). This reduced three
site system is a three level system for zero interaction, akin to
the well known Λ-system. One of its eigenstates is a dark
eigenstate Dj i ¼ 1ffiffi

2
p ð C1j i � C2j iÞ, that always has zero amplitude

at the drain site for any value of the driving parameter ϕðtÞ.
Conversely, there is also a bright eigenstate that will adiabatically
tunnel from the two input sites over to the drain site. Particles can
only tunnel over if they are in a bright eigenstate, and are pro-
hibited from tunneling if they are in the dark state. We calculate
the dynamics of an incoming superposition state Ψinj i ¼
1=

ffiffiffi
2

p ð C1j iþ ei2πΦ C2j iÞ, which is initialized in the two input sites
and then adiabatically pumped. The transmission probability is
given by the overlap with the bright state, and the reflection
probability (the probability of not reaching the drain site) is the
overlap of the incoming superposition state with dark eigenstate
R ¼ hΨinðΦÞjΨdarkij j2. The overlap depends on the phase of the
superposition state, which is controlled by flux Φ. The reflection
probability of this three level system is R ¼ sin2ðπΦÞ and the
transmission probability T ¼ 1� R ¼ cos2ðπΦÞ. For a single
particle or U ¼ 0 the flux dependence and smallest energy gap
ΔE ¼ 2J is the same for all bands. The speed of pumped particles
solely depends on the Chern number of its band.
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Interacting topological pumping. We now turn to the case
of non-zero interaction. While topological pumping was
defined above for non-interacting systems, we find the same
Chern numbers (how many sites particles travel in a band per
period) even for the interacting system in our configuration.
We believe our approach does work because our protocol can
pump bound states of N particles (instead of bare particles),

which retain the topological properties of the non-interacting
particles. For increasing interaction Uj j, many-body effects
come gradually into play. Once the interaction U >Ω is larger
than the driving speed Ω, the energy splitting between different
many-body states is large enough such that it is not washed out
by the driving. In this regime, we observe a many-body AB
effect.
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Fig. 2 Pumping for non-interacting ring. Time evolution of topological pumping of non-interacting particles in the ring-lead system with ring length LR ¼ 6,
N ¼ 1 particles and potential strength P0 ¼ 60J. Initial band has a, b Chern number C ¼ �1 (driving frequency Ω ¼ 0:01J, phase shift ϕ0 ¼ 0) and
c, d Chern number C ¼ 2 (Ω ¼ �0:01J, ϕ0 ¼ π=2). a, c Show flux Φ ¼ 0, b, d show flux Φ ¼ 1=2. Flux Φ ¼ 1=2 causes total reflections; the particles are
transferred to a band with Chern number of opposite sign and different velocity (b) initially in C ¼ �1, reflected particle in C ¼ 2). Y-axis depicts ring-lead
system sites, with site 0: source, site 1–6: ring, site 7: drain. Sketch of ring is shown on the top left. e, f Density in source and drain against time for different
values of flux and Chern number e C ¼ �1 and f C ¼ 2
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Then, the transmission and reflection through the ring
substantially depends on the band and the sign of U . The
pumping mechanism with interaction is described in Fig. 3.
Pumping for a non-interacting system is described in Fig. 3a.
Particles tunnel from one site to the next at the anti-crossings of
the band (see Fig. 3b). With interaction, there is an asymmetry in
the pumping mechanism for top and bottom level of the anti-
crossing. Interaction pushes most of the uncoupled many-body
levels downwards and closer together in energy, while the top two
levels are further detached from the other levels. Thus, with
nearest-neighbor coupling, the bottom level of the anti-crossing
transports states resonantly via intermediate states, while the top
level transport occurs off-resonantly without occupying those
intermediate states. The top band has an exponentially sup-
pressed gap with particle number, while for bottom band it
increases with particle number. Transmission and reflection for
interacting particles are governed by this asymmetry at the ring-
lead interface (see Fig. 3c). The many-body AB effect changes
transmission and reflection by at most one particle, e.g. for band
+1 in between N to N � 1 particles are transmitted depending on

flux. The functional dependence is similar to the non-interaction
AB effect, e.g. for band +1 it is T ¼ N � 1þ cos2ðπΦNÞ, where
N is the particle number. Note that in this case the interaction
reduces the periodicity with flux compared to the non-interacting
case, with a flux quantum of Φ0 ¼ 1=N . A full list is shown in
Table 1. Additionally, the energy gap becomes dependent on
band, interaction and particle number. In particular, the
symmetry of bands ± 1 is broken, and they behave differently.
Additionally, band 0 changes its behavior depending on the initial
phase ϕ0.

Lower band −1. Here, we choose initial phase shift ϕ0 ¼ π. In
this case, the avoided crossing is approached from below. The
particle transfer from one site to the next is found to happen via
resonant transitions to intermediate many-body states when these
states become resonant. For U � J , the energy gap is indepen-
dent of U : ΔE ¼ 2

ffiffiffiffi
N

p
J . This shows that the pumping can be

driven at higher frequency with increasing particle number N
(see Supplementary Note 1). In this regime, we find that the

–1

0

1

0 0.5 1

E/P0

Band +1
C = –1

Band 0
C = 2

Band –1
C = –1

0+

0–

Initial phase �0

U > 0
energy

a b

ΔE0

A B C A

c

Top curve: NOON-type states
|30〉 |03〉

|03〉 |30〉
|12〉 |21〉

|3〉 | 00〉

Bottom curve:

�cross – 0.15 �cross + 0.15

�0/(2�)

�(t )/(2�) �cross

B

C1

C2+1

–1

ΔE2

ΔE1

B C1C2

|0〉 | 03〉
B C1C2

|0〉 | 30〉 + ei3�

B C1C2

|4〉 | 00〉
B C1C2

|0〉 | 04〉
B C1C2

|0〉 | 40〉 + ei4�

B C1C2

|4〉 | 00〉
B C1C2

|0〉 | 22〉
B C1C2

|3〉 | 00〉
B C1C2

|0〉 | 12〉
B C1C2

|0〉 | 21〉 + ei�

B C1C2

J

Jei�

Top curve:
off-resonant

Bottom curve:
resonant

Close-up of
anti-crossing
with interaction

Fig. 3 Pumping mechanism. a Energy spectrum of three bands for topological pumping in a lattice, with potential VjðtÞ ¼ P0 cosð2π=3j� ϕðtÞÞ,
ϕðtÞ ¼ ϕ0 þΩt with a period of three sites ( A : j ¼ 0, B : j ¼ 1, C : j ¼ 2). Particles are initialized at site A. By adiabatically changing phase ϕðtÞ
particles follow the band, moving along A-B-C across the system. The energy gap for interaction U ¼ 0 is ΔE0 ¼ 2J for all bands. b Close-up of the
interacting many-body eigenlevel structure (for repulsive interaction U > 0) of any band anti-crossing (at exemplary circled area in a). We show the
eigenlevel structure of two neighboring sites j and jþ 1 as solid lines (decoupled system J ¼ 0 as dashed lines). 30j i denotes a state with 3 particles at
site j and 0 particles at site jþ 1. Band +1 follows top curve of the anti-crossing, while band −1 follows bottom curve. Band 0 switches at every anti-
crossing between top or bottom curve (see a). For the top curve of anti-crossing, the energy gap to the next eigenstate is scaling as ΔE1 / JN=UN�1 for
U � J. The transport occurs due to off-resonant coupling of the final states ( 30j i and 03j i for N ¼ 3) via off-resonant intermediate states ( 21j i; 12j i)
which are barely occupied. For the bottom curve, the energy gap is ΔE2 ¼ 2

ffiffiffiffi
N

p
J for U � J. Transport occurs via resonant transitions to intermediate

states ( 21j i; 12j i) which are significantly occupied. c Pumping through the lead-ring junction (consisting of a site B connected to two sites C1 and C2).
This three site system effectively acts as a non-linear beam-splitter. Adiabatic driving of the two types of transitions will produce different final states.
Phase of resulting state depends on the complex tunneling strength Jeiα due to the flux Φ. The top curve of the anti-crossing gives entangled states,
which pick up a phase / N due to the NOON-type entanglement. Bottom curve yields states that depend on the parity of the particle number N, which
either pick up a phase factor (odd N) or none (even N)

Table 1 Overview of results

Band
U >0

Ring length
LR

transmission N even
TevenðΦ;NÞ

Transmission N odd
ToddðΦ;NÞ

Chern
number

ϕ0 AB period
Φ0

Parity
effect

State in ring Band gap
ΔE

+1 2n N� 1þ cos2ðπΦNÞ N� 1þ cos2ðπΦNÞ −1 0 1=N No NOON type JN=UN�1

0+ 4nþ 2 N� 1þ cos2ðπΦNÞ N� 1þ cos2ðπΦNÞ 2 π=2 1=N No NOON type JN=UN�1

0+ 4n sin2ðπΦNÞ cos2ðπΦNÞ 2 π=2 1=N Yes NOON type JN=UN�1

0− 4n 0 cos2ðπΦÞ 2 �π=2 1 Yes Varies JN=UN�1

0− 4nþ 2 N N� 1þ cos2ðπΦÞ 2 �π=2 1 Yes Varies JN=UN�1

−1 2n N N� 1þ cos2ðπΦÞ −1 π 1 Yes Varies 2
ffiffiffiffi
N

p
J

U ¼ 0 all bands 2n Ncos2ðπΦÞ Ncos2ðπΦÞ 1 No Superposition 2J

AB period (flux quantum) Φ0 and number of particles transmitted TðΦ;NÞ after pumping through an interacting AB ring with flux Φ in the limit of strong localizing potential P0. Results depend on pumped
band, ring length, parity of particle number N and interaction (here U>0). Reflection given by R ¼ N� T. Bands are visualized in Fig. 3a. For U < 0, exchange the band indices þ $ � (e.g. for U < 0 band
+1 behaves like band −1 for U>0)
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pumping is dependent on the parity of the particle number N .
The dynamics for different particles numbers is plotted in Fig. 4.
For N ¼ 2nþ 1 we find a fractional transmission with flux: For
zero flux, all particles are transported to the drain (uppermost
site) (Fig. 4a). However, for half-flux, one particle is reflected and
the rest is transmitted (Fig. 4b). The back-reflection occurs at
twice the speed via the central band with Chern number C ¼ 2.
The density in the drain for odd N is plotted in Fig. 4c. In
contrast, for even N ¼ 2n all the particles reach the drain inde-
pendently of the flux (Fig. 4d). To understand the parity effect, we
investigate the type of Fock states generated at the ring-lead
junction. We denote the wavefunction of a single particle loca-
lized in the upper half of the ring as \j i, and ∪j i in the lower half
of the ring. The Fock states are generated by the resonant tun-
neling process at the ring-lead junction, where the path splits into
two directions. Here, particles tunnel one after the other. The
process favours the state with the lowest interaction energy; thus,
the system tries to achieve a state with an equal number of par-
ticles in each arm. For N ¼ 2n, such a ’balanced’ state can be
reached; the ring state is Ψ2nj i ¼ ð \j i � ∪j iÞn, which does not
pick up any AB phase and thus causes no interference. For
N ¼ 2nþ 1, the state is always un-balanced, and therefore the
extra-particle can sustain AB effect. In this case, the state of the
ring has the form Ψ2nþ1

�� � ¼ ð \j i � ∪j iÞn � ð \j i þ ei2πΦ ∪j iÞ;
the last part of the wavefunction reacts to flux Φ and can inter-
fere. The resulting density pumped into the drain is shown in
Fig. 5a. Incidentally, we note that a setup with two independent
particle species (e.g., two internal states) can provide entangled
Bell states (see the Supplementary Note 4).

Upper band +1. This band can create highly entangled states.
We choose ϕ0 ¼ 0 so that the avoided crossing is approached
from above. The density transmitted to the drain is shown in
Fig. 5b. In this case, we find that tunneling between neighboring
sites occurs via effective tunneling between nearly resonant states
that are not connected directly via the hopping term. Here,
the transitions happens via intermediate off-resonant processes.

(e.g., for N ¼ 3 and NjNjþ1

��� E
denoting particles at neighboring

sites j: when states 30j i and 03j i become resonant, they are off-
resonantly coupled via the weakly occupied states 21j i and 12j i).
The effective coupling between the final states can be calculated
with the Schrieffer-Wolff transformation using above reason-
ing11. Then, the energy gap between the bands is ΔE / JN=UN�1

(ref. 47, also see Supplementary Note 1). The gap decreases
sharply with increasing interaction U . Thus, the pumping is most
efficient in the regime jU j<J , however the interaction should large
enough jU j>Ω such that the many-body effects appear. The off-
resonant tunneling process at the ring-lead interface generates
NOON-like states, with a superposition state of N particles being
in either upper or lower part of the ring. Well defined AB
oscillations are found: the AB flux quantum decreases with par-
ticle number N as Φ0 ¼ 1

N. A NOON state is a factor N more
sensitive to phase differences48. Thus, the fractional flux quantum
in the interference pattern is the signature for the NOON-like
state in the ring. At the AB minimum, one particle is reflected,
while the rest is transmitted. The dependence on driving fre-
quency is discussed in Supplementary Note 2. The nature of the
process and the fidelity of creating entangled state at the ring-lead
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junction is further discussed in the subsection Creating entangled
states.

Central band 0±. The dynamics for the central band depends on
the choice of initial phase: We define the initial conditions 0þ
with ϕ0 ¼ π=2 and 0� with ϕ0 ¼ �π=2. The transmission
depends on the ring length LR as well. For LR ¼ 4nþ 2 and
U > 0, band 0þ has the same flux dependence as the upper band
+1. For 0� the flux dependence is the same as the lower band −1.
However, because of the different Chern number C ¼ 2, in those
two cases the particles move at twice the speed and in opposite
direction (thus exchange Ω ! �Ω). The anti-crossing type
alternates between top and bottom and the smallest energy gap
that limits the dynamics scales as in band +1 (ΔE / JN=UN�1).

For LR ¼ 4n, the dynamics is quite different. While in the
previous case, nearly all particles were transmitted, now for LR ¼
4n the system is highly reflective and we find that maximally one
of N incoming particles is transmitted. For the band 0þ (Fig. 6a)
the AB flux quantum is Φ0 ¼ 1=N , revealing the NOON-like
state in the ring. The transmission is much lower and parity
dependent: for even N and zero flux, zero particles are
transmitted, while for half flux quantum one particle is
transmitted. For odd N , we find the opposite behavior: one
particle transmitted at zero flux, and zero transmitted at half flux-
quantum. For band 0� (Fig. 6b), the flux quantum is Φ0 ¼ 1. For
even N , the transmission is zero, while for odd N it changes from
one to zero with flux. The dependence on LR comes from the
switch between top and bottom approaches through anti-
crossings at every other site: For LR ¼ 4n, the transitions at
source-ring and ring-drain approach the avoided crossing from
opposite ways; as the type of transition (resonant or off resonant)
depends on the path in the anti-crossing, this feature implies the
change in transmission behavior. For LR ¼ 4nþ 2, instead, the
transitions at source-ring and ring-drain approach the avoided
crossing the same way; this features implies that the transmission
is similar to what found for the band ±1. The dependence on ϕ0
results also from switch between top and bottom approaches
through anti-crossings: For ϕ0 ¼ π=2, the lead-ring junction is
approached via the top path (off-resonant, NOON states), while
for ϕ0 ¼ �π=2 via the bottom path (resonant). In our numerical
simulation, we see a finite probability of reaching the drain for
even number of particles due to non-adiabatic transitions. The
dependence on interaction is discussed in Supplementary Note 3.

Creating entangled states. In this section we highlight how to
create highly entangled states of NOON-type with our proposed
setup. The crucial part to create entanglement is the source-ring

junction, where one input site is connected to two output sites via
tunneling. This part represents a non-linear beam-splitter. To
further understand the mechanism, we first look at a reduced
system, where we remove all other sites of the ring-lead setup
except this junction. We initialize the particles at the input site,
and evolve the system. Depending on ϕ0 of the potential, the state
after the pumping can be highly entangled. To create entangled
states, we set the initial potential phase ϕ0 ¼ 0 so that the system
follows top curve of anti-crossing. The dynamics of this level is
characterized by off-resonant coupling: the tunneling to the two
neighboring sites is mediated by off-resonant energy levels as we
explained in the subsection Upper band. Starting from the
initial many-body state (for N particles Ψinij i ¼ Nj i � 00j i)
the state is transformed directly to the final entangled
state ( ΨNOONj i ¼ 1ffiffi

2
p 0j i � ð N0j i þ 0Nj iÞ). We plot the fidelity

F ¼ hΨNOONjΨij j2 of the creation of the NOON like entangled
state by adiabatically changing the potential in the ring-lead
junction in Fig. 7. We observe that for our parameters a NOON
state of up to 6 particles with nearly unit fidelity can be created.
For more particles or higher interaction the fidelity decreases due
to the exponential suppression of the energy gap.

In the other case, where the particles follow the lower band of
the anti-crossing with ϕ0 ¼ π, different types of states can be
created. The tunneling from one site to the next occurs via
resonant tunneling between the intermediate many-body states.
Particles tunnel one after the other over to the neighboring sites
when the states are brought into resonance by the driving. For
N ¼ 2, the initial state 2j i � 00j i transforms to final state 0j i �
11j i via resonantly occupying the intermediate states
1j i � ð 10j i þ 01j iÞ.] Driving this setup with two species of
interacting particles (e.g. spin up and down) with an initial state
Ψ0j i ¼ "#j i � 00j i, a Bell state can be created: ΨBellj i / 0j i �
ð "j i #j i þ #j i "j iÞ (see also Supplementary Note 4).

Discussion
We studied topological pumping in an interacting ring-lead
system pierced by a synthetic magnetic field. Due to the
interplay between topological bands and AB phase we find that
the transport is substantially affected by entanglement and
interaction.

Interaction fundamentally influences the topological pump-
ing, giving each band distinct dynamics and characteristics: The
lowest band has the largest energy gap. The central band either
transmits or reflects nearly all incoming particles depending on
the parity of the ring length. The top band creates highly
entangled states.
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Entanglement is generated because the ring-lead interface
effectively acts as a nonlinear (Bose–Hubbard interaction) beam
splitter. The oscillations of the particle transmission then occurs
with a specific periodicity due to the AB interferometer. Such
phenomenon traces back to the entangled nature (NOON-type)
of the states involved in the transport, thus forming a fractional
flux quantum. This effect may be used for quantum-enhanced
interferometers with a sensitivity / 1=N . We note that the state is
prepared adiabatically. Adiabatic shortcuts could reduce their
preparation time49. In addition, these entangled states are limited
by an energy gap that scales exponentially with the number of
particles N . This process is distinct from the Hong-Ou-Mandel
effect which is based on two-photon interference50. We note that
in the lowest band, the energy gap scales as ΔE / ffiffiffiffi

N
p

, but the
state involved in the transport is not of NOON-type.

Disorder at the ring-lead interface can create a (random)
particle imbalance as well as a phase shift between particles in the
upper and lower part of the ring. When disorder is applied away
from the ring-lead interface small disorder (compared with the
energy gap) is expected not to harm the pumping protocol. We
believe that a separate study should be carried out to analyse this
problem.

Our setup is of direct experimental interest for various platforms
of quantum technologies. For cold atom systems, specifically,

decoherence is well controlled as well as smooth traps can be
engineered to limit disorder25,51,52. Interacting photons in non-
linear superconducting resonators can realize topological pumping
of interacting photons11 and synthetic magnetic fields44. Photonic
waveguides could realize flexible designs of topological pumping10

and artificial magnetic fields53, while interaction between photons
can be engineered via strong coupling54.

Methods
The equations of motions of the system are solved with exact diagonalization, by
evolving the Schrödinger equation in time ΨðtÞj i ¼ e�iHt Ψð0Þj i.

Transmission and reflection coefficients are derived by evaluating the dynamics
of the pumped eigenstates of the reduced system: We consider only the bare
junction, consisting only of three sites: one input site, and two output sites. To get
the transmission and reflections coefficients, the dynamics of source and drain
junction are considered.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code to simulate the dynamics are available from the corresponding author upon
reasonable request.
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