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An existence and uniqueness result for a two-temperature energy-transport model 
is proved, in the one-dimensional steady-state case, considering a bounded domain 
and physically appropriate boundary conditions. The model arises in the description 
of heat effects in semiconductors, the two temperatures account for the electron and 
the lattice temperature.
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1. Introduction

The effects of crystal heating have became crucial for the design of electronic devices with nanoscale 
dimensions, due to the possibility of having hot spots, that is, zones where the temperature of the lattice is 
very high, even close to the melting one. This has increased the interest on the analysis of thermal effects in 
semiconductors and prompted the formulation of improved models (see for example [4,14]). Recently more 
sophisticated energy-transport models, based on closure relations obtained by employing the maximum 
entropy principle, have been proposed, e.g. see [1,9–12,16], and used for simulating electron devices [2,15,17].

The main features of these models are to include an additional variable representing the lattice tempera-
ture and a relative equation for that. The scattering mechanisms force equilibrium between the electron and 
lattice temperature. In turn the latter tends to an equilibrium state with the environment. The simplest way 
to take into account such a physical effect is with a relaxation time approximation involving two relaxation 
times, one for the electron–phonon interaction and another for the phonon–environment interaction.
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From a mathematical point of view one has a standard energy-transport model augmented with a balance 
equation for the lattice temperature.

The first energy-transport model for semiconductors was introduced by Stratton [18], in 1962. The first 
mathematical results had to wait 35 years after the presentation of the model, and are due to Degond, 
Génieys and Jüngel [5,6] (for a comprehensive review see [7] along with [8] for the modeling aspect). They 
consider a general parabolic–elliptic system, arising in irreversible thermodynamics with thermal and elec-
trical effects, which includes as a special case the energy-transport model. This general model is studied in 
a bounded multi-dimensional domain, with physics-based mixed Dirichlet–Neumann boundary conditions, 
under the restrictive hypothesis of uniform parabolicity and existence of a strictly positive energy.

A few years later, Chen, Hsiao and Li consider the same model, with unphysical no-flow boundary condi-
tions, proving a stability theorem for small initial perturbations, without the last two restrictive assumptions 
[3].

An improvement on this result is due to Nishibata and Suzuki, who in a recent publication [13], for a one-
dimensional energy-transport model, are able to prove existence and uniqueness, under physical boundary 
conditions, without assuming uniform parabolicity and existence of a strictly positive energy.

In this work we extend Nishibata and Suzuki’s results to an augmented energy-transport model with two 
temperatures. We consider the (scaled) system:

∂tn + ∇ · j = 0, (1.1)

j = n∇φ−∇(nT ), (1.2)

∂t

(
3
2nT

)
+ ∇ ·

(
5
2Tj − κ0∇T

)
= j · ∇φ− 3

2τ n(T − TL), (1.3)

∂t(ρcV TL) + ∇ · (−κL∇TL) = 3
2τ n(T − TL) − 1

τL
(TL − 1), (1.4)

∇2φ = n−D, (1.5)

with x ∈ Ω ⊂ R
n, n electron density, j current density, T electron temperature, TL lattice temperature, 

φ electrostatic potential. κ0 and κL represent the thermal conductivity of electron and lattice heat flux, τ
and τL are the relaxation times for electron and lattice energy. D denotes the doping profile.

System (1.3) is the simplest energy-transport model with varying lattice temperature. For this system 
no analytical results are available in the literature. In this paper we present an existence and uniqueness 
result for the one-dimensional steady-state solutions of system (1.3) in a bounded domain with physically 
appropriate boundary conditions.

The plan of the paper is as follows. In section 2 the mathematical problem is presented and the main 
theorem is stated. In section 3 the proof of the existence of the solutions is given and the last section is 
devoted to the uniqueness result.

2. Mathematical model and main results

In this section we consider the steady-state one-dimensional case of system (1.3) with physics-based 
boundary conditions, and for the resulting problem we state an existence and uniqueness result.

The one-dimensional stationary case of system (1.3) reads

Jx = 0, (2.1a)

J = nφx − (nT )x, (2.1b)(
5
TJ − κ0Tx

)
= Jφx − 3

n(T − θ), (2.1c)
2 x 2τ
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(−κLθx)x = 3
2τ n(T − θ) − 1

τL
(θ − 1), (2.1d)

φxx = n−D, (2.1e)

with x ∈ Ω ≡ (0, 1). Here, the thermal conductivities κ0 and κL are assumed to be positive constants. Simi-
larly the electron energy and the lattice thermal relaxation times, τ and τL, are assumed to be small enough 
positive constants. Finally, we assume that the doping profile, D(x) is an assigned bounded, continuous and 
positive function on Ω̄, such that

inf
x∈Ω̄

D(x) > 0. (2.2)

For system (2.1), we consider standard Ohmic contacts at the boundaries. This translates into neutrality 
of charge and equilibrium conditions for the electron gas at the boundary, that is, the electron density equals 
the doping density, the electron temperature equals the lattice temperature, and the electric potential equals 
the applied voltage. We still need boundary conditions for the lattice temperature. We impose a dissipative 
condition at the contacts by Robin type relations which express the tendency of the lattice temperature to 
reach an equilibrium with the environment. Thus, we consider the boundary conditions

n(0) = nl, n(1) = nr, (2.3a)

T (0) = θ(0), T (1) = θ(1), (2.3b)

κLθx(0) = 1
R

(θ(0) − 1), −κLθx(1) = 1
R

(θ(1) − 1), (2.3c)

φ(0) = 0, φ(1) = φr. (2.3d)

For the boundary conditions, we assume that the thermal resistivity R is a positive constant along with

nl > 0, nr > 0. (2.4)

We introduce the parameter

δ = |nr − nl| + |φr|, (2.5)

which we assume to be small.
The number of equations can be reduced by computing explicitly the electric field from equation (2.1b),

φx = T

n
nx + Tx + J

n
. (2.6)

Using this expression in (2.1c) and (2.1e), we find two coupled parabolic equations for n and T :

−κ0Txx + 3
2JTx = JT

n
nx + J2

n
− 3

2τ n(T − θ), (2.7)
(
T

n
nx

)
x

+ Txx − J

n2nx − n = −D. (2.8)

Furthermore, we can integrate the relation (2.6) to get a voltage–current relation:
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φr =

⎛
⎝

1∫
0

1
n
dx

⎞
⎠J

+ T (1) − T (0) + T (1) lognr − T (0) lognl −
1∫

0

Tx(logn) dx. (2.9)

This relation can be used to express the constant J in terms of n, T and the boundary conditions as

J =

⎛
⎝

1∫
0

1
n
dx

⎞
⎠

−1 ⎛
⎝L[T ] +

1∫
0

Tx log ndx

⎞
⎠ , (2.10)

with

L[T ] := φr − T (1) + T (0) − T (1) lognr + T (0) lognl.

Finally, we can compute φ in terms of n and of the doping profile by the explicit formula:

φ = φrx−
x∫

0

dx′′′
1∫

x

dx′′
x′′∫

x′′′

(n(x′) −D(x′)) dx′. (2.11)

In conclusion, system (2.1) can be replaced with
(
T

n
nx

)
x

+ Txx − J

n2nx − n = −D, (2.12a)

−κ0Txx + 3
2JTx = JT

n
nx + J2

n
− 3

2τ n(T − θ), (2.12b)

−κLθxx = 3
2τ n(T − θ) − 1

τL
(θ − 1), (2.12c)

furnished with boundary conditions (2.3a)–(2.3c), with J given by (2.10) and φ given by (2.11).
Before stating the main result, we introduce some notations. For a nonnegative integer l ≥ 0, H l denotes 

the usual Sobolev space in the L2 sense, equipped with the norm ‖ · ‖l, in particular, ‖ · ‖ := ‖ · ‖0. For 
a nonnegative integer k, Bk(Ω̄) denotes the space of the functions whose derivatives up to k-th order are 
continuous and bounded over Ω̄, equipped with the norm

|f |k :=
k∑

i=0
sup
x∈Ω̄

|∂i
xf(x)|.

Throughout the rest of this paper, C always denotes a generic positive constant. If the generic constant C
depends on some parameters α, β, . . . , we write C[α, β, . . . ].

The main result of this paper is the following existence and uniqueness theorem.

Theorem 2.1 (Existence and uniqueness). Let the doping profile and the boundary data satisfy conditions 
(2.2) and (2.4). For any nl > 0, there exist positive constants δ0, τ0, σ0, η0, μ0 such that if δ ≤ δ0, 
0 < τ ≤ τ0, 0 < τL ≤ σ0, then the boundary value problem (2.1)–(2.3) has a unique solution (n, J, T, θ, φ)
in B2(Ω̄) × B2(Ω̄) × B3(Ω̄) × B3(Ω̄) × B2(Ω̄) satisfying |T − θ|0 ≤ η0, |θ − 1|0 ≤ μ0.

The proof of the above theorem is split in two parts, existence and uniqueness.
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3. Proof of the existence result

The existence result is comprised in the following Lemma.

Lemma 3.1. Let the doping profile and the boundary data satisfy conditions (2.2) and (2.4). For any nl > 0, 
there exist positive constants δ0, τ0, σ0, such that if δ ≤ δ0, 0 < τ ≤ τ0, 0 < τL ≤ σ0, then the boundary 
value problem (2.1)–(2.3) has a solution (n, J, T, θ, φ) in B2(Ω̄) ×B2(Ω̄) ×B3(Ω̄) ×B3(Ω̄) ×B2(Ω̄) satisfying 
the conditions

1
2nm ≤ n ≤ 2nM , (3.1)

|T − θ|0 ≤ Cδ, (3.2)

|θ − 1|0 ≤ Cδ, (3.3)

and

inf
x∈Ω

T (x) > 0, (3.4)

where

nm = min
{
nl, nr, inf

x∈Ω
D(x)

}
, nM = max

{
nl, nr, sup

x∈Ω
D(x)

}
,

and the constant C is independent of δ0, τ0, σ0 and δ.

Proof. The existence proof is based on the equivalent formulation (2.1) of (1.3). We consider ñ, T̃ , θ̃ in the 
space

W :=

⎧⎪⎨
⎪⎩(f, g, h) ∈ H2(Ω)

∣∣∣∣∣
n ≤ f ≤ n, ‖fx‖ ≤ C̃0, ‖fxx‖ ≤ C̃1,

‖g − h‖1 ≤ C̃2δ, ‖gxx‖ ≤ C̃3,

‖h− 1‖1 ≤ C̃4δ, ‖hxx‖ ≤ C̃5

⎫⎪⎬
⎪⎭ ,

where the constants n, n, C̃i, i = 0, 1, . . . , 5, will be chosen later.
We introduce a map F defined in W , which maps (ñ, T̃ , θ̃) 	→ (n, T, θ) as follows:

(i) θ is the solution to the linearized elliptic problem

−κLθxx = 3
2τ ñ(T̃ − θ̃) − 1

τL
(θ − 1), (3.5)

with Robin boundary conditions

κLθx(0) = 1
R

(θ(0) − 1), −κLθx(1) = 1
R

(θ(1) − 1). (3.6)

(ii) T is the solution to the linearized elliptic problem

−κ0Txx + 3
2 J̃Tx = J̃ T̃

ñ
ñx + J̃2

ñ
− 3

2τ ñ(T − θ), (3.7)

with Dirichlet boundary conditions
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T (0) = θ(0), T (1) = θ(1). (3.8)

In (3.7), we have denoted by J̃ the expression of J in (2.10) evaluated for ñ, T̃ .
(iii) n is the solution to the linearized problem

(
T

ñ
nx

)
x

+ Txx − J̃

ñ2nx − n = −D, (3.9)

with Dirichlet boundary conditions

n(0) = nl, n(1) = nr. (3.10)

Well-posedness of the map F . The functions θ and T , in this order, are defined by two linear uniformly 
elliptic problems, (3.5)–(3.6) and (3.7)–(3.8), for which it is guaranteed existence and uniqueness of solutions. 
Thus, the map F is well-defined, provided the third problem for n, (3.9)–(3.10), is uniformly elliptic, that 
is,

inf
x∈Ω̄

T (x) > 0. (3.11)

In order to prove this estimate, by virtue of Sobolev embedding theorems, we prove that we can choose δ
small enough, so that ‖θ − 1‖1 and ‖T − θ‖1 are also small enough.

First, we estimate ‖θ− 1‖1. We multiply equation (3.5) by θ− 1 and integrate over [0, 1]. Integrating by 
part, and using the Robin boundary conditions, we obtain:

1
R

[
(θ(1) − 1)2 + (θ(0) − 1)2

]
+

1∫
0

κL(θ − 1)2x dx

+
1∫

0

1
τL

(θ − 1)2 dx =
1∫

0

3ñ
2τ (T̃ − θ̃)(θ − 1) dx

≤ 3n
2τ C̃2δ‖θ − 1‖ ≤ δ2 +

(
3n
4τ C̃2

)2

‖θ − 1‖2.

We take τL sufficiently small so that 1
2τL ≥

( 3n
4τ C̃2

)2, that is,

τL ≤
(

8
9n2C̃2

2

)
τ2. (3.12)

We find

κL‖(θ − 1)x‖2 + 1
2τL

‖θ − 1‖2 ≤ δ2,

which implies

‖θx‖ + 1√
τL

‖θ − 1‖ ≤ C4[κL]δ, (3.13)

with
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C4[κL] =
(

2 + 1
κL

)1/2

.

Here, we have used the inequality

c

1 + c
(a + b)2 ≤ ca2 + b2, for all a, b, c > 0.

Next, we estimate ‖T − θ‖1. From (2.10) we find

|J̃ | ≤ n
(∣∣L[T̃ ]

∣∣ + C[n, n]‖T̃x‖
)
≤ n

(∣∣L[T̃ ]
∣∣ + C[n, n](C̃2 + C̃4)δ

)
.

For the first term, using the boundary conditions (2.3b), we have

|L[T̃ ]| = |φr − θ(1) + θ(0) − θ(1) log nr + θ(0) lognl|

≤ |φr| + |θ(1) − 1||1 + lognr| + |θ(0) − 1||1 + lognl| + | log nr − log nl|

≤ |φr| + C[n, n] (|θ − 1|0 + |nr − nl|) ≤ C[n, n]δ.

It follows that

|J̃ | ≤ C[n, n, C̃2, C̃4]δ. (3.14)

We multiply equation (3.7) by T − θ and integrate over [0, 1]. Integrating by parts, and using the identity

1∫
0

3
2 J̃(T − θ)x(T − θ) dx = 0,

we find
1∫

0

κ0(T − θ)2x dx +
1∫

0

3ñ
2τ (T − θ)2 dx

= −
1∫

0

κ0θx(T − θ)x dx−
1∫

0

(
3
2 J̃θx − J̃ T̃

ñ
ñx − J̃2

ñ

)
(T − θ) dx

≤ 1
2

1∫
0

κ0(T − θ)2x dx + κ0

2 C4[κL]2δ2 +
∥∥∥∥3

2 J̃θx − J̃ T̃

ñ
ñx − J̃2

ñ

∥∥∥∥ ‖T − θ‖

≤ 1
2

1∫
0

κ0(T − θ)2x dx +
(
1 + κ0

2 C4[κL]2
)
δ2 + C[n, n, C̃0, C̃2, C̃4]‖T − θ‖2,

∥∥∥∥3
2 J̃θx − J̃ T̃

ñ
ñx − J̃2

ñ

∥∥∥∥ ≤ C[n, n, C̃2, C̃4]δ
(

3
2C4δ + 1

n
C̃0 + 1

n
C[n, n, C̃2, C̃4]δ

)

Then we get

κ0

2 ‖(T − θ)x‖2 + 3n
2τ ‖T − θ‖2

≤
(
1 + κ0

C4[κL]2
)
δ2 + C[n, n, C̃0, C̃2, C̃4]‖T − θ‖2.
2
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We choose τ small enough, so that 3n
4τ ≥ C[n, n, C̃0, C̃2, C̃4], that is,

τ ≤ 3n
4C[n, n, C̃0, C̃2, C̃4]

. (3.15)

Then, we find

κ0

2 ‖(T − θ)x‖2 + 3n
4τ ‖T − θ‖2 ≤

(
1 + κ0

2 C4[κL]2
)
δ2,

which yields the estimate

‖(T − θ)x‖ + 1√
τ
‖T − θ‖ ≤ C2[n, κ0, κL]δ, (3.16)

with

C2[n, κ0, κL] =
(

3n + 2κ0

3nκ0
(2 + κ0C4[κL]2)

)1/2

.

Using (3.13) and (3.16), together with the Sobolev embedding inequalities, we find

|T − 1|0 ≤ C(‖T − θ‖1 + ‖θ − 1‖1) ≤ Cδ,

which implies T ≥ 1 −Cδ. By choosing δ small enough we find (3.11), which implies the uniform ellipticity 
of (3.9). It follows that the solution (n, T, Θ) is B0(Ω̄), and, considering the regularity of the coefficient in 
(3.5), (3.7) and (3.9), the map F is well-posed from W to B2(Ω̄) × B3(Ω̄) × B3(Ω̄).

Higher order estimates for problem (i) and (ii). First we estimate θxx. Multiplying equation (3.5) by −θxx, 
integrating over Ω, and using Robin boundary conditions (3.6), we get

1∫
0

κLθ
2
xx dx + 1

τL

1∫
0

θ2
x dx ≤ 3

2τ

1∫
0

[ñ(T̃ − θ̃)]xθx dx

≤ 3
2τ (n + C̃0)C̃2δ‖θx‖ ≤

(
1 + C̃0

n

)2

δ2 +
(

3n
4τ C̃2

)2

‖θx‖2.

Then, choosing τL small enough, as in (3.12), we find

‖θxx‖ + 1√
τL

‖θx‖ ≤ C5[n, C̃0]δ, (3.17)

with

C5[n, C̃0] =
(

1 + C̃0

n

)
C4[κL].

Next, we multiply equation (3.7) by −Txx

ñ
and integrate the resulting equation over Ω:

1∫
κ0

ñ
T 2
xx dx+ 3

2τ

1∫
T 2
x dx
0 0
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= 3
2τ

1∫
0

θxTx dx +
1∫

0

{
3
2 J̃Tx − J̃ T̃

ñ
ñx − J̃2

ñ

}
Txx

ñ
dx

≤ 3
4τ

1∫
0

T 2
x dx + 3

4τ ‖θx‖
2 + 3

2nC[n, n, C̃2, C̃4]δ‖Tx‖2
1

+ μ‖Txx‖2 + C[μ, n, n, C̃0, C̃2, C̃4]δ2.

Using the estimate (3.17) and the smallness assumptions (3.12) and (3.15), we find

3
4τ ‖θx‖

2 ≤ 3τL
4τ C5[n, C̃0, C̃2]2δ2 ≤

(
n

2n2C̃2
2

)
C5[n, C̃0, C̃2]2

C[n, n, C̃0, C̃2, C̃4]
δ2.

Thus

1∫
0

κ0

ñ
T 2
xx dx + 3

4τ

1∫
0

T 2
x dx

≤
(
μ + C[n, n, C̃2, C̃4]δ

)
‖Tx‖2

1 + C[μ, n, n, C̃0, C̃2, C̃4]δ2,

wherefrom, choosing μ and δ small enough,

‖Txx‖ + 1√
τ
‖Tx‖ ≤ C3[n, n, C̃0, C̃2, C̃4]δ. (3.18)

Finally, we need to estimate ‖Txxx‖, in order to have a bound on |Txx|0. We divide (3.7) by ñ, take the 
x-derivative, and multiply the resulting equation by −Txxx. Integrating over Ω we get

1∫
0

κ0

ñ
T 2
xxx dx = 3

2τ

1∫
0

(Tx − θx)Txxx dx

+
1∫

0

{
κ0ñx

ñ2 Txx +
(

3
2
J̃

ñ
Tx − J̃ T̃

ñ2 ñx − J̃2

ñ2

)
x

}
Txxx.

Using estimate (3.16), we find

3
2τ

1∫
0

(Tx − θx)Txxx dx ≤ 3
2τ ‖Tx − θx‖‖Txxx‖

≤ κ0

n

3nC2

2κ0τ
δ‖Txxx‖ ≤ 9nC2

2
4κ0τ2 δ

2 + κ0

4n‖Txxx‖2.

Also, we find

1∫
0

{
κ0ñx

ñ2 Txx +
(

3
2
J̃

ñ
Tx − J̃ T̃

ñ2 ñx − J̃2

ñ2

)
x

}
Txxx

≤ κ0 ‖Txxx‖2 + C[n, n, C̃0, C̃1, C̃2, C̃4]δ2.
4n
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In conclusion, we have

‖Txxx‖ ≤ C[n, n, C̃0, C̃1, C̃2, C̃4]δ. (3.19)

Estimates for problem (iii). Let us introduce the boundary extension function

nB(x) = nl (1 − x) + nr x. (3.20)

Multiplying (3.9) by nB − n and integrating by part, one obtains

1∫
0

T

ñ
(n− nB)2x dx +

1∫
0

(n− nB)2 dx

= −
1∫

0

J̃

ñ2 (n− nB)x(n− nB) dx +
1∫

0

(
J̃

ñ2 (nB)x + nB −D

)
(n− nB) dx

−
1∫

0

(
T

ñ
(nB)x + Tx

)
(n− nB)x dx

≤
(
ε + C[n, n, C̃2, C̃4]δ

)
‖n− nB‖2

1 + C[ε,D, n, n, C2, C4],

where ε is a positive constant to be chosen and D = supΩ D. Above, we have used |(nB)x| = |nr − nl| ≤ δ. 
By choosing ε and δ small enough, we get

‖n− nB‖1 ≤ C[n, n, C̃2, C̃4, C2, C4], (3.21)

which leads to

‖nx‖ ≤ C0[n, n, C̃2, C̃4, C2, C4]. (3.22)

Starting again from (3.9), and solving for nxx, we get

nxx = − ñ

T

((
T

ñ

)
x

nx + Txx + J̃

ñ2nx − n + D

)
,

wherefrom

‖nxx‖ ≤ C1[n, n, C̃0, C̃2, C̃4, C0, C2, C4]. (3.23)

Finally, we need to find bounds for n. Applying the pointwise maximum principle to the problem (iii), 
which is uniformly elliptic because of (3.11), we find the interior bounds

inf
x∈Ω

(D(x) + Txx(x)) ≤ n ≤ sup
x∈Ω

(D(x) + Txx(x)) . (3.24)

By Sobolev inequality we can estimate Txx by means of (3.18), (3.19). By choosing δ small enough, we find 
|Txx(x)| ≤ 1

2 infx∈Ω D(x), so that

1
2 inf

x∈Ω
D(x) ≤ n ≤ sup

x∈Ω
D(x) + 1

2 inf
x∈Ω

D(x) ≤ 2 sup
x∈Ω

D(x). (3.25)

Taking into account the boundary conditions we find the bound (3.1).
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Existence of a fixed point and solution of the boundary-value problem. First we show that the constants n, 
n, C̃i, i = 0, 1, . . . , 5, can be chosen so that F maps W in W . We set n = 1

2nm, n = 2nM , and we choose 
C̃2 = C2[n, κ0, κL], C̃4 = C4[κL]. Then the other constants are consequently determined in the following 
order: C̃0 = C0, C̃1 = C1, C̃3 = C3, C̃5 = C5. Once the constant Ci, i = 0, 1, . . . , 5, have been chosen, the 
upper bounds τ0, σ0 for the relaxation times τ , σ are given by (3.15) and (3.12).

Next, we show that the map F has a fixed point. The set W is a compact convex subset of 
(
B1(Ω̄)

)3. 
Moreover, the map F is continuous in the B1(Ω̄)-norm. Then the Schauder’s fixed-point theorem implies 
the existence of a fixed point.

Let (n, T, θ) be a fixed point for the map F . Then we can define the constant flux J by (2.10), and the 
electric φ by (2.11). In this way we obtain a solution to the boundary value problem (2.1)–(2.3), satisfying 
the required estimates, and the Lemma is proved. �
4. Proof of the uniqueness result

In order to prove the uniqueness of the solution ensured by the previous section, we need some preliminary 
a priori estimates.

Lemma 4.1. Let (n, J, T, θ, φ) be a solution in B2(Ω̄) × B2(Ω̄) × B3(Ω̄) × B3(Ω̄) × B2(Ω̄) to the problem 
(2.1)–(2.3) satisfying the conditions

n ≤ n ≤ n, T > 0.

Then, for arbitrary constant nl > 0, there exist positive constants δ0, τ0, σ0, η0, μ0 such that if δ ≤ δ0, 
0 < τ ≤ τ0, 0 < τL ≤ σ0, |T − θ|0 ≤ η0, |θ − 1|0 ≤ μ0, then the solution satisfies the formula (2.10) and the 
estimates:

|J | ≤ Cδ, (4.1a)

T ≥ c > 0, (4.1b)

|(n, φ)|2 ≤ C, (4.1c)
1
τ
‖T − θ‖1 + ‖Txx‖ + ‖Txxx‖ ≤ Cδ, (4.1d)

1
τL

‖θ − 1‖ + 1√
τL

‖θx‖ + ‖θxx‖ ≤ Cδ, (4.1e)

where C and c are positive constants independent of τ , τL and δ.

Proof. Integrating equation (2.1b) divided by n, we see that J must satisfy (2.9), thus (2.10). Using (2.10), 
and the bounds on n, we find

|J | ≤ n (|L[T ]| + C[n, n]‖Tx‖) .

Moreover, taking into account the boundness of |T − θ| and |θ − 1|, we have

|L[T ]| ≤ |φr| + T (1)| log nr − log nl| + |1 + lognl|

∣∣∣∣∣∣
1∫

0

Tx dx

∣∣∣∣∣∣
≤ C(δ + ‖Tx‖),

which, combined with the previous estimate, yields
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|J | ≤ C[n, n] (δ + ‖Tx‖) . (4.2)

To prove (4.1a) we need to estimate ‖Tx‖. To do so, we estimate ‖(T − θ)x‖ and ‖θx‖. Multiplying (2.1d)
by θ − 1 and integrating over Ω, after integration by part, we find

1
R

[
(θ(1) − 1)2 + (θ(0) − 1)2

]
+ κL

1∫
0

θ2
x dx + 1

τL

1∫
0

(θ − 1)2 dx

=
1∫

0

3
2τ n(T − θ)(θ − 1) dx ≤ ‖T − θ‖2 +

(
3n
τ

)2

‖θ − 1‖2.

Choosing τL sufficiently small, that is,

1
2τL

≥
(

3n
τ

)2

, (4.3)

we find the estimate

κL‖θx‖2 + 1
2τL

‖θ − 1‖2 ≤ ‖T − θ‖2,

which implies

‖θx‖ + 1√
τL

‖θ − 1‖ ≤ C4[κL]‖T − θ‖. (4.4)

Next, multiplying (2.12b) by T − θ and integrating over Ω, after integration by part we obtain

κ0

1∫
0

(T − θ)2x dx +
1∫

0

3
2τ n(T − θ)2 dx = −κ0

1∫
0

θx(T − θ)x dx

+
1∫

0

J(logn)x(T − θ) dx +
1∫

0

J(logn)x(T − 1)(T − θ) dx

−
1∫

0

3
2JTx(T − θ) dx +

1∫
0

J2

n
(T − θ) dx. (4.5)

We estimate separately the five terms on the right-hand side. For the first term, using (4.4), we find

−κ0

1∫
0

θx(T − θ)x dx ≤ κ0C4[κL]‖T − θ‖‖(T − θ)x‖

≤ μ‖(T − θ)x‖2 + C[μ, κ0, κL]‖T − θ‖2, (4.6)

where μ is a positive constant to be chosen later.
Integrating by part the second term, and using (2.10), we find
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1∫
0

J(logn)x(T − θ) dx

= −

⎛
⎝

1∫
0

1
n
dx

⎞
⎠

−1 ⎛
⎝L[T ] +

1∫
0

Tx logndx

⎞
⎠

1∫
0

(Tx − θx) logndx

= −

⎛
⎝

1∫
0

1
n
dx

⎞
⎠

−1 ⎛
⎝L[T ] +

1∫
0

θx logndx

⎞
⎠

1∫
0

(Tx − θx) logndx

−

⎛
⎝

1∫
0

1
n
dx

⎞
⎠

−1 ⎛
⎝

1∫
0

(Tx − θx) logndx

⎞
⎠

2

≤ C(|L[T ]| + ‖θx‖)‖(T − θ)x‖.

We can estimate |L[T ] differently from what done above:

|L[T ]| = |φr − (1 + log nr)T (1) + (1 + lognl)T (0)|
= |φr − (1 + log nr)θ(1) + (1 + log nl)θ(0)|
≤ |φr| + | lognr − lognl|

+ |1 + log nr| |θ(1) − 1| + |1 + lognl| |θ(0) − 1|
≤ C[n, n](δ + |θ − 1|0).

Then, using Sobolev inequality, estimate (4.4) and the weighted Young inequality, we get

1∫
0

J(logn)x(T − θ) dx ≤ C
(
δ + ‖T − θ‖

)
‖(T − θ)x‖

≤ μ‖(T − θ)x‖2 + C[μ, n, n]
(
δ2 + ‖T − θ‖2), (4.7)

where μ is an arbitrary positive constant to be chosen later.
For the third term, integrating by part and using (4.2) and (4.4), we find

J

1∫
0

(logn)x(T − 1)(T − θ) dx = −J

1∫
0

log n
{

(T − 1)(T − θ)
}
x
dx

≤ C(δ + ‖Tx‖)
{
‖T − 1‖‖(T − θ)x‖ + ‖T − θ‖‖Tx‖

}

≤ C(δ + ‖T − θ‖ + ‖θ − 1‖)‖T − θ‖2
1. (4.8)

The fourth term can be estimated similarly to the previous term, obtaining

−
1∫

0

3
2JTx(T − θ) dx ≤ C(δ + ‖Tx‖)‖Tx‖‖T − θ‖

≤ C(δ + ‖T − θ‖)‖T − θ‖2
1. (4.9)

Finally, for the last term, one obtains
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1∫
0

J2

n
(T − θ) dx ≤ C(δ + ‖Tx‖)2‖T − θ‖

≤ C‖T − θ‖(δ2 + ‖T − θ‖2
1). (4.10)

Using the estimates (4.6)–(4.10) in (4.5), we find

κ0

1∫
0

(T − θ)2x dx +
1∫

0

3
2τ n(T − θ)2 dx

≤ C(μ + δ + ‖T − θ‖ + ‖θ − 1‖)‖(T − θ)x‖2

+ C(1 + δ + ‖T − θ‖ + ‖θ − 1‖)‖T − θ‖2

+ C(1 + ‖T − θ‖)δ2.

Since the quantities ‖T−θ‖, ‖θ−1‖ are controlled by |T−θ|0 ≤ η0, |θ−1|0 ≤ μ0, respectively, after choosing 
δ, η0, μ0 and μ small enough we can control the term in ‖(T − θ)x‖2. Then, choosing τ small enough, we 
can control the term in ‖T − θ‖2, and we get the estimate

‖(T − θ)x‖ + 1√
τ
‖T − θ‖ ≤ Cδ. (4.11)

Combining with (4.4), one has

‖θx‖ + 1√
τL

‖θ − 1‖ ≤ Cδ. (4.12)

Using (4.11) and (4.12) in (4.2), we get (4.1a). The same estimates ensure that |T − 1| ≤ |T − θ| + |θ − 1|
is small enough for δ small enough, thus implying (4.1b).

The part of estimate (4.1c) involving φ, follows immediately from (2.11). The estimates for n, T and θ
are derived as follows. Similarly to the derivation of (3.22) we find ‖nx‖ ≤ C by using (4.11) and (4.12). 
Estimates for θxx, Txx, nxx can be obtained as done for (3.17), (3.18) and (3.23), leading to

‖θxx‖ + 1√
τL

‖θx‖ ≤ Cδ, ‖Txx‖ + 1√
τ
‖Tx‖ ≤ Cδ, ‖nxx‖ ≤ C.

In a similar way, proceeding as in (3.19), we find ‖Txxx‖ ≤ Cδ. The B1-bounds for n in (4.1c) can be derived 
by the previous estimates for ‖n‖2, and we find |nxx|0 ≤ C by solving equation (3.9) for nxx. Finally, solving 
equation (3.7) for (T−θ)/τ and equation (3.5) for (θ−1)/τL, we find ‖T−θ‖1/τ ≤ Cδ and ‖θ−1‖/τL ≤ Cδ, 
and the Lemma is proved. �

Now we are in the condition to prove the uniqueness part of the main theorem.

Lemma 4.2. Under the same assumptions of the previous Lemma 4.1, the solution (n, J, T, θ, φ) in B2(Ω̄) ×
B2(Ω̄) × B3(Ω̄) × B3(Ω̄) × B2(Ω̄) to the problem (2.1)–(2.3) is unique.

Proof. Let (n1, J1, T1, θ1, φ1) and (n2, J2, T2, θ2, φ2) be two solutions to the problem (2.1)–(2.3). We define

p := θ1 − θ2, q := T1 − T2, r := logn1 − log n2.

Using the results of Lemma 4.1, the mean value theorem and Poincaré inequality, we find
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|J1 − J2| ≤ C

∣∣∣∣∣∣L[T1] +
1∫

0

T1x log n1 dx

∣∣∣∣∣∣
1∫

0

∣∣∣∣ 1
n2

− 1
n1

∣∣∣∣ dx

+ C

⎛
⎝|L[T1] − L[T2]| +

1∫
0

|T1x log n1 − T2x log n2| dx

⎞
⎠

≤ C(δ‖rx‖ + ‖q‖1). (4.13)

We can obtain an equation for p:

(−κLpx)x + 1
τL

p = 3
2τ n1(T1 − θ1) −

3
2τ n2(T2 − θ2). (4.14)

Multiplying by p and integrating over the domain Ω, using Lemma 4.1, we obtain

1∫
0

κLp
2
x dx + 1

R
(p(1)2 + p(0)2) + 1

τL

1∫
0

p2 dx

=
1∫

0

3
2τ (n1(q − p) + (n1 − n2)(T2 − θ2)) p dx

≤ C
1
τ

(‖q − p‖ + δ‖rx‖)‖p‖.

In conclusion, choosing τL small enough, we find

‖p‖1 ≤ C(‖q − p‖ + δ‖rx‖). (4.15)

For the difference q we get:

−κ0qxx + 3
2J1T1x − 3

2J2T2x − J1T1(logn1)x + J2T2(logn2)x

= J2
1

n1
− J2

2
n2

− 3
2τ (n1(q − p) + (n1 − n2)(T2 − θ2)) . (4.16)

Multiplying by q − p and integrating over Ω we find

1∫
0

κ0(qx − px)2 dx +
1∫

0

3
2τ n1(q − p)2 dx = −

1∫
0

κ0px(qx − px) dx

+
1∫

0

{
J1T1(logn1)x − J2T2(logn2)x − 3

2J1T1x + 3
2J2T2x

}
(q − p) dx

+
1∫

0

{
J2

1
n1

− J2
2

n2
− 3

2τ (n1 − n2)(T2 − θ2)
}

(q − p) dx.

Using Lemma 4.1, and the inequalities (4.13), (4.15), we estimate:
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−
1∫

0

κ0px(qx − px) dx ≤ 1
2κ0‖qx − px‖2 + 1

2κ0‖px‖2

≤ 1
2κ0‖qx − px‖2 + C(‖q − p‖2 + δ2‖rx‖2),

1∫
0

{
J1T1(logn1)x − J2T2(logn2)x − 3

2J1T1x + 3
2J2T2x

}
(q − p)

≤ C(‖q − p‖ + δ‖rx‖)‖q − p‖ ≤ C(‖q − p‖2 + δ2‖rx‖2),
1∫

0

{
J2

1
n1

− J2
2

n2
− 3

2τ (n1 − n2)(T2 − θ2)
}

(q − p) dx

≤ Cδ(‖q − p‖ + ‖rx‖)‖q − p‖ ≤ C(‖q − p‖2 + δ2‖rx‖2).

Choosing τ small enough, we find

‖q − p‖1 ≤ δC‖rx‖. (4.17)

To get an equation for the variable r, we start from (2.1b), which can be written in the form

T (logn)x + Tx = φx − J

n
.

We obtain

T1rx + q(logn2)x + qx = (φ1 − φ2)x −
(
J1

n1
− J2

n2

)
. (4.18)

We multiplying by rx and integrate over Ω. After integration by parts, and using (2.1e), we find

1∫
0

T1r
2
x dx +

1∫
0

(n1 − n2)r dx

= −
1∫

0

{
q(logn2)x + qx +

(
J1

n1
− J2

n2

)}
rx dx.

Using (4.13), (4.15) and (4.17), we find

1∫
0

T1r
2
x dx +

1∫
0

(n1 − n2)r dx ≤ δC‖rx‖2. (4.19)

Observing that (logn1 − log n2)(n1 − n2) ≥ 0, and using the bound for T in Lemma 4.1, we end up with 
‖rx‖ ≤ 0, that is, ‖rx‖ = 0. This, in turn, implies ‖q − p‖1 = 0, ‖p‖1 = 0. It follows n1 = n2, T1 = T2, 
θ1 = θ2, which yields J1 = J2 and φ1 = φ2. �

The proof of the main Theorem 2.1 follows from the existence Lemma 3.1 and the uniqueness Lemma 4.2.
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