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Identification of novel 
chemotherapeutic strategies for 
metastatic uveal melanoma
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Melanoma of the uveal tract accounts for approximately 5% of all melanomas and represents the most 
common primary intraocular malignancy. Despite improvements in diagnosis and more effective local 
therapies for primary cancer, the rate of metastatic death has not changed in the past forty years. In the 
present study, we made use of bioinformatics to analyze the data obtained from three public available 
microarray datasets on uveal melanoma in an attempt to identify novel putative chemotherapeutic 
options for the liver metastatic disease. We have first carried out a meta-analysis of publicly available 
whole-genome datasets, that included data from 132 patients, comparing metastatic vs. non 
metastatic uveal melanomas, in order to identify the most relevant genes characterizing the spreading 
of tumor to the liver. Subsequently, the L1000CDS2 web-based utility was used to predict small 
molecules and drugs targeting the metastatic uveal melanoma gene signature. The most promising 
drugs were found to be Cinnarizine, an anti-histaminic drug used for motion sickness, Digitoxigenin, a 
precursor of cardiac glycosides, and Clofazimine, a fat-soluble iminophenazine used in leprosy.  
In vitro and in vivo validation studies will be needed to confirm the efficacy of these molecules for the 
prevention and treatment of metastatic uveal melanoma.

Uveal melanoma is the most common primary intraocular cancer, and after the skin, the uveal tract is the second 
most common location for melanoma1. However, cutaneous and uveal melanomas are different in terms of biol-
ogy, natural history and response to chemotherapies2.

The 5-year survival rate is 50–70% and about 50% of patients develop metastases within a median of 36 
months, almost exclusively to the liver, with a median survival of 6 months after metastases3.

The most frequent chromosomal abnormalities in uveal melanoma are loss of chromosome 3 and gains of 8q 
and 6p. Patients with chromosome 3 loss undergo the worst prognosis, whereas those with chromosome 6 (6p) 
gain have the best outcomes. Mutations in G-protein-α​ subunits GNAQ or GNA11 are observed in ≥​80% of 
primary uveal melanomas and inactivating BAP1 mutations are found in approximately 50% of all cases, most 
frequently in metastatic disease. Mutations that are associated with a less aggressive behavior are those in splicing 
factor 3B subunit 1 (SF3B1) and eukaryotic translation initiation factor 1A, X-linked (EIF1AX)4.

Local radiation therapy, using brachytherapy or alternatively, charged-particle and proton-beam radiation, is 
the most common approach4–6. Enucleation remains the only option for very large tumors.

Despite improved understanding of the disease, the overall survival (OS) rate has not increased since the 
1970 s. Indeed, once uveal melanoma has metastasized to distant organs, the disease is resistant to current chem-
otherapies. Distant metastasis are infrequent at the time of initial presentation, occurring in <​5% of patients. For 
patients who develop metastasis, there is yet no standard of care. Dacarbazine, has been used for uveal melanoma, 
but efficacy is limited. Other chemotherapeutics, i.e. temozolomide, cisplatin, treosulfan, fotemustine and various 
combinations have been tested in uveal melanoma with disappointing results. A few adjuvant studies have been 
performed in uveal melanoma to prevent metastatic disease. However, no significant effects on metastasis free 
survival or OS benefit have been obtained, up to date4.
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In the present study, we made use of bioinformatics to analyze the data obtained from three public available 
microarray datasets on uveal melanoma in attempt to identify novel putative chemotherapeutic options for the 
metastatic disease.

Material and Methods
Microarray dataset selection and meta-analysis.  The NCBI Gene Expression Omnibus (GEO) data-
base (http://www.ncbi.nlm.nih.gov/geo/)7 was used to identify suitable microarray datasets comparing local-
ized vs. metastatic uveal melanomas. Three datasets were included in the study GSE221388- GSE736529, and 
GSE44295, that included whole-genome transcriptomic data from primary melanoma cells obtained upon eye 
enucleation (Table 1). The following information were extracted from each of the studies that were selected: 
GEO accession; sample type; platform; numbers of patients and controls; and gene expression data. Briefly, the 
GSE22138 dataset included 28 samples of non-metastatic tumor and 35 samples from enucleated patients having 
distant metastasis. Patients were included in the group of localized tumors if no metastasis were observed in 36 
months of follow-up. The GSE73652 dataset included 5 samples of non-metastatic tumor and 8 samples from 
enucleated patients having distant metastasis. Metastasis-free cases were included only if there was >​6 years 
follow-up. No detailed clinical data are available for GSE44292, that included 32 samples from patients with local-
ized disease and 24 sample from patients with metastasis. Illumina platforms were pre-processed using Bead-
array prior to quantile normalization (Dunning et al., 2007), while Affymetrix platforms were pre-processed and 
quantile normalized using the robust multiarray average (RMA). The datasets were uploaded to INMEX (http://
www.inmex.ca/INMEX)10, and the data annotated by converting probe ID to Entrez IDs. For each probe-set, 
intensity values were auto-scaled and a data integrity check was performed prior to the meta-analysis stage. Batch 
effects were corrected using the “ComBat” function. A random effects model of effect size (ES) measure was used 
to integrate gene expression patterns from the three datasets. The random effects model presumes that different 
studies present substantial diversity, and evaluates between-study variance as well as within-study sampling error. 
Genes with FDR <​ 0.01 were identified as Differentially Expressed (DE) and selected for further analysis.

Gene Ontology (GO) and Drug Prediction Analysis.  Functional relationships among DE gene were 
obtained from GeneMania (http://genemania.org/ http://genemania.org/)11. GeneMANIA searches publicly 
available genomics and proteomics data, including data from gene and protein expression profiling studies and 
primary and curated molecular interaction networks and pathways, to find related genes. The network weighting 
method is ‘Gene-Ontology (GO) based weighting, Biological Process based’. This weighting method assumes the 
input gene list is related in terms of biological processes (as defined by GO).

The PANTHER (protein annotation through evolutionary relationship) classification system12 (http://
www.pantherdb.org/) was used to classify input genes according to their function (PANTHER protein class). 
PANTHER is a comprehensive system that combines gene function, ontology, pathways and statistical tools that 
enable to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments.

The L1000CDS2 was used to identify potential chemotherapeutics for metastatic uveal melanoma. 
L1000CDS2 enables to find L1000 small molecule signatures that match input gene signatures. The L1000 mRNA 
gene-expression dataset is generated as part of the Library of Integrated Network-based Cellular Signatures 
(LINCS) project, a NIH Common Fund program. LINCS aims to profile the molecular effects of small molecules 
on human cells13. When gene lists are submitted to L1000CDS2, the search engine compares the input gene lists to 
the DE genes computed from the LINCS L1000 data and returns the top 50 matched signatures. The result score 
is the overlap between the input DE genes and the signature DE genes divided by the effective input. The effective 
input is the length of the intersection between the input genes and the L1000 genes. L1000CDS2 currently covers 
chemically perturbed gene expression profiles from 62 cell-lines and 3,924 small molecules. Also, L1000CDS2 
allows to predict effective drug combinations by comparing every possible pair among the top 50 signatures and 
computing the potential synergy for each pair.

Results
Meta-analysis of gene expression in metastatic uveal melanoma.  Three GEO data sets were iden-
tified for the following analysis (Table 1). These datasets consisted of primary uveal melanoma data, and included 
a total of 67 metastatic tumors and 65 localized primary tumors. Details of the individual studies are presented 
in Table 1. Figure 1A shows a Principal Component Analysis of the three separate microarray datasets included 
in the meta-analysis.

A total of 64 genes were identified, which were consistently modulated in metastatic tumors. Among these 64 
DE genes, 29 were upregulated and 35 were downregulated. A list of the significant upregulated and downregu-
lated genes is shown in Tables 2 and 3, respectively. An heatmap showing the 64 DE genes is presented in Fig. 1B. 

Study
GEO 

accession

Patients

Samples PlatformLocalized (n.) Metastatic (n.)

1 GSE22138
28 Mean age: 59.1 Chr3 monosomy: 
10/28; Partial alteration: 2/28; Not 
available:2/28 36 months follow-up

35 Mean age: 60.5 Chr3 
monosomy: 22/35; Partial 

alteration: 3/35; Not available: 6/35
Primary tumor (eye) Affymetrix U133 plus 2

2 GSE44295 32 24 Primary tumor (eye) Illumina Human ref. 8 v.3

3 GSE73652 5 >​ 6 years follow-up 8 Primary tumor (eye) Illumina Human HT 12 v. 4

Table 1.   Characteristics of the microarray datasets included in the meta-analysis.

http://www.ncbi.nlm.nih.gov/geo/
http://www.inmex.ca/INMEX
http://www.inmex.ca/INMEX
http://genemania.org/
http://genemania.org/
http://www.pantherdb.org/
http://www.pantherdb.org/
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The functional relationships among the up- and down-regulated genes, respectively, are presented in Fig. 2A,B. 
Among the upregulated genes, the top three represented protein classes were: Transferase, which included phos-
phatases (CDC25B and IMPA1) and proteases (IDE and TYSND1); Enzyme Modulator, including G protein 
modulators (SGSM2, SRGAP2 and SIPA1L2) and the protease inhibitor, HPN; Nucleic Acid Binding, i.e. the 
DNA helicase, CHD7, and the DNA ligase, LIG1 (Fig. 2C).

Among the downregulated genes, the top three protein classes represented were: Nucleic Acid Binding, that 
included DNA binding proteins (H2AFY2, NDN and MBNL1) and RNA binding proteins (ANG, EIF4A2 and 
EIF4A3); Hydrolase, including the proteases, ABHD6 and LTA4H, and the lipase, PLCD1; Enzyme Modulator, 
including the G protein modulator, PLCD1, the kinase modulator, HOOK1, and the protease inhibitor, VWA5A 
(Fig. 2D).

Figure 1.  (A) Principal Component analysis of GSE73652, GSE44295 and GSE22138. CLASS1 refers to 
metastatic tumors and CLASS2 to localized tumor; (B) Heatmap showing the 64 differentially expressed genes 
as determined by Random Effect Size Analysis of GSE73652, GSE44295 and GSE22138.

Name Combined Effect Size FDR

JPH1 −​1.1736 1.5378e-05

TACC2 −​0.97146 0.00059404

SIPA1L2 −​0.96664 0.00059404

TYSND1 −​0.9641 0.00059404

TMEM161A −​0.95064 0.003168

MCU −​0.94061 0.00094886

PRKDC −​0.93729 0.00094886

MTFR1 −​0.90776 0.0015792

SHC1 −​0.86702 0.003168

MYEOV −​0.86335 0.003168

VCPIP1 −​0.85848 0.003168

CHAC1 −​0.8543 0.003168

HPN −​0.85398 0.003168

SUMF2 −​0.85012 0.0049617

LIG1 −​0.83865 0.0040445

RNF19A −​0.83777 0.0040445

TAF5 −​0.8377 0.0040445

HRSP12 −​0.83574 0.009672

CDC25B −​0.83518 0.0040445

IMPA1 −​0.82144 0.0048032

SGSM2 −​0.81096 0.0052385

SRGAP2 −​0.80528 0.0057402

MORC2 −​0.79995 0.0057952

C8orf76 −​0.79478 0.0059805

TMEM70 −​0.79037 0.0063563

IDE −​0.78739 0.0065272

CHD7 −​0.78327 0.0071536

MTDH −​0.7758 0.0082124

INTS8 −​0.75952 0.009672

Table 2.   List of significantly upregulated genes in metastatic uveal melanoma.
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Prediction of novel chemotherapeutics for metastatic uveal melanoma.  The L1000CDS2 
web-based utility was used to predict small molecules and drugs targeting the metastatic uveal melanoma 
gene signature. Figure 3 shows a clustergram with the top ranked L1000 perturbations (e.g. those with most 
anti-similar signatures). The complete list of predicted chemotherapeutics is presented as Table 4. Several of 
these drugs are FDA-approved and already used in the clinic or tested in clinical trials, as indicated in Table 4. 
Among the predicted chemotherapeutics, the most represented classes were: histone deacetylase inhibitors (that 
included HDAC6 inhibitor ISOX, BRD-K13810148, Trichostatin A and Vorinostat), and anti-infectious/parasitic 
drugs (i.e., Clofazimine, Erythromycin ethylsuccinate, Demeclocycline and Quinacrine hydrochloride). The top 
identified drugs were the following: BRD-K07220430 (Cinnarizine), an anti-histaminic drug used for motion 
sickness, was predicted for its ability to downregulate CHAC1 and to upregulate MBNL1, LPAR6, PLSCR4, 
NDN, ABHD6, ZSCAN18 and ZBTB20; Digitoxigenin, for its ability to downregulate CDC25B, IDE, INTS8 and 
MTDH, while upregulating F11R, ID2, and RAB11FIP1; clofazimine, a fat-soluble iminophenazine used in lep-
rosy, which is able to downregulate CDC25B, CHAC1, and SHC1, and to upregulate ABHD6, PLOD2, PLSCR4, 
ZBTB20, ZSCAN18. Accordingly, the top three most promising drug combination found were: BRD-K07220430 
and Digitoxigenin; Digitoxigenin and OSSK_645683; BRD-K07220430 and HDAC6 inhibitor ISOX (for the com-
plete list, see Table 5).

Discussion
Melanoma of the uveal tract accounts for 5% of all melanomas and, with an incidence of about 6 cases per mil-
lion person–years, represents the most common primary intraocular malignancy14,15. Despite improvements in 
diagnosis and more effective local therapies for primary cancer, the rate of metastatic death has not changed in 
the past forty years15.

Name Combined Effect Size FDR

PLSCR4 1.1795 0.0072336

RAB11FIP1 1.0587 0.00013411

MEGF10 1.0539 0.00013411

ID2 1.0091 0.00046632

VWA5A 0.93182 0.005083

TRAK1 0.91734 0.0014595

MPPED2 0.90563 0.0015792

ANG 0.89382 0.0050995

DLC1 0.87069 0.003168

NDN 0.86139 0.003168

PLCD1 0.85619 0.003168

EFCAB1 0.8339 0.004092

ACAA1 0.8233 0.0048032

LPIN1 0.82127 0.0048032

LTA4H 0.81998 0.0048032

BMI1 0.80767 0.0086087

NFIA 0.80698 0.0057402

PRICKLE2 0.80144 0.0057952

H2AFY2 0.8013 0.0057952

SETMAR 0.79757 0.0059412

PLOD2 0.79556 0.0059805

EIF4A2 0.79517 0.0059805

FAM24B 0.79409 0.0059805

ZSCAN18 0.78983 0.0063563

MKRN2 0.78026 0.0071738

F11R 0.77016 0.0084361

HOOK1 0.76951 0.00849

EIF4E3 0.76619 0.0089451

LPAR6 0.76421 0.0092481

MID1 0.7632 0.0091958

ZBTB20 0.76021 0.009672

ABHD6 0.76011 0.009672

MBNL1 0.75836 0.009672

SHE 0.75664 0.0098953

ZNF415 0.75661 0.009672

Table 3.   List of significantly downregulated genes in metastatic uveal melanoma.
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Several genes and pathways have been identified to be involved in the progression and metastasis of uveal mel-
anoma, such as c-Met16, Hepatocyte Growth Factor (HGF)16,17, Insulin-like Growth Factor-1 Receptor (IGF-1R)18, 
the CXCL12-CXCR4 pathway17,19, VEGF20, Mda-9/syntenin21 and the PTP4A3 phosphatase8. However, despite 

Figure 2.  (A) Functional network of the significant upregulated genes obtained from the meta-analysis of 
GSE73652, GSE44295 and GSE22138; (B) Functional network of the significant downregulated genes obtained 
from the meta-analysis of GSE73652, GSE44295 and GSE22138; (C) Protein class analysis for the significant 
upregulated genes obtained from the meta-analysis of GSE73652, GSE44295 and GSE22138; (D) Protein class 
analysis for the significant downregulated genes obtained from the meta-analysis of GSE73652, GSE44295 and 
GSE22138.

Figure 3.  Clustergram with the top ranked L1000 perturbations (e.g. those with most anti-similar 
signatures). Input genes (rows) are represented by the significantly upregulated (highlighted in red) and 
downregulated genes (highlighted in blu) obtained from the meta-analysis of GSE73652, GSE44295 and 
GSE22138. Columns include the top predicted drugs targeting input genes.
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Rank Score Perturbation Class* FDA status* Indications*
1 0.1569 BRD-K07220430 (Cinnarizine) Anti-histaminic Approved Motion sickness.
2 0.1373 Digitoxigenin Unknown Not approved None
3 0.1373 clofazimine Antimycobacterial Approved Leprosy
4 0.1373 OSSK_645683 Unknown Not approved None
5 0.1373 MLS-0091942.0001 Unknown Not approved None
6 0.1373 Mesoridazine besylate Neuroleptic Approved Schizophrenia
7 0.1176 HDAC6 inhibitor ISOX Histone deacetylase inhibitor Not approved None

8 0.1176 BRD-K13810148 Histone deacety-lase 
inhibitor Investigational

9 0.1176 HY-11005 (BX-912) PDK1 inhibitor Not approved None
10 0.1176 SB 334867 Orexin antagonist Not approved None
11 0.1176 SC 560 Cyclooxygenase inhibitors Not approved None
12 0.1176 ERYTHROMYCIN ETHYLSUCCINATE Macrolide antibiotic Approved Bacterial infection

13 0.1176 Huperzine A [(−​)-Huperzine A] Reversible 
acetylcholinesterase inhibitor Investigational Alzheimer’s disease

14 0.1176 FLUOCINOLONE ACETONIDE Glucocorticoid Approved Skin disorders
15 0.1176 PP-110 Topical anesthetic Investigational Hemorrhoids
16 0.1176 NSC 23766 RAC1 inhibitor
17 0.1176 MLS-0390979 Inhibitor of IAPs
18 0.1176 NCGC00229596-01 Unknown Not approved None
19 0.1176 BRD-K73567619 Unknown Not approved None
20 0.1176 BRD-K24281017 Unknown Not approved None
21 0.1176 BRD-K06217810 Unknown Not approved None
22 0.1176 5922592 Unknown Not approved None
23 0.1176 BRD-K11778372 Unknown Not approved None
24 0.1176 1495 Unknown Not approved None
25 0.1176 G-220 Unknown Not approved None
26 0.1176 BRD-K61192129 Unknown Not approved None
27 0.1176 BRD-K75958195 Unknown Not approved None
28 0.1176 BRD-K50311478 Unknown Not approved None
29 0.1176 BRD-K96402602 Unknown Not approved None
30 0.1176 BRD-K94920105 Unknown Not approved None
31 0.1176 BRD-K48692744 Unknown Not approved None
32 0.1176 BRD-K12765235 Unknown Not approved None
33 0.1176 BRD-K15715913 Unknown Not approved None

34 0.1176 demeclocycline Semisynthetic tetracycline 
antibiotic Approved Lyme disease, acne, and 

bronchitis
35 0.1176 BRD-K49519144 Unknown Not approved None

36 0.0980 trichostatin A Histone deacety-lase 
inhibitor Not approved None

37 0.0980 Dorsomorphin dihydrochloride AMPK inhibitor Not approved None

38 0.0980 HDAC6 inhibitor ISOX Histone deacety-lase 
inhibitor Not approved None

39 0.0980 16-HYDROXYTRIPTOLIDE Unknown Not approved None
40 0.0980 BRD-K92317137 Unknown Not approved None

41 0.0980 QUINACRINE HYDROCHLORIDE Anti-helmintic Approved
Giardiasis, cutaneous 

leishmaniasis, 
malignant effusions

42 0.0980 HDAC6 inhibitor ISOX Histone deacety-lase 
inhibitor Not approved None

43 0.0980 BRD-K84203638 Not approved None

44 0.0980 trichostatin A Histone deacety-lase 
inhibitor Not approved None

45 0.0980 BRD-K92158425 Not approved None

46 0.0980 topotecan hcl DNA topoisomerases 
inhibitor Approved Cancer

47 0.0980 BRD-A60245366 Unknown Not approved None
48 0.0980 EI-293 Unknown Not approved None
49 0.0980 S1003 Unknown Not approved None

50 0.0980 vorinostat Histone deacetylase 
inhibitors Approved Cutaneous T-cell 

lymphoma

Table 4.   Predicted small molecules and drugs targeting the metastatic uveal melanoma gene signature. 
*Information obtained from DrugBank (https://www.drugbank.ca/).

https://www.drugbank.ca/
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Rank Score Combination

1 0.2941 1. BRD-K07220430 2. Digitoxigenin

2 0.2745 2. Digitoxigenin 4. OSSK_645683

3 0.2745 1. BRD-K07220430 7. HDAC6 inhibitor ISOX

4 0.2745 1. BRD-K07220430 8. BRD-K13810148

5 0.2745 1. BRD-K07220430 12. ERYTHROMYCIN ETHYLSUCCINATE

6 0.2745 1. BRD-K07220430 18. NCGC00229596-01

7 0.2745 1. BRD-K07220430 30. BRD-K94920105

8 0.2549 2. Digitoxigenin 3. clofazimine

9 0.2549 2. Digitoxigenin 5. MLS-0091942.0001

10 0.2549 2. Digitoxigenin 6. Mesoridazine besylate

11 0.2549 3. clofazimine 7. HDAC6 inhibitor ISOX

12 0.2549 4. OSSK_645683 7. HDAC6 inhibitor ISOX

13 0.2549 6. Mesoridazine besylate 7. HDAC6 inhibitor ISOX

14 0.2549 3. clofazimine 8. BRD-K13810148

15 0.2549 4. OSSK_645683 8. BRD-K13810148

16 0.2549 6. Mesoridazine besylate 8. BRD-K13810148

17 0.2549 1. BRD-K07220430 9. HY-11005

18 0.2549 5. MLS-0091942.0001 10. SB 334867

19 0.2549 4. OSSK_645683 12. ERYTHROMYCIN ETHYLSUCCINATE

20 0.2549 6. Mesoridazine besylate 12. ERYTHROMYCIN ETHYLSUCCINATE

21 0.2549 1. BRD-K07220430 16. NSC 23766

22 0.2549 4. OSSK_645683 16. NSC 23766

23 0.2549 5. MLS-0091942.0001 16. NSC 23766

24 0.2549 1. BRD-K07220430 17. MLS-0390979

25 0.2549 5. MLS-0091942.0001 18. NCGC00229596-01

26 0.2549 1. BRD-K07220430 20. BRD-K24281017

27 0.2549 5. MLS-0091942.0001 20. BRD-K24281017

28 0.2549 2. Digitoxigenin 23. BRD-K11778372

29 0.2549 2. Digitoxigenin 24. 1495

30 0.2549 2. Digitoxigenin 25. G-220

31 0.2549 2. Digitoxigenin 26. BRD-K61192129

32 0.2549 4. OSSK_645683 26. BRD-K61192129

33 0.2549 2. Digitoxigenin 27. BRD-K75958195

34 0.2549 1. BRD-K07220430 29. BRD-K96402602

35 0.2549 1. BRD-K07220430 32. BRD-K12765235

36 0.2549 1. BRD-K07220430 33. BRD-K15715913

37 0.2549 2. Digitoxigenin 33. BRD-K15715913

38 0.2549 3. clofazimine 33. BRD-K15715913

39 0.2549 5. MLS-0091942.0001 33. BRD-K15715913

40 0.2549 1. BRD-K07220430 39. 16-HYDROXYTRIPTOLIDE

41 0.2549 1. BRD-K07220430 42. HDAC6 inhibitor ISOX

42 0.2549 1. BRD-K07220430 43. BRD-K84203638

43 0.2549 1. BRD-K07220430 44. trichostatin A

44 0.2549 1. BRD-K07220430 46. topotecan hcl

45 0.2549 1. BRD-K07220430 50. vorinostat

46 0.2353 4. OSSK_645683 5. MLS-0091942.0001

47 0.2353 1. BRD-K07220430 6. Mesoridazine besylate

48 0.2353 4. OSSK_645683 6. Mesoridazine besylate

49 0.2353 4. OSSK_645683 9. HY-11005

50 0.2353 5. MLS-0091942.0001 9. HY-11005

Table 5.   Top 50 predicted small molecule combinations targeting the metastatic uveal melanoma gene 
signature.
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increasing knowledge in the biology of uveal melanoma, no therapeutic strategies has been found to be effective. 
Metastatic uveal melanoma is resistant to current systemic chemotherapy and, to date, no clear role has been 
established for chemotherapy in several clinical trials, that reported objective response rates <​20%4. Single-agent 
chemotherapies (e.g., dacarbazina, fotemustine, paclitaxel, temozolomide, camptothecin, treosulfan) or com-
bination chemotherapies (e.g. gemcitabine/treosulfan, cisplatin/gemcitabine/treosulfan, carboplatin/paclitaxel/
sorafenib) have shown poor response rates and immunotherapy with ipilimumab, antiangiogenetic treatment 
strategies using bevacizumab combined with interferon-α​2b, temozolomide, or aflibercept have not proven to be 
superior to chemotherapy22.

In order to prevent metastatic disease, several adjuvant studies are also being conducted using ipilimumab, 
sunitinib, valproic acid, and crizotinib for high-risk patients4. Adjuvant treatment with bacillus Calmette-Guerin 
and interferon-α​, as well as, intra-arterial hepatic infusion of fotemustine, have been previously studied in 
an effort to reduce the occurrence of liver metastasis, but none of these studies has demonstrated significant 
improvement in metastasis free survival or OS4.

The limited efficacy of current chemotherapies proves the medical need for more effective treatment strategies 
in metastatic uveal melanoma. In the present study, a meta-analysis of three whole-genome microarray datasets 
on primary tumor samples from the enucleated eyes of patients with localized or metastatic disease, has been per-
formed in order to investigate the genes associated to the metastatic properties of uveal melanoma and to identify 
potential chemotherapeutic strategies to be used in metastatic disease.

It was recently developed a 15-gene qPCR-based assay that discriminate between primary uveal melano-
mas that have a low metastatic risk and a high metastatic risk 23. This platform is currently used in a College of 
American Pathologists (CAP)-accredited Clinical Laboratory Improvement Amendments (CLIA)-certified lab-
oratory on fine needle aspiration samples and on formalin-fixed specimens23. A few of the genes screened in this 
assay correspond to those identified by the current analysis, namely ID2 and LTA4H, among the downregulated 
genes. Some of the other DE genes, share similar function to those included in the assay, i.e. EIF4A2 and EIF4E2 
(to EIF1B).

As regards the putative drugs here identified, some of them are already in clinical use, such as BRD-K07220430 
(Cinnarizine)24, clofazimine25, mesoridazine besylate26, erythromycin ethylsuccinate27; other are in preclin-
ical development (e.g. HDAC6 inhibitor ISOX)28 or do not have any known pharmacological target, e.g. 
OSSK_645683. Interestingly, some of the identified drugs are histone deacetylase inhibitors (such as, HDAC6 
inhibitor ISOX, BRD-K13810148, Trichostatin A and Vorinostat), that have already been shown efficacy on uveal 
melanoma preclinical models29–36. Klisovic and collaborators have shown that the histone deacetylase inhibitor, 
Depsipeptide (FR901228), inhibits proliferation and induces apoptosis in primary and metastatic human uveal 
melanoma cell lines35, as well as it is able to inhibit in vitro uveal melanoma cell lines migration via downregu-
lation of Matrix MetalloProteinases 2, 9 and Membrane Type-1/MMP (MMP-2, MMP-9 and MT-1/MMP) and 
the upregulation of Tissue Inhibitors of Matrix MetalloProteinases 1 and 2 (TIMP-1 and TIMP-2)34. Chen and 
collaborators have shown that microRNA-137 and microRNA-124a act as a tumor suppressors in uveal mela-
noma and could be successfully silenced by using the histone deacetylase inhibitor, trichostatin A32,36. Landreville 
and collegues have shown that in three uveal melanoma cell lines (92.1, OCM1A, and Mel202), Trichostatin A 
was able to reduce the fraction of viable cells and increase the proportion of cells undergoing apoptosis33. Also, it 
was shown that Quisinostat (a Class I and II histone deacetylase inhibitor) inhibited the migration and prolifer-
ation of 92.1 and OMM2.3 cell lines in zebrafish xenograft embryos30. In addition, the Class III-specific HDAC 
inhibitor, Tenovin-6, was shown to be able to eradicate cancer stem cells in 92.1 and Mel 270 cells29. Venza in 
201431, reported that the Class-I histone deacetylase inhibitor, MS-275, due to its ability to reduce c-FLIP expres-
sion, is able to increase TRAIL-induced cell death in uveal melanoma cell lines. MS-275, is currently tested in a 
Phase 1 study for the treatment of patients with Refractory Solid Tumors, including intraocular melanoma, or 
Lymphomas (NCT00020579). Vorinostat, a small molecule inhibitor of class I and II histone deacetylases, is cur-
rently tested in two Phase 2 Study on Ocular Melanoma With Extraocular Extension, Recurrent Uveal Melanoma 
and Grade IV Metastatic Uveal Melanoma (NCT00121225, NCT 01587352).

The utility of the present data may reside primarily in the potential identification of effective adjuvant treat-
ments. In light of the fact that there is no therapy for metastatic disease, the most promising strategy to improve 
survival is to treat patients in an adjuvant setting. Although there might be non- metastasizing melanomas, which 
never metastasize, even if not treated, however the intra-tumoral genetic heterogeneity suggests an ongoing 
evolutionary tumoral process37. Adjuvant interventions could settle up the uncertainty about the effect of ocu-
lar treatment on survival, since some patients might unnecessarily sacrifice their visus in the hope of a longer 
life-expectancy; while other patients with small melanomas might succumb due to metastasis because treatment 
has been delayed. Presently, there is no adjuvant approach that improves outcome, but the impact of ocular treat-
ment, in terms of therapeutic benefit, has ethical implications.

The present study has several advantages but also limitations. It represents, to date, the largest meta-analysis 
comparing metastatic vs. non metastatic uveal melanomas, encompassing whole-genomic data from a total 
of 132 patients. A strict and rigorous statistics has been applied to data in order to sort out the most relevant 
genes characterizing the spreading of tumor to the liver. Among the upregulated genes, the highest effect size 
was detected for JPH1, encoding for Junctophilin-1, a component of junctional complexes between the plasma 
membrane and endoplasmic/sarcoplasmic reticulum, providing functional cross-talk between the cell sur-
face and intracellular calcium release channels (http://www.genecards.org/cgi-bin/carddisp.pl?gene=​JPH1). 
Among the significant downregulated genes, the gene with the highest effect size was PLSCR4, encoding for the 
Phospholipid Scramblase 4, which has been found to be strongly expressed in the neuropil of malignant glio-
mas and in cytoplasm of liver cancers, colorectal cancers and malignant melanomas (http://www.proteinatlas.
org/ENSG00000114698-PLSCR4/cancer). Comparing to the original analysis, the PTP4A3 phosphatases and the 
cancer-testis antigen, PRAME, were dropped out because of too little statistical significance. In addition, although 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=JPH1
http://www.proteinatlas.org/ENSG00000114698-PLSCR4/cancer
http://www.proteinatlas.org/ENSG00000114698-PLSCR4/cancer
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the role of the PKC, MAPK and PI3K/AKT/mTOR signaling cascades has been extensively examined in uveal 
melanoma38–40, however, whole genome transcriptomic analysis may fail to detect their modulation, because of 
the primary contribution related to post-transcriptional modifications. Also, our analysis was very statistical 
stringent (FDR <​ 0.01), and this may account for the differences from previously published work1. Furthermore, 
the discrepancies with previous analysis may be due to the enlargement of the number of samples which could 
influence DE genes detection as respect to smaller sample groups.

Investigating the genes found to be significantly modulated in the present analysis may help to identify the 
molecular mechanisms involved in the liver metastasis of uveal melanoma, and may allow the identification of 
novel pharmacological targets for the prevention and treatment of liver involvement. Moreover, our study was 
aimed at predicting putative pharmacological schemes to apply as adjuvant or curative therapy, making use of 
the Library of Integrated Network-based Cellular Signatures (LINCS) project database. The repurposing of drugs 
currently approved for use in the clinical setting may expedite the design of phase II-III clinical trials, being 
cost-effective and reducing the risks associated with early stages of drug development41. The highest ranking 
scores were found for Cinnarizine, Digitoxigenin and Clofazimine. Cinnarizine has already been shown to be 
effective in vitro against lymphoma and multiple myeloma42 and to inhibit melanogenesis in mouse B16 mela-
noma cells43, and Clofazimine was found effective in preclinical models of pancreatic ductal adenocarcinoma and 
triple-negative breast cancer44,45.

However, this study has also limitations. Despite the practicality of this bioinformatic approach, there are 
drawbacks to point out. First, the efficacy of a drug is more complex than the simple match of expression profiles. 
Drugs have to reach tissue-specific concentrations to exert an effect, and the route and timing of administration 
is essential for the drug to be effective and to limit side effects. A preliminary in vitro testing on both primary 
and established cancer cell lines will be required before running pilot phase II clinical trials. On the other hand, 
for successful result of the clinical trials, the appropriate selection and recruitment of patients will be also key to 
evaluate the potential activity of the compounds in the clinical setting.
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