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Abstract: Optical remote sensors are nowadays ubiquitously used, thanks to unprecedented
advances in the last decade in photonics, machine learning and signal processing tools. In this
work we study experimentally the remote recovery of audio signals from the silent videos of
the movement of optical speckle patterns. This technique can be used even when in between
the source and the receiver there is a medium that does not allow for the propagation of sound
waves. We use a diode laser to generate a speckle pattern on the membrane of a loudspeaker and
a low-cost CCD camera to record the video of the movement of the speckle pattern when the
loudspeaker plays an audio signal. We perform a comparative analysis of six signal recovery
algorithms. In spite of having different complexity and computational requirements, we find that
the algorithms have (except for the simplest one) good performance in terms of the quality of
the recovered signal. The best trade-off, in terms of computational costs and performance, is
obtained with a new method that we propose, which recovers the signal from the weighted sum
of the intensities of all the pixels, where the signs of the weights are determined by selecting a
reference pixel and calculating the signs of the cross-correlations of the intensity of the reference
pixel and the intensities of the other pixels.
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1. Introduction

Optical remote sensing is a key technology that allows to probe the environment noninvasively
and over long distances between probe and probed objects. Popular techniques include lidar,
hyperspectral imaging and near-infrared spectroscopy. Applications of optical remote sensing
span such diverse topics as atmospheric boundary layer assessments, power grid and infrastructure
monitoring, offshore wind profile measurements, agricultural, fishing, forest and biodiversity
monitoring, archaeological discovery, biomedicine, lighting and many more [1–10].
Diode lasers are particularly attractive for sensing applications due to the fact that they

are compact, energy-efficient, low-cost, and cover a wide range of wavelengths. Because of
these advantages, here we implement the setup proposed by Rodriguez-Cobo et al [11] and
Robles-Urquijo et al [12] for the remote recovery of audio signals from videos of speckle patterns
[13], but using a diode laser. In our setup the output of the laser is projected to the membrane
of a loudspeaker and the movement of the speckle pattern when the speaker plays a sound is
video-recorded with a CCD camera.
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Our goal is to perform a comparative study of different signal processing algorithms for the
recovery of the audio signal from the silent video. We propose new recovery algorithms and
compare with those that have been proposed in the literature [12,14]. The technique that was
proposed by researchers at MIT [14] allows to extract sound from videos of minute vibrations.
It does not use laser-generated speckle, and therefore, the video scene needs to be naturally
illuminated (in contrast, here we illuminate the video scene with a laser from a distance, as
in [12]). Another technique proposed here uses the algorithm IsoMap [15] for dimensionality
reduction, that reconstructs time-varying features in a low-dimensional space. This method
is very reliable and precise, but has high a computational cost. A simple alternative is the
calculation of the mean intensity of each video frame, and we find that it gives, in most cases,
good results. We also propose a new algorithm that is based on the cross-correlation between the
time series of the intensity of a reference pixel and the time series of the intensity of all other
pixels. This algorithm gives a good trade-off between the quality of the recovery signal and the
computational cost. The method can be further improved by considering as reference pixel the
one with the largest variability.
The paper is organized as follows: in Sec. 2 the experimental setup is described; in Sec. 3

six methods to process the video frames are presented, which are referred to as Differential
Processing (DIF) [11], Mean Intensity (MI), 1-pixel method (1 PIX), Cross-Correlation (CC),
Machine Learning (ML) using dimensionality reduction and MIT method (MIT) [14]; Sec. 4
presents the measures used to compare the performance of the algorithms; Sec. 5 presents the
results of the comparison and Sec. 6 draws the conclusions of the paper.

2. Experimental setup

The setup is shown in Fig. 1(a). We directed the collimated light from a diode laser (Thorlabs
HL6750MG, λ = 685 nm) driven by a Thorlabs ITC4001 controller, through an iris of
approximately 1 mm diameter at an angle of 40 deg onto the membrane of a loudspeaker
(Logitech X-210 subwoofer). A white paper was glued to the speaker membrane to avoid the
absorption of the light by the black surface of the speaker membrane. We imaged the speckle
pattern that originates from the roughness of the paper by a lens (focal distance f = 100 mm)
onto the sensor of an 8-bit CMOS camera (IDS UI-1222LE-M, pixel size 6 µm). The diameter
of the lens was D ∼ 50 mm and thus the angular resolution was 1.22λ/D = 1.590 e−05 rad. An
example of a speckle pattern is shown in Fig. 1(b).

Fig. 1. (a) Experimental setup: A collimated laser beam shines onto a white paper glued to
the membrane of a loudspeaker. The paper surface roughness generates a speckle pattern
that is imaged by lens L onto the sensor of a CMOS camera. (b) Example a speckle image
recorded by the camera. Examples of recorded videos and recovered audio signals can be
found here.

The camera is run in video mode in order to observe the dynamical change of the speckle
pattern when a sound is played by the speaker. A high video frame rate is needed to reconstruct
high-frequency signals because the frame rate corresponds to the sampling frequency, and a

https://donll.upc.edu/en/videos/speaker/protect/T1_speckle/39.0db
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sampling frequency of 2f is necessary to reconstruct a signal of frequency f . At 800 frames per
second (fps), for example, it is possible to recover audio frequencies of up to 400 Hz.

We reconstruct from video two types of audio signals: sinusoidal with frequencies between 60
Hz and 140 Hz and a song with a predominance of bass frequencies (Another One Bites the Dust
by Queen). Examples of recorded videos and recovered audio signals can be found here. For the
sinusoidal signals we used 360.62 fps and recorded an area of 100 × 100 pixels; for the song, the
recorded area was 560 × 16 pixels and the frame rate was 886.05 fps.

3. Recovery methods

To describe the signal recovery methods we consider the following notation: Ii [n] is the intensity
of the i-th pixel in frame n and x [n] = x (nTs) is the sampling of the audio signal x(t) emitted by
the speaker, with Ts being the sampling time. We use y [n] to denote the recovered signal at time
nTs, that is a function of the pixel intensities, which are functions of the audio signal. Neglecting
delays, constant terms, and using a linear approximation we have:

Ii [n] = fi (x [n]) + σiεi [n] ≈ αix [n] + σiεi [n] . (1)

Here αi is a constant in time that can depend on the pixel and the signals εi [n] account for noise
and intensity discretization; we assume they are uncorrelated white noise with unity variance. σi
is the strength of the noise that can also depend on the pixel.

3.1. Differential processing scheme (DIF)

This method, used in [11], assumes a proportionality between speckle pattern variations and the
perturbation to be measured. It is based in computing the difference, pixel-to-pixel, between two
consecutive frames. The recovered signal is y [n] =

∑
i |Ii [n] − Ii [n − 1]|. If Eq. (1) holds we

see that
y [n] =

∑
i
|αi (x [n] − x [n − 1]) + σi (εi [n] − εi [n − 1])| . (2)

Therefore, y [n] does not vary linearly with x [n], which leads to harmonic generation in the
recovered signal due to the nonlinearity of the reconstruction.

3.2. Mean intensity (MI)

The recovered signal is the mean intensity of frame n, y [n] = 1
N

∑
i Ii [n], with N being the

number of pixels. If Eq. (1) holds:

y [n] =

(∑
i

αi

N

)
x [n] +

1
N

∑
i
σiεi [n] , (3)

which shows that y [n] varies linearly with x [n] but, considering that the αi values are likely
positive or negative, the sum

(∑
i
αi
N
)
will likely be small and the signal, x [n], will likely be

hidden by the noise.

3.3. 1-pixel method (1 PIX)

This method consists in choosing a single pixel r and using only the intensity of that pixel to
reconstruct the signal as y [n] = Ir [n]. The selected pixel is chosen to maximize the variance of
the signal Ir [n], i.e., is the one with the largest variance. If Eq. (1) holds, y [n] = αrx [n]+σrεr [n].
Assuming that the noise strengths are all the same (σi = σ), then choosing the pixel with the
largest intensity variance corresponds to maximizing the signal to noise ratio (SNR).

https://donll.upc.edu/en/videos/speaker/protect/T1_speckle/39.0db
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3.4. Cross-Correlation (CC)

In this approach we select a reference pixel, r, and compute the Pearson correlation, ρ, between
the intensity of each pixel, i, and the intensity of the reference pixel r: Ci = ρ (Ii [n] , Ir [n]). If
Eq. (1) holds and we neglect the noise, then

Ci = sign (αiαr) . (4)

We use this property to find the signs of the coefficients βi in a weighted mean intensity that is
used to reconstruct the signal,

y [n] =
∑

i
βiIi [n] . (5)

We select the weights such that they maximize the SNR. Using Eq. (1) and assuming that the
noise strength is the same for all the pixels (σi = σ) we have

y [n] =

(∑
i
βiαi

)
x [n] + σ

∑
i
βiεi [n] . (6)

If the noise signals εi [n] are uncorrelated, then SNR ∝ (
∑

i βiαi) /
√∑

i β
2
i . Therefore, SNR will

be maximized if we chose the weights such that βi ∝ αi.
To estimate αi we use the Root Mean Square (RMS) of the signal Ii [n], RMSi =

√
1
L
∑L

n=1 I2i [n]
(with L being the number of frames in the video), that with the linear approximation is
RMSi =

√
P2α2

i + σ
2, where P is the RMS power of the signal x [n]. From here we see that

|αi | ∝
√
RMS2i − σ2.

Assuming that there are values of αi that are small enough to be neglected, mini (RMSi) is an
estimation of the noise strength, σ ∼ mini (RMSi), and therefore, |αi | ∝

√
RMS2i −min2i (RMSi).

As SNR will be maximized if the weights are βi ∝ αi, we chose |βi | =
√
RMS2i −min2i (RMSi).

The last step is to use the sign of the correlation Ci to set the sign of βi such that

βi = sign (Ci) |βi | = sign (Ci)

√
RMS2i −mini

2 (RMSi). (7)

Using Eq. (4), βi = sign (αiαr) |βi | and substituting in Eq. (6) we obtain

y [n] = sign (αr)

(∑
i
|αiβi |

)
x [n] +

∑
i
sign (αiαr) |βi | σiεi [n] , (8)

We note that (in contrast with the unweighted mean intensity), by using the weights defined in
Eq. (7) all the terms in the sum that multiplies x[n] are positive. To obtain a good performance
with this method we need to choose a reference pixel with high RMS, otherwise, the signs of the
cross-correlation coefficients (used to set the signs of the weights) will be mainly random and not
informative.

3.5. Machine learning method (ML)

In this approach each frame n is described by a point in a N-dimensional space whose coordinates
are the values of the N pixels, {I1[n] . . . IN[n]}. The recorded video constituted by L frames
is then represented by a sequence of L points in this high dimensional space (i.e., a path or
trajectory). The points are in fact located on a low dimensional manifold because the values of
the pixels depend on a low number of variables, such as the position (x(t)) and the velocity of
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the membrane of the loudspeaker (expressed as the derivative of the position (x′(t)). To recover
the coordinates of each frame in the low dimensional manifold we used a well-known algorithm
for manifold learning known as IsoMap [15]. We fed the algorithm with the coordinates of
each frame, {I1[n] . . . IN[n]}, and used the Euclidean pixel-to-pixel distance to calculate the
distance between any two frames. For each frame the algorithm returns a set of m “features”,
{g1[n] . . . gm[n]} (m << N), which are the coordinates of the frame in the reduced space. The
audio signal can then be recovered from the trajectory in the reduced space. Here we use m = 2
as we expect that the intensities Ii[n] depend on both x(t) and x′(t) due to the time integration
made by the camera and the rolling shutter capturing method. We use the first feature to recover
the signal, y [n] = g1 [n], because the features are ordered in decreasing order of power, and we
expect that the dependence to the position is the one that generates the highest power.
This method has the advantage that it can deal with nonlinearities (as the IsoMap method is

capable of learning nonlinear manifolds), but has the disadvantage of having a high computational
cost as the computing time increases quadratically with the number of frames being analyzed.

3.6. MIT method

This method, described in detail in [14], is based on the complex steerable pyramid [16,17]
which analyzes the motion of each pixel of the video in a certain direction and scale. Then a
weighted average is performed for each direction and scale, and all directions and scales are
synchronized (with a time-shift) to an arbitrary reference and added together to generate the
recovered signal. In [14] the authors also proposed post-processing the recovered signal by using
denoising algorithms. In order to perform a fair comparison with the other methods the denoising
algorithms have not been used.

4. Performance measures

To compare the performance of the different methods, for the sinusoidal audio signals we use
the Signal-to-Noise and Distortion ratio (SINAD) [18], while for the song, we use the Pearson
cross-correlation coefficient.
The SINAD measures (in dB) the ratio between the power of the signal and the rest of the

power that corresponds to noise and distortion. In the Fast Fourier Transform (FFT), the power of

Fig. 2. Evaluation of the Signal-to-Noise and Distortion ratio (SINAD) from the Fast Fourier
Transform (FFT) of the recovered signal from the MI method: (a) the green line indicates
the signal, i.e., the section of FFT centered at the applied frequency. In this example the
applied frequency is f0 = 80 Hz. (b) Spectrogram obtained with the Mean Intensity method
that illustrates the appearance of additional peaks due to aliasing and harmonics.
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the signal is within a small frequency range centered at the frequency f0 of the sinusoidal signal
that is applied to the speaker, see Fig. 2(a), while all the other power is the noise and distortion:

SINAD =
Psignal

Pnd
(9)

In the FFT, in addition to a peak at f0, peaks at other frequencies occur for all the methods
due to harmonics and aliasing. An example, that corresponds to the MI method, of how the
peaks vary with f0 is shown in Fig. 2(b). The power of these peaks is included in the noise and
distortion term, Pnd.

5. Results

We first compare the performance of the recovery methods when a sinusoidal signal is applied to
the speaker. Figure 3(a) shows that the performance of each method (except for the Differential
Processing scheme) increases with the volume of the audio signal, but if the volume is too high,
the performance decreases. This decrease is likely due to a nonlinear response of the speaker
that produces sudden variations on the amplitude of the recovered signal with respect to the
increase/decrease of the frequency of the input signal [19]. The performances of the Machine
learning (ML) and Cross-correlation (CC) methods are comparable and represent the best choices.
The lowest performance is obtained with the Differential Processing scheme (DIF). This can be
understood because, as it was explained in Sec. 3.1, the signal recovered with this method is not
a linear function of the applied signal, which leads to harmonic generation.

Fig. 3. (a) Performance of the recovery algorithms quantified with the Signal-to-Noise and
Distortion ratio (SINAD) when a sinusoidal signal is played by the loudspeaker and the
volume of the signal is increased, while the signal frequency is kept constant (100 Hz). (b)
SINAD for increasing signal frequency when the signal volume is kept constant (-30dB, dB
refers to sound pressure levels).

The results obtained when increasing the frequency of the signal (while keeping constant the
volume), shown in Fig. 3(b), are consistent and confirm that ML and CC give the best results.
Very similar performances are obtained when the frequency is decreased (not shown).

In Table 1 we summarise the computational costs of the six methods. While DIF is the method
with the lowest computational cost, considering both, performance and computational cost, we
can conclude that the best trade-off is obtained with the Cross-Correlation method (CC) because
it has the highest SINAD while the computational time is reasonably low.
Finally the performance of the recovery methods when a song is played by the speaker is

quantified by the cross-correlation and the results are presented in Table 2. We note that for low
volume (−39.9 dB) the methods MIT, ML, CC and 1 PIX perform reasonably well since the
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Table 1. Computational costs of the recovery algorithms in terms of mean time of execution and
standard deviation. All the methods were run using MatLab in a portable computer with an Intel

i7-7700HQ processor and 16 GB of RAM.

1 PIX DIF MI MIT ML CC

Mean Time [s] 0.156 0.024 0.207 5.789 54.23 0.206

σ [s] 0.009 0.004 0.006 0.173 1.104 0.011

correlation coefficient is ρ ∼ 0.42. For moderate volume, the MIT, CC and 1 PIX correlation
coefficients decrease slightly (to ρ = 0.35) while the ML method keeps the same performance as
for low volume. For the highest volume, the ML method outperforms the other ones. The DIF
and MI are not suitable methods to recover the original song, regardless of the signal volume.

Table 2. Performance of the recovery algorithms quantified with the cross-correlation when a song
is played by the loudspeaker, for three volume levels.

1 PIX DIF MI MIT ML CC

-39.9 dB 0.4198 0.0415 0.2079 0.4321 0.4282 0.4308

-26.6 dB 0.3566 0.0591 0.1691 0.3032 0.4313 0.3540

-19.7 dB 0.1392 0.0601 0.0982 0.3084 0.7942 0.0972

We note that the performance of the 1 PIX and CC methods decays with the volume of
the speaker. Because the methods are aimed at recovering weak signals, their performance is
compared for small amplitudes.

Like in other diffraction experiments, the size of the speckle in the pattern depends on several
factors: the wavelength of the light, the roughness of the speckle-generating surface as well as
the imaging optics. For different imaging geometries, the size of the speckle might change, but
as long as we make sure that the imaged speckle grains have at least the size of several pixels, we
do not expect changes in the relative performance of the described methods.

6. Conclusions

We have performed an experimental study of the remote recovery of audio signals from the
silent videos of the movement of optical speckle patterns. We have compared six signal recovery
algorithms in terms of the quality of the recovered signal and the computational costs. We have
considered the differential processing method used in [11,12] which is simple to implement,
but introduces undesired nonlinearities. We have analyzed how the mean intensity of the
speckle pattern can recover the audio signal and have shown that a single observed pixel, if
it is appropriately selected (the pixel with largest variance) can be sufficient for obtaining a
reasonably good recovery of the audio signal. We have proposed two new recovery methods, one
is based on a weighted sum of all the pixels, where the signs of the weights are determined by
the cross-correlation (CC) of the intensity of the different pixels; the other method is based on a
machine learning (ML) algorithm for dimensionality reduction. We have compared these methods
with that proposed in [14]. We have found that the best trade-off, in terms of computational costs
and performance, is the Cross-Correlation method (CC).

As shown in Fig. 3, some methods show a significant lower SINAD for certain frequencies. It
would be interesting, for future work, to investigate if this effect can be linked to the occurrence
of nonlinear resonance effects, such as the jump resonance [19] displayed by a nonlinear,
non-autonomous system whose frequency response is characterised by one or more hysteresis
regions, depending on the increasing/decreasing trend of the frequency at the input signal.
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Our optical technique for remote sound recover can allow to make non-contact vibration
measurements with the advantage of being an inexpensive setup that uses a low-cost diode laser
and a low-cost CCD camera.
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