
J. Math. Anal. Appl. 427 (2015) 962–976
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Nonexistence of certain universal polynomials between Banach 

spaces ✩

Raffaella Cilia a, Joaquín M. Gutiérrez b,∗

a Dipartimento di Matematica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
b Departamento de Matemáticas del Área Industrial, ETS de Ingenieros Industriales, 
Universidad Politécnica de Madrid, C. José Gutiérrez Abascal 2, 28006 Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 October 2014
Available online 25 February 2015
Submitted by Richard M. Aron

Keywords:
Universal non-compact polynomial
Universal non-unconditionally 
converging polynomial

A well-known result due to W.B. Johnson (1971) asserts that the formal identity 
operator from �1 into �∞ is universal for the class of non-compact operators between 
Banach spaces. We show that there is neither a universal non-compact polynomial 
nor a universal non-unconditionally converging polynomial between Banach spaces.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

J. Lindenstrauss and A. Pełczyński [20, Theorem 8.1] proved that the sum operator σ : �1 → �∞ defined 
by

σ(x) :=
(

n∑
i=1

xi

)∞

n=1

for x = (xn)∞n=1 ∈ �1

is universal for the class of non-weakly compact operators; that is, an operator T ∈ L(X, Y ) is not weakly 
compact if and only if there exist operators A ∈ L(�1, X) and B ∈ L(Y, �∞) such that the following diagram 
commutes:

X
T

−−−−→ Y

A
�⏐⏐ ⏐⏐�B

�1 −−−−→
σ

�∞
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W.B. Johnson [19] showed that the formal identity operator �1 → �∞ is universal for the class of non-
compact operators.

The existence of universal operators may be useful when we try to prove that certain operators belong 
to a given operator ideal. The universal non-weakly compact operator was used for instance to prove that 
every polynomially continuous operator is weakly compact [16, Theorem 3]. The universal non-compact 
operator has recently been used in [18, Remark 3.3].

A. Pietsch proposed in 1983 [27] to design a theory of ideals of multilinear functionals somehow parallel 
to the theory of operator ideals. Since then, a large amount of work has been done in order to prove 
that certain properties of linear operators are true or false in the nonlinear case (polynomials, multilinear 
mappings, differentiable or holomorphic mappings, etc.). In this paper we give examples of properties that 
cannot be transferred from the linear to the nonlinear situation. Concretely, we show that certain classes of 
polynomials do not admit a universal polynomial.

Before giving an idea about the problem and the difficulties encountered, we introduce some definitions 
and notation.

Given an integer k ≥ 1, we extend to the polynomial setting notions established in [12] for the case of 
(linear bounded) operators. Suppose that Q is a class of k-homogeneous (continuous) polynomials between 
Banach spaces so that a polynomial P is in Q whenever there exist operators A, B so that BPA is in Q. The 
natural examples of such classes are all the polynomials that do not belong to a given ideal of k-homogeneous 
polynomials. A polynomial P0 of such a class Q is said to be universal for Q provided for each P in Q, 
P0 factors through P , that is, there exist operators A and B so that BPA = P0.

The notion of ideal of k-homogeneous polynomials is well known and has been widely studied in the 
literature (see, for instance, [6, §3] or the recent paper [24]).

Throughout, E, F , X, and Y denote Banach spaces, E∗ is the dual space of E, BE stands for its closed 
unit ball, and SE is the unit sphere of E. The closed unit ball BE∗ of the dual space will always be endowed 
with the weak-star topology. By N we represent the set of all natural numbers, and by K the scalar field (real 
or complex). We denote by L(E, F ) the space of all (linear bounded) operators from E into F endowed 
with the operator norm, and by K(E, F ) the subspace of compact operators. The symbol IE stands for 
the identity map on E. An operator h ∈ L(E, F ) is an embedding if it is an isomorphism onto its image 
h(E) ⊆ F .

The unit vector basis of c0 will be denoted by (en)∞n=1 and the unit vector basis of �1 by (e∗n)∞n=1.
Given k ∈ N, we denote by P(kE, F ) the space of all k-homogeneous (continuous) polynomials from E

into F endowed with the supremum norm. For the general theory of polynomials on Banach spaces, we refer 
the reader to [8] and [21].

Recall that with each P ∈ P(kX, Y ) we can associate a unique symmetric k-linear (continuous) mapping 
P̂ : X× (k). . . ×X → Y so that

P (x) = P̂
(
x, (k). . ., x

)
(x ∈ X) .

With each P ∈ P(kX, Y ) we can also associate a unique operator

P : ⊗̂k
πs,sX −→ Y

which is called the linearization of P and is given by

P

(
n∑

i=1
λixi⊗ (k). . . ⊗xi

)
=

n∑
i=1

λiP (xi) , for λi ∈ K and xi ∈ X ,

where ⊗̂k
πs,sX denotes the k-fold symmetric tensor product of X [11]. It is well known that P is compact 

(see definition in Section 2) if and only if P is compact [28, Lemma 4.1].
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For non-explained notation and terminology on Banach spaces, the reader is referred to [7]. For operator 
ideals, see [26].

We now include a few words about the origin of our work and about how we tried to tackle it.
For some time, we tried to find a universal non-compact k-homogeneous polynomial for a fixed integer 

k ≥ 2. In fact, we prove that such a polynomial does not exist. Similarly, there is no universal non-
unconditionally converging polynomial (see definition in Section 3).

For simplicity, we only consider in this short overview the case of 2-homogeneous polynomials. If J is 
the formal identity operator from �1 into �∞ and P ∈ P(2�1, �∞) is the non-compact polynomial given by 
P (x) :=

(
x2
n

)∞
n=1 for x = (xn)∞n=1 ∈ �1, then there are operators A and B such that the right-hand side of 

the following diagram commutes:

�1⊗̂πs,s�1 �∞

�1⊗̂πs,s�1 �1 �∞

P

B
Ã

I

J

A

Denote by I : �1 → �1⊗̂πs,s�1 an onto isomorphism (for the nonsymmetric tensor product, see [29, 
Exercise 2.6]; the symmetric case may be viewed as an application of the Pełczyński decomposition technique 
[1, Theorem 2.2.3]). Then A induces an operator Ã : �1⊗̂πs,s�1 → �1⊗̂πs,s�1 so that Ã ◦ I = A. The operator 
J ◦ I−1 defines a non-compact polynomial P0 ∈ P(2�1, �∞) which should be a natural candidate to be 
universal. Now, for P0 to be universal, we would need to be able to write Ã in the form U ⊗ U , with 
U ∈ L(�1, �1). The nonexistence of a universal non-compact polynomial implies that Ã cannot be written 
as a tensor product of operators. This is a by-product of our result which may be of independent interest.

2. Polynomials which do not belong to a surjective-type ideal

Recall that an operator ideal U is said to be injective [26, 4.6.9] if, given an operator T ∈ L(E, F ) and an 
into isomorphism i : F → G, we have that T ∈ U whenever iT ∈ U . The ideal U is surjective [26, 4.7.9] if, 
given T ∈ L(E, F ) and a surjective operator q : G → E, we have that T ∈ U whenever Tq ∈ U . We say that 
U is closed [26, 4.2.4] if for all E and F , the space U(E, F ) := {T ∈ L(E, F ) : T ∈ U} is closed in L(E, F ).

A list of injective and surjective operator ideals may be seen in [14]. In particular, the ideal of compact 
operators is closed, injective, and surjective.

The following result is well known. We include it here for the sake of clarity.

Proposition 2.1. Let X and Y be Banach spaces. The following assertions are equivalent:

(a) There are operators

X
j−→ Y

π−→ X

such that π ◦ j = IX ; in other words, X is isomorphic to a complemented subspace of Y ;
(b) There are operators

X
j−→ Y

π′
−→ Y

with j injective, π′ a projection (that is, π′ ◦ π′ = π′), and π′(Y ) = j(X).

Sketch of proof. (a) ⇒ (b). Define π′ := j ◦ π.
(b) ⇒ (a). Given y ∈ Y , since π′(y) ∈ j(X) and using the injectivity of j, there is a unique x ∈ X so 

that π′(y) = j(x). Define π(y) := x. �
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Next, we recall a result from [4, Proposition 5]. However, we prefer to sketch a different proof whose 
ingredients will be needed later on.

Proposition 2.2. Given Banach spaces X and Y , and k ∈ N, the space P(kX, Y ) is isomorphic to a comple-
mented subspace of P(k+1X, Y ).

Proof. The proof of [2, Proposition 5.3] is given for Y = K, but it also works in the vector-valued case. We 
include the details which will be needed later on. Given ψ ∈ SX∗ , choose x0 ∈ X so that ψ(x0) = 1. Define 
the operators

P(kX,Y ) j−→ P(k+1X,Y ) π−→ P(kX,Y )

by j(R)(x) := ψ(x)R(x) for all R ∈ P(kX, Y ) and x ∈ X, and

π(P )(x) :=
k+1∑
i=1

(
k + 1
i

)
ψ(x)i−1(−1)i−1P̂

(
xi

0, x
k+1−i

)
=: Q(x)

for P ∈ P(k+1X, Y ) and x ∈ X, where P̂
(
xi

0, x
k+1−i

)
means that P̂ is applied to the vector x0 taken i times 

and to x taken k + 1 − i times.
As in [2, Proposition 5.3], define the operator

P(k+1X,Y ) π′
−→ P(k+1X,Y )

by

π′(P )(x) := P (x) − P (x− ψ(x)x0) , for P ∈ P(k+1X,Y ) and x ∈ X .

It is shown in the proof of [2, Proposition 5.3] that

P (x) − P (x− ψ(x)x0) = ψ(x)Q(x) for all x ∈ X ,

and that j and π′ satisfy condition (b) of Proposition 2.1. We shall give in detail the proof of 
π′ (P(k+1X,Y )

)
= j

(
P(kX,Y )

)
. Indeed, for all P ∈ P(k+1X, Y ), we have π′(P ) = ψQ = j(Q), so 

π′ (P(k+1X,Y )
)
⊆ j

(
P(kX,Y )

)
. For the reverse inclusion, let R ∈ P(kX, Y ). Since π′(ψR) = ψR (see the 

proof of [2, Proposition 5.3]), we have j(R) = ψR = π′(ψR) which implies j
(
P(kX,Y )

)
⊆ π′ (P(k+1X,Y )

)
, 

and so

π′ (P(k+1X,Y )
)

= j
(
P(kX,Y )

)
.

By (b) ⇒ (a) of Proposition 2.1 above, we obtain π ◦ j = I, where I is the identity map on P(kX, Y ), 
and the proof is finished. �

Let U be a closed surjective operator ideal. As in [14, p. 472], we denote by CU(E) the collection of all 
sets A ⊂ E so that A ⊆ T (BZ) for some Banach space Z and some operator T ∈ U(Z, E).

Definition 2.3. Given a closed surjective operator ideal U and an integer k ≥ 1, let

PU (kX,Y ) :=
{
P ∈ P(kX,Y ) : P (BX) ∈ CU (Y )

}
.

The space PU (kX, Y ) will be endowed with the supremum norm.
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For instance, PK(kX, Y ) will be the space of compact polynomials; that is, P ∈ PK(kX, Y ) if and only if 
P (BX) is relatively compact in Y .

Proposition 2.4. If U is a closed surjective operator ideal, the space PU(kX, Y ) is closed in P(kX, Y ).

Proof. Let (Pn) ⊂ PU (kX, Y ) be a Cauchy sequence. Then (Pn) has a limit P ∈ P(kX, Y ). So, for every 
ε > 0 there is n0 ∈ N such that

n ≥ n0 ⇒ ‖P − Pn‖ < ε .

Hence, for n ≥ n0,

P (BX) ⊆ Pn(BX) + εBP(kX,Y ) .

Since Pn(BX) ∈ CU (Y ), we have by [14, Proposition 3] that P (BX) ∈ CU (Y ), and so P ∈ PU (kX, Y ). �
Proposition 2.5. Given ψ ∈ SX∗ , choose x0 ∈ X so that ψ(x0) = 1. Consider the operators

P(kX,Y ) j−→ P(k+1X,Y ) π−→ P(kX,Y )

constructed in the proof of Proposition 2.2 above. If U is a closed surjective operator ideal, restricting j and 
π to the spaces PU , we have

PU (kX,Y ) j−→ PU (k+1X,Y ) π−→ PU (kX,Y ) ,

that is, j and π take polynomials in PU into polynomials in PU .

Proof. If Q ∈ PU (kX, Y ), then j(Q) = ψQ. If D := {α ∈ K : |α| ≤ 1}, there are a Banach space Z and an 
operator T ∈ U(Z, Y ) such that

j(Q)(BX) ⊆ ψ(BX)Q(BX) ⊆ DQ(BX) ⊆ DT (BZ) = T (DBZ) = T (BZ) .

Therefore, j(Q) ∈ PU (k+1X, Y ).
Let now P ∈ PU (k+1X, Y ). Using the above argument, the polarization formula [21, Theorem 1.10], and 

the fact that multiplication by scalars preserves sets in CU(Y ), we have that{
ψ(x)i−1(−1)i−1P̂

(
xi

0, x
k+1−i

)
: x ∈ BX

}
∈ CU (Y ) .

The sum of sets in CU (Y ) is in CU (Y ) [14, Proposition 3]. Therefore, π(P )(BX) ∈ CU (Y ). �
We now focus our attention on non-compact polynomials.

Lemma 2.6. Given k ∈ N (k ≥ 1), if there is a universal k-homogeneous non-compact polynomial, then there 
is a universal k-homogeneous non-compact polynomial defined on �1.

Proof. If P0 ∈ P(kE, F )\PK(kE, F ) is universal non-compact, there are a sequence (xn) ⊂ SE and δ > 0
such that the sequence (P0(xn)) is δ-separated. Define A′ ∈ L(�1, E) by A′(en) := xn. Given a polynomial 
P ∈ P(kX, Y )\PK(kX, Y ), we have a factorization
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X Y

E F

�1

P

BA

P0

A′ P0 ◦ A′

Therefore, the polynomial P0 ◦A′ ∈ P(k�1, F ) is universal for the class of non-compact polynomials. �
From now on, let J ∈ L(�1, �∞) be the formal identity operator.

Proposition 2.7. Let k ∈ N (k ≥ 2). If there is a universal k-homogeneous non-compact polynomial P0 ∈
P(k�1, F ), it can be taken of the form P0 = ξk−1J , where ξ ∈ �∞.

Proof. Let T ∈ L(�1, F )\K(�1, F ) and 0 �= η ∈ �∞. Define P ∈ P(k�1, F ) by P (x∗) := 〈x∗, η〉k−1T (x∗) for 
all x∗ ∈ �1. By Proposition 2.5, P is not compact. Therefore, there are operators A and B so that P0 factors 
in the form

�1 F

�1 F

ηk−1T

BA

P0

For x∗ ∈ �1, we have

P0(x∗) = B ◦ (ηk−1T ) ◦A(x∗) = (η ◦A)(x∗)k−1B ◦ T ◦A(x∗) = ψ(x∗)k−1S(x∗)

where ψ := η ◦A ∈ �∞ and S := B ◦T ◦A ∈ L(�1, F ). By Proposition 2.5, since P0 is not compact, S is not 
compact. Hence, we can factor J in the form

�1 F

�1 �∞

S

VU

J

For all x∗ ∈ �1, we have

V ◦ (ψk−1S) ◦ U(x∗) = ψ(U(x∗))k−1V ◦ S ◦ U(x∗) = ξ(x∗)k−1J(x∗)

for ξ := ψ ◦ U ∈ �∞, so the following diagram commutes:

�1 F

�1 �∞

ψk−1S

VU

ξk−1J

that is, V ◦ P0 ◦ U = V ◦ (ψk−1S) ◦ U = ξk−1J , so ξk−1J is universal non-compact. �
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Theorem 2.8. Let k ≥ 2 be an integer. Then there is no universal k-homogeneous non-compact polynomial.

Proof. By Proposition 2.7, if a universal k-homogeneous non-compact polynomial exists, it has the form 
ξk−1J ∈ P(k�1, �∞). Let P ∈ P(k�1, c0)\PK(k�1, c0) be given by

P (φ) :=
(
φk−2

1 φ2
n

)∞
n=1 for φ = (φn)∞n=1 ∈ �1 .

Then we have

�1 c0

�1 �∞

P

BA

ξk−1J

Choose x∗
0 ∈ �1 such that 〈x∗

0, ξ〉 �= 0. Note that A(x∗
0) �= 0. We can assume ‖A(x∗

0)‖ = 1. Let C :=
|〈x∗

0, ξ〉k−1|. Recall that ker ξ is isomorphic to �1 [15, Proposition I.5.4]. Since A|ker ξ : ker ξ → �1 is not 
compact, it preserves a copy of �1. By [3, Part 2, Chapter 4, §1, Lemma 4], we can find a sequence (x∗

n) ⊂ ker ξ
such that (A(x∗

n))∞n=1 is a normalized basic sequence equivalent to a normalized block-basis (un)∞n=1 of 
(e∗n)∞n=1 and ‖A(x∗

n) − un‖ →
n

0.
Let H ∈ L(�1, ker ξ) be the into isomorphism given by H(e∗n) := x∗

n. Assume ‖J(x∗
n)‖ →

n
0. Then

‖J ◦H(e∗n)‖ →
n

0 which implies that J is compact [7, Exercise VII.5], which is impossible. Hence, by passing 

to a subsequence, if necessary, we can assume that ‖J(x∗
n)‖ > δ (n ∈ N) for some δ > 0.

There is j1 ∈ N such that

|〈A (x∗
0) , ej〉| <

δC

‖B‖2k (j ≥ j1) .

We can find n0 ∈ N so that

n ≥ n0 ⇒ ‖A(x∗
n) − un‖ <

δC

‖B‖2k .

Choose j2 ∈ N (j2 ≥ n0) such that 〈uj2 , ej〉 = 0 for all j < j1. Consider the vectors

v1 := x∗
0 − x∗

j2 , and v2 := x∗
0 + x∗

j2 .

Then ∥∥(ξk−1J
)
(v2) −

(
ξk−1J

)
(v1)

∥∥ = 2
∥∥J (

x∗
j2

)∥∥ ∣∣∣〈x∗
0, ξ〉

k−1
∣∣∣ > 2δC . (1)

To simplify notation, let

p := A (x∗
0) = (pj)∞j1 ∈ S�1 , and q := A

(
x∗
j2

)
= (qj)∞j=1 ∈ S�1 .

We have

‖PA(v2) − PA(v1)‖

=
∥∥∥∥(〈A (

x∗
0 + x∗

j2

)
, e1

〉k−2 〈
A
(
x∗

0 + x∗
j2

)
, ej

〉2
)∞

j=1

−
(〈

A
(
x∗

0 − x∗
j2

)
, e1

〉k−2 〈
A
(
x∗

0 − x∗
j2

)
, ej

〉2
)∞

∥∥∥∥

j=1
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= sup
j∈N

∣∣(p2
j + q2

j + 2pjqj
)
(p1 + q1)k−2 −

(
p2
j + q2

j − 2pjqj
)
(p1 − q1)k−2∣∣

= sup
j∈N

∣∣∣∣(p2
j + q2

j + 2pjqj
) [( k − 2

0

)
pk−2
1 +

(
k − 2

1

)
pk−3
1 q1 + · · · +

(
k − 2
k − 2

)
qk−2
1

]
−

(
p2
j + q2

j − 2pjqj
)

×
[(

k − 2
0

)
pk−2
1 −

(
k − 2

1

)
pk−3
1 q1 + · · · + (−1)k−2

(
k − 2
k − 2

)
qk−2
1

]∣∣∣∣
= sup

j∈N

2
∣∣∣∣( k − 2

1

)
p2
jp

k−3
1 q1 +

(
k − 2

3

)
p2
jp

k−5
1 q3

1 + · · ·

+
(
k − 2

1

)
pk−3
1 q2

j q1 +
(
k − 2

3

)
pk−5
1 q2

j q
3
1 + · · ·

+ 2pjqj
[(

k − 2
0

)
pk−2
1 +

(
k − 2

2

)
pk−4
1 q2

1 + · · ·
]∣∣∣∣

< 4 δC

‖B‖2k 2k−2 = δC

‖B‖ ,

since

|pj | <
δC

‖B‖2k (j ≥ j1)

|qj | =
∣∣〈A (

x∗
j2

)
, ej

〉∣∣ =
∣∣〈A (

x∗
j2

)
− uj2 , ej

〉∣∣ < δC

‖B‖2k (j < j1) .

Therefore,

‖BPA(v2) −BPA(v1)‖ < ‖B‖ δC

‖B‖ = δC .

Combining this with formula (1) yields

2δC < δC ,

a contradiction. �
3. Polynomials which do not belong to an injective-type ideal

The ideal of unconditionally converging operators is closed and injective, but not surjective [14]. In this 
section we deal with non-unconditionally converging polynomials. The reason why we have chosen this class 
is that the techniques needed in the proofs are similar to those used in the non-compact case. Other classes 
are left for future work.

An operator T ∈ L(E, F ) is unconditionally converging if, for every weakly unconditionally Cauchy series ∑∞
i=1 xi in E, the series 

∑∞
i=1 T (xi) is unconditionally convergent in F [22, Definition 1].

Following M. Fernández-Unzueta [10, Definition (1.3)], we say that a polynomial P ∈ P(kE, F ) is un-
conditionally converging if, for every weakly unconditionally Cauchy series 

∑∞
i=1 xi in E, the sequence(

P

(
n∑

xi

))∞

⊂ F

i=1 n=1
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is norm convergent. The space of all unconditionally converging k-homogeneous polynomials from E into F
is denoted by Puc(kE, F ).

A weaker notion of unconditionally converging polynomials had been introduced earlier by M. González 
and the second named author in [13, Definition 3] but we shall use the one given in [10] which seems to 
have nicer properties [17,25].

We believe that the following two results are well known but we have not found them in the literature 
written in the form that suits our purposes.

Proposition 3.1. Let T ∈ L(c0, F )\K(c0, F ). Then there are operators A ∈ L(c0, c0) and B ∈ L(F, �∞) such 
that I = B ◦ T ◦A, where I : c0 ↪→ �∞ is the natural embedding. If F is separable, I may be taken to be the 
identity map on c0.

Proof. Since T is not compact, there are a subspace X0 of c0 isomorphic to c0 and an isomorphic embedding 
l : X0 ↪→ c0 such that T ◦l is an into isomorphism [23, Lemma I.3.1]. Let h : c0 → X0 be the onto isomorphism 
provided by the just mentioned result. Let xn := h(en) and Y0 := T ◦ l(X0) ⊆ F , with natural embedding 
k : Y0 ↪→ F . If F is separable, since Y0 is isomorphic to c0 and c0 is separably injective [9, Theorem 5.14], 
there is a surjective operator π : F → Y0 such that π◦k = IY0 . Let i : Y0 → c0 be given by i ◦T ◦ l(xn) := en. 
Then

i ◦ π ◦ T ◦ l ◦ h(en) = i ◦ π ◦ T ◦ l(xn) = i ◦ π ◦ k︸ ︷︷ ︸
=IY0

◦ T ◦ l(xn) = i ◦ T ◦ l(xn) = en = Ic0(en) ,

and the result is proven by setting A := l ◦ h and B := i ◦ π with I := Ic0 .

c0 F

X0 Y0

c0 c0

T

πl

T◦l

k

ih
Ic0

If F is not separable, replace F by T (c0), letting j : T (c0) ↪→ F be the natural embedding.

c0 T (c0) F

X0 Y0

c0 c0 �∞

T

π

j

B

l

T◦l
k

ih
Ic0

I

I

By the injectivity of �∞ [9, Proposition 5.13], the operator I ◦ i ◦ π : T (c0) → �∞ is extendible to an 
operator B : F → �∞. Then

B ◦ j ◦ T ◦ l ◦ h(en) = I ◦ i ◦ π ◦ T ◦ l ◦ h(en) = I ◦ Ic0(en) = I(en) ,

and the proof is finished. �
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Corollary 3.2. The natural embedding I ∈ L(c0, �∞) is universal for the class of non-unconditionally con-
verging operators.

Proof. Let T ∈ L(E, F ) be non-unconditionally converging. Then there is an embedding j : c0 ↪→ E such 
that the sequence (T ◦ j(en))∞n=0 is equivalent to the c0-basis [13, Lemma 4]. By Proposition 3.1, we can 
find operators A ∈ L(c0, c0) and B ∈ L(F, �∞) such that the following diagram commutes:

c0 E F

c0 �∞

j T

BA

I

and the proof is finished. �
Of course, if F is separable, �∞ may be replaced by c0.
We need a lemma which, as one of the referees has kindly pointed out, is contained in the proof of [10, 

Theorem 1.14].

Lemma 3.3. Given a polynomial P ∈ P(kE, F )\Puc(kE, F ), where k ≥ 1 is an integer, there is an operator 
j : c0 → E such that P ◦ j ∈ P(kc0, F )\Puc(kc0, F ).

Therefore, if there is a universal non-unconditionally converging polynomial, we can assume that it is 
defined on c0.

The following well-known result will be used at several places.

Lemma 3.4. (See [5, Corollaries 2.4 and 2.5].) For every integer k ≥ 1 and every Banach space F , we have

Puc(kc0, F ) = PK(kc0, F ) .

Proposition 3.5. Given an integer k ≥ 2, if there is a universal non-unconditionally converging k-homogene-
ous polynomial P0, it may be taken of the form P0 := ξk−1I, where ξ ∈ �1 and I ∈ L(c0, �∞) is the natural 
embedding.

Proof. Using Lemma 3.4 and the comment after Lemma 3.3, we need to look for universal non-compact 
k-homogeneous polynomials on c0. Suppose there is a universal non-unconditionally converging k-homoge-
neous polynomial P0 ∈ P(kc0, F ). Let T ∈ L(c0, Y )\K(c0, Y ) and φ ∈ �1. Then there are operators A and 
B such that, for all x ∈ c0, we have

P0(x) = B ◦
(
φk−1T

)
◦A(x) = (φ ◦A)(x)k−1B ◦ T ◦A(x) ,

so P0 = ψk−1S for some ψ ∈ �1 and S ∈ L(c0, F )\K(c0, F ).

c0 Y

c0 F

φk−1T

BA

P0

By Corollary 3.2, there are operators U and V such that the following diagram commutes:
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c0 F

c0 �∞

S

VU

I

Let ξ := ψ ◦ U ∈ �1. For all x ∈ c0, we have

V ◦
(
ψk−1S

)
◦ U(x) = (ψ ◦ U)(x)k−1V ◦ S ◦ U(x) = ξ(x)k−1I(x) ,

so V ◦
(
ψk−1S

)
◦ U = ξk−1I and the following diagram commutes:

c0 F

c0 �∞

ψk−1S

VU

ξk−1I

and this finishes the proof. �
Given a vector x ∈ X, denote by [x] the linear span of x.

Proposition 3.6. Given an integer k ≥ 2, if there is a universal non-unconditionally converging k-homoge-
neous polynomial, it may be chosen of the form (e∗1)

k−1
I, where I ∈ L(c0, �∞) is the natural embedding.

Proof. By Proposition 3.5, if such a universal polynomial exists, we may assume that it has the form ξk−1I

with ξ ∈ �1. Choose x0 ∈ c0 with ξ(x0) = 1. Since ker e∗1 and ker ξ are both subspaces of c0 of codimension 
one, they are isomorphic to c0 [15, Proposition I.5.4,2]. Let

U : ker e∗1 −→ ker ξ

be an onto isomorphism.
Define

A : c0 = [e1] ⊕ ker e∗1 −→ [x0] ⊕ ker ξ

by A(λe1 + e) := λx0 + U(e), for e ∈ ker e∗1. Let

B : [x0] ⊕ ker ξ −→ �∞

be given by B(λx0 + y) := λe1 +U−1(y), for y ∈ ker ξ. By the injectivity of �∞ [9, Proposition 5.13], B has 
an extension to an operator �∞ → �∞ that we still denote by B. Then, for e ∈ ker e∗1, we have[

(e∗1)
k−1

I
]
(λe1 + e) = λk−1(λe1 + e)

and (
ξk−1I

)
[A(λe1 + e)] =

(
ξk−1I

)
[λx0 + U(e)] = λk−1 [λx0 + U(e)]

since U(e) ∈ ker ξ, so
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B ◦
(
ξk−1I

)
◦A(λe1 + e) = λk−1B [λx0 + U(e)] = λk−1(λe1 + e) ,

and

B ◦
(
ξk−1I

)
◦A = (e∗1)

k−1
I

which makes the following diagram commutative:

c0 �∞

c0 �∞

ξk−1I

BA

(e∗1)k−1 I

and this finishes the proof. �
Proposition 3.7. Given an integer k ≥ 2 and P ∈ P(kc0, c0)\Puc(kc0, c0), suppose there exist operators 
A ∈ L(c0, c0) and B ∈ L(c0, �∞) such that (e∗1)

k−1
I = BPA. Then A is an into isomorphism.

Proof. Let (xn) ⊂ ker e∗1 be a sequence such that ‖A(xn)‖ → 0. Then

‖BPA(xn)‖ → 0 .

We have 
[
(e∗1)

k−1
I
]
(e1 + xn) = e1 + xn, so

‖xn‖ = ‖e1 + xn − e1‖

=
∥∥∥[(e∗1)k−1

I
]
(e1 + xn) −

[
(e∗1)

k−1
I
]
(e1)

∥∥∥
= ‖BPA(e1 + xn) −BPA(e1)‖

=
∥∥∥BP̂ (Ae1 + Axn,

(k). . ., Ae1 + Axn) −BPA(e1)
∥∥∥

=
∥∥∥∥( k

1

)
BP̂ (Ae1, . . . , Ae1, Axn) +

(
k

2

)
BP̂ (Ae1, . . . , Ae1, Axn, Axn)

+ · · · + BPA(xn)
∥∥∥∥ −→ 0 for n → ∞ ,

and A|ker e∗1 is an into isomorphism.
Since c0 = [e1] ⊕ker e∗1, a generic sequence of c0 has the form (λne1 +xn)∞n=1 with (xn) ⊂ ker e∗1. Suppose 

that

‖A(λne1 + xn)‖−→
n

0 .

Then ‖BPA(λne1 + xn)‖ → 0. If λn → 0, then

‖A(xn)‖ = ‖A(λne1 + xn) −A(λne1)‖ −→ 0

which implies ‖xn‖ → 0, and ‖λne1 + xn‖ → 0. If λn � 0, by passing to a subsequence, we can assume 
|λn| > δ (n ∈ N) for some δ > 0. Then
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δk−1‖λne1 + xn‖ < |λn|k−1‖λne1 + xn‖ =
∥∥∥[(e∗1)k−1

I
]
(λne1 + xn)

∥∥∥
= ‖BPA(λne1 + xn)‖ −→ 0

so ‖λne1+xn‖ → 0. Since λne1 and xn have disjoint support, this implies λn → 0, a contradiction. Therefore,

‖A(λne1 + xn)‖−→
n

0 =⇒ λne1 + xn −→
n

0 ,

and A is an into isomorphism. �
Therefore, there is m > 0 such that

m‖x‖ ≤ ‖A(x)‖ ≤ ‖A‖‖x‖ (x ∈ c0) .

Let

μn := 1
‖A(en)‖ (n ∈ N) .

Then

1
‖A‖ ≤ μn ≤ 1

m
(n ∈ N) ,

and ‖A(μnen)‖ = μn‖A(en)‖ = 1 for all n ∈ N.

Theorem 3.8. Given an integer k ≥ 2, there is no universal non-unconditionally converging k-homogeneous 
polynomial.

Proof. Assume there is a universal non-unconditionally converging k-homogeneous polynomial which, by 
Proposition 3.6, may be taken of the form (e∗1)

k−1
I. Let P ∈ P(kc0, c0) be the polynomial given by

P (y) :=
(
yk−2
1 y2

n

)∞
n=1 for y = (yn)∞n=1 ∈ c0.

There are operators A and B such that the following diagram commutes:

c0 c0

c0 �∞

P

BA

(e∗1)k−1 I

There is j1 ∈ N such that

∣∣〈A(μ1e1), e∗j
〉∣∣ < 1

2k‖A‖k‖B‖ (j ≥ j1) . (2)

As in the proof of [15, Proposition I.5.4], there is a subsequence (nj)∞j=1 of N and a normalized block-basis 
(uj)∞j=1 of (en)∞n=1 such that

∥∥A (
μnj

enj

)
− uj

∥∥ <
1

k k
(j ∈ N) .
2 ‖A‖ ‖B‖
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Choose j2 ∈ N such that 
〈
uj2 , e

∗
j

〉
= 0 for all j < j1. Consider the vectors

v1 := μ1e1 − μnj2
enj2

and v2 := μ1e1 + μnj2
enj2

.

Then ∥∥∥[(e∗1)k−1
I
]
(v2) −

[
(e∗1)

k−1
I
]
(v1)

∥∥∥ =
∥∥2μk−1

1 μnj2
enj2

∥∥ = 2μk−1
1 μnj2

≥ 2
‖A‖k . (3)

To simplify notation, let

p := A(μ1e1) = (pj)∞j=1 ∈ Bc0 and q := A(μnj2
enj2

) = (qj)∞j=1 ∈ Bc0 .

We have

‖PA(v2) − PA(v1)‖

= sup
j∈N

∣∣∣〈A (
μ1e1 + μnj2

enj2

)
, e∗j

〉2 〈
A
(
μ1e1 + μnj2

enj2

)
, e∗1

〉k−2

−
〈
A
(
μ1e1 − μnj2

enj2

)
, e∗j

〉2 〈
A
(
μ1e1 − μnj2

enj2

)
, e∗1

〉k−2
∣∣∣

= sup
j∈N

∣∣(p2
j + q2

j + 2pjqj
)
(p1 + q1)k−2 −

(
p2
j + q2

j − 2pjqj
)
(p1 − q1)k−2∣∣ .

The calculations follow as in the proof of Theorem 2.8 to finish with

‖PA(v2) − PA(v1)‖ < 2 1
2k‖A‖k‖B‖ (2k−2 + 2k−2) = 1

‖A‖k‖B‖ ,

since

|pj | <
1

2k‖A‖k‖B‖ (j ≥ j1)

|qj | =
∣∣〈A (

μnj2
enj2

)
, e∗j

〉∣∣ =
∣∣〈A (

μnj2
enj2

)
− uj2 , e

∗
j

〉∣∣
<

1
2k‖A‖k‖B‖ (j < j1) .

Therefore,

‖BPA(v2) −BPA(v1)‖ <
‖B‖

‖A‖k‖B‖ = 1
‖A‖k .

Combining this with formula (3) yields:

2
‖A‖k <

1
‖A‖k ,

a contradiction. �
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