J. Nonlinear Var. Anal. 4 (2020), No. 1, pp. 21-26 Available online at http://jnva.biemdas.com https://doi.org/10.23952/jnva.4.2020.1.03

A REMARK ON VARIATIONAL INEQUALITIES IN SMALL BALLS

BIAGIO RICCERI

Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

Abstract. In this paper, we prove the following result. Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, B a ball in H centered at 0 and $\Phi: B \to H$ a $C^{1,1}$ function with $\Phi(0) \neq 0$ such that the function $x \to \langle \Phi(x), x - y \rangle$ is weakly lower semicontinuous in B for all $y \in B$. Then, for each r > 0 small enough, there exists a unique point $x^* \in H$ with $||x^*|| = r$ such that $\max\{\langle \Phi(x^*), x^* - y \rangle, \langle \Phi(y), x^* - y \rangle\} < 0$ for all $y \in H \setminus \{x^*\}$ with $||y|| \leq r$.

Keywords. Variational inequality; $C^{1,1}$ function; Saddle-point; Ball.

1. Introduction

In the sequel, $(H, \langle \cdot, \cdot \rangle)$ is a real Hilbert space. For each r > 0, set

$$B_r = \{x \in H : ||x|| \le r\}$$

and

$$S_r = \{x \in H : ||x|| = r\}.$$

Let $\Phi: B_r \to H$ be a given function.

We are interested in the classical variational inequality associated to Φ , which consists of finding $x_0 \in B_r$ such that

$$\sup_{y \in B_r} \langle \Phi(x_0), x_0 - y \rangle \le 0. \tag{1.1}$$

If H is finite-dimensional, the mere continuity of Φ is enough to guarantee the existence of solutions, in view of the classical result of Hartman and Stampacchia [3]. This is no longer true when H is infinite-dimensional. Actually, in that case, Frasca and Villani [2], for each r > 0, constructed a continuous affine operator $\Phi: H \to H$ such that, for each $x \in B_r$,

$$\sup_{y\in B_r}\langle\Phi(x),x-y\rangle>0.$$

We also mention the related wonderful paper [7]. Another existence result was obtained by assuming the following condition:

(a) for each $y \in B_r$, the function

$$x \to \langle \Phi(x), x - y \rangle$$

is weakly lower semicontinuous in B_r .

Such a result is a direct consequence of the famous Ky Fan minimax inequality [1].

E-mail address: ricceri@dmi.unict.it

Received December 11, 2019; Accepted March 14, 2020.

In particular, condition (a) is satisfied when Φ is weakly continuous and monotone (i.e. $\langle \Phi(x) - \Phi(y), x - y \rangle \geq 0$ for all $x, y \in B_r$). Moreover, when Φ is continuous and monotone, (1.1) is equivalent to the following inequality

$$\sup_{y \in B_r} \langle \Phi(y), x_0 - y \rangle \le 0 \tag{1.2}$$

(see [6]).

On the basis of the above remarks, a quite natural question is to find non-monotone functions Φ such that there is a solution of (1.1) which also satisfies (1.2).

The aim of the present note is just to give a first contribution along this direction, assuming, besides condition (a), that Φ is of class $C^{1,1}$, with $\Phi(0) \neq 0$ (Theorem 2.3).

2. RESULTS

We first establish the following saddle-point result.

Theorem 2.1. Let Y be a non-empty closed convex set in a Hausdorff real topological vector space, let $\rho > 0$ and let $J : B_{\rho} \times Y \to \mathbf{R}$ be a function satisfying the following conditions:

- (a_1) for each $y \in Y$, the function $J(\cdot,y)$ is C^1 , weakly lower semicontinuous and $J'_x(\cdot,y)$ is Lipschitzian with constant L (independent of y);
- (a₂) $J(x,\cdot)$ is upper semicontinuous and concave for all $x \in B_{\rho}$ and $J(x_0,\cdot)$ is sup-compact for some $x_0 \in B_{\rho}$;
- (a₃) $\delta := \inf_{y \in Y} ||J'_x(0,y)|| > 0.$

Then, for each $r \in \left]0, \min\left\{\rho, \frac{\delta}{2L}\right\}\right]$ and for each non-empty closed convex $T \subseteq Y$, there exist $x^* \in S_r$ and $y^* \in T$ such that

$$J(x^*, y) \le J(x^*, y^*) \le J(x, y^*)$$

for all $x \in B_r$, $y \in T$.

Proof. Fix $r \in \left]0, \min\left\{\rho, \frac{\delta}{2L}\right\}\right]$ and a non-empty closed convex $T \subseteq Y$. We also fix $y \in T$. Notice that the equation

$$J_x'(x,y) + Lx = 0$$

has no solution in $int(B_r)$. Indeed, let $\tilde{x} \in B_\rho$ be such that

$$J_{x}'(\tilde{x},y) + L\tilde{x} = 0.$$

In view of (a_1) , we have

$$||L\tilde{x}+J_x'(0,y)|| \le ||L\tilde{x}||.$$

In turn, using the Cauchy-Schwarz inequality, this readily implies that

$$\|\tilde{x}\| \ge \frac{\|J_x'(0,y)\|}{2L} \ge \frac{\delta}{2L} \ge r.$$

Using (a_1) again, we find that

$$x \to \frac{L}{2} ||x||^2 + J(x, y)$$

is convex in B_{ρ} (see the proof of Corollary 2.7 of [5]). As a consequence, the set of its global minima B_r is non-empty and convex. But, by the remark above, this set is contained in S_r and hence it is a singleton. Thus, let $\hat{x} \in S_r$ be the unique global minimum of the restriction of the function

$$x \to \frac{L}{2} ||x||^2 + J(x, y)$$

to B_r . So, we have

$$\frac{1}{2}\|\hat{x}\|^2 + J(\hat{x}, y) < \frac{1}{2}\|x\|^2 + J(x, y)$$

for all $x \in B_r \setminus \{\hat{x}\}$. Of course, this implies that

$$J(\hat{x}, y) < J(x, y)$$

for all $x \in B_r \setminus \{\hat{x}\}$. That is to say, \hat{x} is the unique global minimum of $J(\cdot,y)_{|B_r}$. Hence, if we consider B_r with the weak topology, the restriction of J to $B_r \times T$ satisfies the assumptions of Theorem 1.2 of [4]. Consequently, we have

$$\sup_{T}\inf_{B_{r}}J=\inf_{B_{r}}\sup_{T}J.$$

Due the semicontinuity and compactness assumptions, this implies the existence of $x^* \in B_r$ and $y^* \in T$ such that

$$J(x^*, y) \le J(x^*, y^*) \le J(x, y^*)$$

for all $x \in B_r$, $y \in T$. Finally, observe that $x^* \in S_r$. Indeed, if $x^* \in \text{int}(B_r)$, we would have

$$J_x'(x^*, y^*) = 0$$

and then

$$\delta \le ||J_x'(0, y^*)|| \le L||x^*|| \le \frac{\delta}{2},$$

an absurd. The proof is complete.

Next, we give our main theorem.

Theorem 2.2. Let $\rho > 0$ and let $\Phi : B_{\rho} \to H$ be a C^1 function whose derivative is Lipschitzian with constant γ . Moreover, assume that, for each $y \in B_{\rho}$, the function $x \to \langle \Phi(x), x - y \rangle$ is weakly lower semicontinuous. Set

$$\theta := \sup_{x \in B_{\rho}} \|\Phi'(x)\|_{\mathscr{L}(H)},$$

$$M := 2(\theta + \rho \gamma)$$

and assume that

$$\sigma := \inf_{y \in B_\rho} \sup_{\|u\|=1} |\langle \Phi(0), u \rangle - \langle \Phi'(0)(u), y \rangle| > 0 \ .$$

Then, for each $r \in \left]0, \min\left\{\rho, \frac{\sigma}{2M}\right\}\right]$, there exists a unique $x^* \in S_r$ such that

$$\max\{\langle \Phi(x^*), x^* - y \rangle, \langle \Phi(y), x^* - y \rangle\} < 0$$

for all $y \in B_r \setminus \{x^*\}$.

Proof. Consider the function $J: B_{\rho} \times B_{\rho} \to \mathbf{R}$ defined by

$$J(x,y) = \langle \Phi(x), x - y \rangle$$

for all $x, y \in B_{\rho}$. Of course, for each $y \in B_{\rho}$, the function $J(\cdot, y)$ is C^1 and one has

$$\langle J'_x(x,y),u\rangle = \langle \Phi'(x)(u),x-y\rangle + \langle \Phi(x),u\rangle$$

for all $x \in B_{\rho}$, $u \in H$. Fixing $x, v \in B_{\rho}$ and $u \in S_1$, we have

$$\begin{split} & |\langle J_x'(x,y),u\rangle - \langle J_x'(v,y),u\rangle| \\ & = |\langle \Phi(x) - \Phi(v),u\rangle + \langle \Phi'(x)(u),x-y\rangle - \langle \Phi'(v)(u),v-y\rangle| \\ & \leq \|\Phi(x) - \Phi(v)\| + |\Phi'(x)(u) - \Phi'(v)(u),v-y\rangle + \langle \Phi'(x)(u),x-v\rangle| \\ & \leq \theta \|x-v\| + 2\rho \|\Phi'(x) - \Phi'(v)\|_{\mathscr{L}(H)} + \theta \|x-v\| \\ & \leq 2(\theta + \rho\gamma)\|x-v\|. \end{split}$$

Hence, the function $J'_x(\cdot, y)$ is Lipschitzian with constant M. At this point, we can apply Theorem 2.1 by taking $Y = B_\rho$ with the weak topology. Therefore, for each $r \in \left]0, \min\left\{\rho, \frac{\sigma}{2M}\right\}\right]$, there exist $x^* \in S_r$ and $y^* \in B_r$ such that

$$\langle \Phi(x^*), x^* - y \rangle \le \langle \Phi(x^*), x^* - y^* \rangle$$

$$\le \langle \Phi(x), x - y^* \rangle$$
(2.1)

for all $x, y \in B_r$. Notice that $\Phi(x^*) \neq 0$. Indeed, if $\Phi(x^*) = 0$, we would have

$$\|\Phi(0)\| = \|\Phi(0) - \Phi(x^*)\| \le \theta r$$

and hence

$$r \le \frac{\|\Phi(0)\|}{2M} < \frac{\|\Phi(0)\|}{\theta} \le r$$

since $\sigma \leq \|\Phi(0)\|$. Consequently, the infimum in B_r of the linear functional $y \to \langle \Phi(x^*), y \rangle$ is equal to $-\|\Phi(x^*)\|r$ and is attained only at the point $-r\frac{\Phi(x^*)}{\|\Phi(x^*)\|}$. But, from the first inequality in (2.1), it just follows that y^* is the global minimum in B_r of the functional $y \to \langle \Phi(x^*), y \rangle$, and hence

$$y^* = -r \frac{\Phi(x^*)}{\|\Phi(x^*)\|}.$$

Moreover, from (2.1) (taking $y = x^*$ and $x = y^*$), we have

$$\langle \Phi(x^*), x^* - y^* \rangle = 0.$$

Consequently, we have

$$\begin{split} \langle \Phi(x^*), x^* \rangle &= \langle \Phi(x^*), y^* \rangle \\ &= \left\langle \Phi(x^*), -r \frac{\Phi(x^*)}{\|\Phi(x^*)\|} \right\rangle \\ &= -\|\Phi(x^*)\| r. \end{split}$$

Therefore, x^* is the global minimum in B_r of the functional $y \to \langle \Phi(x^*), y \rangle$ and hence $x^* = y^*$. Thus, (2.1) actually reads

$$\langle \Phi(x^*), x^* - y \rangle \le 0 \le \langle \Phi(x), x - x^* \rangle$$
 (2.2)

for all $x, y \in B_r$. Finally, we fix $u \in B_r \setminus \{x^*\}$. By what seen above, the inequality

$$\langle \Phi(x^*), x^* - u \rangle < 0$$

is clear. Moreover, from the proof of Theorem 2.1, we know that, for each $y \in B_r$, the function $J(\cdot,y)_{|B_r}$ has a unique global minimum. But, the second inequality in (2.2) says that x^* is a global minimum of the function $J(\cdot,x^*)_{|B_r}$ and hence the inequality

$$\langle \Phi(u), x^* - u \rangle < 0$$

follows. Finally, to show the uniqueness of x^* , we argue by contradiction. Suppose that there is another $x_0 \in S_r$ with $x_0 \neq x^*$ such that

$$\max\{\langle \Phi(x_0), x_0 - y \rangle, \langle \Phi(y), x_0 - y \rangle\} < 0$$

for all $y \in B_r \setminus \{x_0\}$. So, we would have at the same time

$$\langle \Phi(x_0), x_0 - x^* \rangle < 0$$

and

$$\langle \Phi(x_0), x^* - x_0 \rangle < 0,$$

which is an absurd. The proof is complete.

From Theorem 2.2, we obtain the following characterization.

Theorem 2.3. Let $\rho > 0$ and let $\Phi : B_{\rho} \to H$ be a C^1 function with Lipschitzian derivative such that, for each $y \in B_{\rho}$, the function $x \to \langle \Phi(x), x - y \rangle$ is weakly lower semicontinuous.

Then, the following assertions are equivalent:

(i) for each r > 0 small enough, there exists a unique $x^* \in S_r$ such that

$$\max\{\langle \Phi(x^*), x^* - y \rangle, \langle \Phi(y), x^* - y \rangle\} < 0$$

for all $y \in B_r \setminus \{x^*\}$; (ii) $\Phi(0) \neq 0$.

Proof. The implication $(i) \rightarrow (ii)$ is clear. So, we assume that (ii) holds. Observe that the function

$$y \to \sup_{\|u\|=1} |\langle \Phi(0), u \rangle - \langle \Phi'(0)(u), y \rangle|$$

is continuous in H and takes the value $\|\Phi(0)\| > 0$ at 0. Consequently, for a suitable $r^* \in]0, \rho]$, we have

$$\inf_{y\in B_{r^*}}\sup_{\|u\|=1}|\langle\Phi(0),u\rangle-\langle\Phi'(0)(u),y\rangle|>0.$$

At this point, we can apply Theorem 2.2 to the restriction of Φ to B_{r^*} , and (i) follows.

Finally, it is also worth noticing the following further corollary of Theorem 2.2.

Theorem 2.4. Let $\rho > 0$ and let $\Psi : B_{\rho} \to H$ be a C^1 function whose derivative vanishes at 0 and is Lipschitzian with constant γ_1 . Moreover, assume that, for each $y \in B_{\rho}$, the function $x \to \langle \Psi(x), x - y \rangle$ is weakly lower semicontinuous. Set

$$\theta_1 := \sup_{x \in B_{\rho}} \|\Psi'(x)\|_{\mathscr{L}(H)},$$

$$M_1 := 2(\theta_1 + \rho \gamma_1)$$

and let $w \in H$ satisfy

$$||w - \Psi(0)|| \ge 2M_1 \rho. \tag{2.3}$$

Then, for each $r \in]0, \rho]$, there exists a unique $x^* \in S_r$ such that

$$\max\{\langle \Psi(x^*) - w, x^* - y \rangle, \langle \Psi(y) - w, x^* - y \rangle\} < 0$$

for all $y \in B_r \setminus \{x^*\}$.

Proof. Set

$$\Phi := \Psi - w$$

and apply Theorem 2.2 to Φ . Since $\Phi' = \Psi'$, we have $M = M_1$. Since $\Phi'(0) = 0$, we have $\sigma = \|\Phi(0)\|$. Using (2.3), we have

$$\rho \leq \frac{\sigma}{2M}$$

and the conclusion follows.

Acknowledgements

The author was supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, "Piano della Ricerca 2016/2018 Linea di intervento 2".

26 BIAGIO RICCERI

REFERENCES

- [1] K. Fan, A minimax inequality and its applications, in "Inequalities III", O. Shisha ed., 103-113, Academic Press, 1972.
- [2] M. Frasca, A. Villani, A property of infinite-dimensional Hilbert spaces, J. Math. Anal. Appl. 139 (1989), 352-361.
- [3] P. Hartman, G. Stampacchia, On some nonlinear elliptic differential equations, Acta Math. 115 (1966), 153-188.
- [4] B. Ricceri, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl. 2 (2017), 99-152.
- [5] B. Ricceri, Applying twice a minimax theorem, J. Nonlinear Convex Anal. 20 (2019), 1987-1993.
- [6] G. J. Minty, On the generalization of a direct method of the calculus of variations, Bull. Amer. Math. Soc. 73 (1967), 314-321.
- [7] J. Saint Raymond, A theorem on variational inequalities for affine mappings, Minimax Theory Appl. 4 (2019), 281-304.