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A REMARK ON VARIATIONAL INEQUALITIES IN SMALL BALLS
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Abstract. In this paper, we prove the following result. Let (H,〈·, ·〉) be a real Hilbert space, B a ball in H centered at 0 and
Φ : B→ H a C1,1 function with Φ(0) 6= 0 such that the function x→ 〈Φ(x),x− y〉 is weakly lower semicontinuous in B for
all y ∈ B. Then, for each r > 0 small enough, there exists a unique point x∗ ∈ H with ‖x∗‖ = r such that max{〈Φ(x∗),x∗−
y〉,〈Φ(y),x∗− y〉}< 0 for all y ∈ H \{x∗} with ‖y‖ ≤ r.
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1. INTRODUCTION

In the sequel, (H,〈·, ·〉) is a real Hilbert space. For each r > 0, set

Br = {x ∈ H : ‖x‖ ≤ r}

and

Sr = {x ∈ H : ‖x‖= r}.

Let Φ : Br→ H be a given function.
We are interested in the classical variational inequality associated to Φ, which consists of finding

x0 ∈ Br such that

sup
y∈Br

〈Φ(x0),x0− y〉 ≤ 0. (1.1)

If H is finite-dimensional, the mere continuity of Φ is enough to guarantee the existence of solutions,
in view of the classical result of Hartman and Stampacchia [3]. This is no longer true when H is infinite-
dimensional. Actually, in that case, Frasca and Villani [2], for each r > 0, constructed a continuous affine
operator Φ : H→ H such that, for each x ∈ Br,

sup
y∈Br

〈Φ(x),x− y〉> 0.

We also mention the related wonderful paper [7]. Another existence result was obtained by assuming
the following condition:

(a) for each y ∈ Br, the function

x→ 〈Φ(x),x− y〉

is weakly lower semicontinuous in Br.

Such a result is a direct consequence of the famous Ky Fan minimax inequality [1].
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In particular, condition (a) is satisfied when Φ is weakly continuous and monotone (i.e. 〈Φ(x)−
Φ(y),x− y〉 ≥ 0 for all x,y ∈ Br). Moreover, when Φ is continuous and monotone, (1.1) is equivalent to
the following inequality

sup
y∈Br

〈Φ(y),x0− y〉 ≤ 0 (1.2)

(see [6]).
On the basis of the above remarks, a quite natural question is to find non-monotone functions Φ such

that there is a solution of (1.1) which also satisfies (1.2).
The aim of the present note is just to give a first contribution along this direction, assuming, besides

condition (a), that Φ is of class C1,1, with Φ(0) 6= 0 (Theorem 2.3).

2. RESULTS

We first establish the following saddle-point result.

Theorem 2.1. Let Y be a non-empty closed convex set in a Hausdorff real topological vector space, let
ρ > 0 and let J : Bρ ×Y → R be a function satisfying the following conditions:
(a1) for each y ∈ Y , the function J(·,y) is C1, weakly lower semicontinuous and J′x(·,y) is Lipschitzian
with constant L (independent of y);
(a2) J(x, ·) is upper semicontinuous and concave for all x ∈ Bρ and J(x0, ·) is sup-compact for some
x0 ∈ Bρ ;
(a3) δ := infy∈Y ‖J′x(0,y)‖> 0.

Then, for each r ∈
]
0,min

{
ρ, δ

2L

}]
and for each non-empty closed convex T ⊆ Y , there exist x∗ ∈ Sr

and y∗ ∈ T such that
J(x∗,y)≤ J(x∗,y∗)≤ J(x,y∗)

for all x ∈ Br, y ∈ T .

Proof. Fix r ∈
]
0,min

{
ρ, δ

2L

}]
and a non-empty closed convex T ⊆ Y . We also fix y ∈ T . Notice that

the equation
J′x(x,y)+Lx = 0

has no solution in int(Br). Indeed, let x̃ ∈ Bρ be such that

J′x(x̃,y)+Lx̃ = 0.

In view of (a1), we have
‖Lx̃+ J′x(0,y)‖ ≤ ‖Lx̃‖.

In turn, using the Cauchy-Schwarz inequality, this readily implies that

‖x̃‖ ≥ ‖J
′
x(0,y)‖

2L
≥ δ

2L
≥ r.

Using (a1) again, we find that

x→ L
2
‖x‖2 + J(x,y)

is convex in Bρ (see the proof of Corollary 2.7 of [5]). As a consequence, the set of its global minima Br

is non-empty and convex. But, by the remark above, this set is contained in Sr and hence it is a singleton.
Thus, let x̂ ∈ Sr be the unique global minimum of the restriction of the function

x→ L
2
‖x‖2 + J(x,y)

to Br. So, we have
1
2
‖x̂‖2 + J(x̂,y)<

1
2
‖x‖2 + J(x,y)



A REMARK ON VARIATIONAL INEQUALITIES IN SMALL BALLS 23

for all x ∈ Br \{x̂}. Of course, this implies that

J(x̂,y)< J(x,y)

for all x ∈ Br \ {x̂}. That is to say, x̂ is the unique global minimum of J(·,y)|Br . Hence, if we consider
Br with the weak topology, the restriction of J to Br×T satisfies the assumptions of Theorem 1.2 of [4].
Consequently, we have

sup
T

inf
Br

J = inf
Br

sup
T

J.

Due the semicontinuity and compactness assumptions, this implies the existence of x∗ ∈ Br and y∗ ∈ T
such that

J(x∗,y)≤ J(x∗,y∗)≤ J(x,y∗)

for all x ∈ Br, y ∈ T . Finally, observe that x∗ ∈ Sr. Indeed, if x∗ ∈int(Br), we would have

J′x(x
∗,y∗) = 0

and then

δ ≤ ‖J′x(0,y∗)‖ ≤ L‖x∗‖ ≤ δ

2
,

an absurd. The proof is complete. �

Next, we give our main theorem.

Theorem 2.2. Let ρ > 0 and let Φ : Bρ → H be a C1 function whose derivative is Lipschitzian with
constant γ . Moreover, assume that, for each y ∈ Bρ , the function x→ 〈Φ(x),x− y〉 is weakly lower
semicontinuous. Set

θ := sup
x∈Bρ

‖Φ′(x)‖L (H),

M := 2(θ +ργ)

and assume that
σ := inf

y∈Bρ

sup
‖u‖=1

|〈Φ(0),u〉−〈Φ′(0)(u),y〉|> 0 .

Then, for each r ∈
]
0,min

{
ρ, σ

2M

}]
, there exists a unique x∗ ∈ Sr such that

max{〈Φ(x∗),x∗− y〉,〈Φ(y),x∗− y〉}< 0

for all y ∈ Br \{x∗}.

Proof. Consider the function J : Bρ ×Bρ → R defined by

J(x,y) = 〈Φ(x),x− y〉

for all x,y ∈ Bρ . Of course, for each y ∈ Bρ , the function J(·,y) is C1 and one has

〈J′x(x,y),u〉= 〈Φ′(x)(u),x− y〉+ 〈Φ(x),u〉

for all x ∈ Bρ ,u ∈ H. Fixing x,v ∈ Bρ and u ∈ S1, we have

|〈J′x(x,y),u〉−〈J′x(v,y),u〉|
= |〈Φ(x)−Φ(v),u〉+ 〈Φ′(x)(u),x− y〉−〈Φ′(v)(u),v− y〉|
≤ ‖Φ(x)−Φ(v)‖+ |Φ′(x)(u)−Φ

′(v)(u),v− y〉+ 〈Φ′(x)(u),x− v〉|
≤ θ‖x− v‖+2ρ‖Φ′(x)−Φ

′(v)‖L (H)+θ‖x− v‖
≤ 2(θ +ργ)‖x− v‖.
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Hence, the function J′x(·,y) is Lipschitzian with constant M. At this point, we can apply Theorem 2.1 by
taking Y = Bρ with the weak topology. Therefore, for each r ∈

]
0,min

{
ρ, σ

2M

}]
, there exist x∗ ∈ Sr and

y∗ ∈ Br such that
〈Φ(x∗),x∗− y〉 ≤ 〈Φ(x∗),x∗− y∗〉

≤ 〈Φ(x),x− y∗〉
(2.1)

for all x,y ∈ Br. Notice that Φ(x∗) 6= 0. Indeed, if Φ(x∗) = 0, we would have

‖Φ(0)‖= ‖Φ(0)−Φ(x∗)‖ ≤ θr

and hence

r ≤ ‖Φ(0)‖
2M

<
‖Φ(0)‖

θ
≤ r

since σ ≤ ‖Φ(0)‖. Consequently, the infimum in Br of the linear functional y→ 〈Φ(x∗),y〉 is equal
to −‖Φ(x∗)‖r and is attained only at the point −r Φ(x∗)

‖Φ(x∗)‖ . But, from the first inequality in (2.1), it just
follows that y∗ is the global minimum in Br of the functional y→ 〈Φ(x∗),y〉, and hence

y∗ =−r
Φ(x∗)
‖Φ(x∗)‖

.

Moreover, from (2.1) (taking y = x∗ and x = y∗), we have

〈Φ(x∗),x∗− y∗〉= 0.

Consequently, we have
〈Φ(x∗),x∗〉= 〈Φ(x∗),y∗〉

=

〈
Φ(x∗),−r

Φ(x∗)
‖Φ(x∗)‖

〉
=−‖Φ(x∗)‖r.

Therefore, x∗ is the global minimum in Br of the functional y→ 〈Φ(x∗),y〉 and hence x∗ = y∗. Thus,
(2.1) actually reads

〈Φ(x∗),x∗− y〉 ≤ 0≤ 〈Φ(x),x− x∗〉 (2.2)

for all x,y ∈ Br. Finally, we fix u ∈ Br \{x∗}. By what seen above, the inequality

〈Φ(x∗),x∗−u〉< 0

is clear. Moreover, from the proof of Theorem 2.1, we know that, for each y ∈ Br, the function J(·,y)|Br

has a unique global minimum. But, the second inequality in (2.2) says that x∗ is a global minimum of
the function J(·,x∗)|Br and hence the inequality

〈Φ(u),x∗−u〉< 0

follows. Finally, to show the uniqueness of x∗, we argue by contradiction. Suppose that there is another
x0 ∈ Sr with x0 6= x∗ such that

max{〈Φ(x0),x0− y〉,〈Φ(y),x0− y〉}< 0

for all y ∈ Br \{x0}. So, we would have at the same time

〈Φ(x0),x0− x∗〉< 0

and
〈Φ(x0),x∗− x0〉< 0,

which is an absurd. The proof is complete. �

From Theorem 2.2, we obtain the following characterization.
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Theorem 2.3. Let ρ > 0 and let Φ : Bρ →H be a C1 function with Lipschitzian derivative such that, for
each y ∈ Bρ , the function x→ 〈Φ(x),x− y〉 is weakly lower semicontinuous.

Then, the following assertions are equivalent:
(i) for each r > 0 small enough, there exists a unique x∗ ∈ Sr such that

max{〈Φ(x∗),x∗− y〉,〈Φ(y),x∗− y〉}< 0

for all y ∈ Br \{x∗} ;
(ii) Φ(0) 6= 0 .

Proof. The implication (i)→ (ii) is clear. So, we assume that (ii) holds. Observe that the function

y→ sup
‖u‖=1

|〈Φ(0),u〉−〈Φ′(0)(u),y〉|

is continuous in H and takes the value ‖Φ(0)‖> 0 at 0. Consequently, for a suitable r∗ ∈]0,ρ], we have

inf
y∈Br∗

sup
‖u‖=1

|〈Φ(0),u〉−〈Φ′(0)(u),y〉|> 0.

At this point, we can apply Theorem 2.2 to the restriction of Φ to Br∗ , and (i) follows. �

Finally, it is also worth noticing the following further corollary of Theorem 2.2.

Theorem 2.4. Let ρ > 0 and let Ψ : Bρ → H be a C1 function whose derivative vanishes at 0 and is
Lipschitzian with constant γ1. Moreover, assume that, for each y ∈ Bρ , the function x→ 〈Ψ(x),x− y〉 is
weakly lower semicontinuous. Set

θ1 := sup
x∈Bρ

‖Ψ′(x)‖L (H),

M1 := 2(θ1 +ργ1)

and let w ∈ H satisfy

‖w−Ψ(0)‖ ≥ 2M1ρ. (2.3)

Then, for each r ∈]0,ρ], there exists a unique x∗ ∈ Sr such that

max{〈Ψ(x∗)−w,x∗− y〉,〈Ψ(y)−w,x∗− y〉}< 0

for all y ∈ Br \{x∗}.

Proof. Set

Φ := Ψ−w

and apply Theorem 2.2 to Φ. Since Φ′ = Ψ′, we have M = M1. Since Φ′(0) = 0, we have σ = ‖Φ(0)‖.
Using (2.3), we have

ρ ≤ σ

2M
and the conclusion follows. �
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