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Abstract
In this work we study a system of mobile agents that

move in an anisotropic space and interact according to
the Vicsek model. In particular, the space is divided
in two regions: in the first one, agents obey to the tra-
ditional Vicsek model, while in the second one, called
control region, a motion control law is added. The con-
trol law forces the pinned agents, that are the agents
moving in the control region, to follow a criterion me-
diating between the tendency to adopt the average di-
rection of neighboring agents, and that to follow an im-
posed preferential direction. We show that, for low and
medium levels of noise in the system, the control law is
effective to drive the system towards a global ordered
state, while, for high levels of noise, a strong control
action leads to a configuration, for some aspects para-
doxical, where all the agents tend to avoid the control
region and occupy for most of the time the remaining
part of the space.
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1 Introduction
The Vicsek model [Vicsek et al., 1995] is probably

one of the most studied models for collective behav-
ior [Sumpter, 2010]. It exhibits, in fact, an emergent
self-organized global behavior through a simple rule
of local interaction among the agents that compound
the system. The model, that represents individuals or
agents as self-propelled particles moving on a planar
space, assumes the only rule that, at each time step,
each agent moves with constant absolute velocity and
with direction of motion equal to the average of the di-
rections of the neighboring agents, plus a random per-
turbation. The Vicsek model has been generalized in
different ways in order to incorporate several additional

features, many of them fundamental for a realistic de-
scription of swarm/group dynamics, not accounted for
in the original model [Couzin et al., 2002; Buscarino
et al., 2009; Couzin et al., 2005; Couzin et al., 2006;
Chaté et al., 2008; Buscarino et al., 2006; Buscarino et
al., 2007; Wang et al., 2013; Romenskyy et al., 2013;
Meschede et al., 2013; Bhattacharya and Vicsek, 2010;
Newlands and Porcelli et al., 2008; Ballerini et al.,
2008].
In its original formulation the Vicsek model consists

of N agents moving on a square plane of linear size L
with periodic boundary conditions, according to:

{
xi(t+∆t) = xi(t) + vi(t)∆t
θi(t+∆t) = ⟨θi(t)⟩r +∆θi

(1)

where xi(t) is the position in the plane of the i−th
agent at time t; vi(t) = v(cos(θi), sin(θi(t)) is its
velocity at time t (v is the velocity modulus and θ ∈
[0, 2π[ the agent heading); ∆t is the discrete step size.
The variable ∆θi is the noise term, generated at ran-
dom at each time step by drawing a number with uni-
form probability from the interval [−η

2 ,
η
2 ], so that η

represents the noise level. The operation ⟨θi(t)⟩r is the
computation of the average direction of agents within
a neighborhood of the i−th agent, defined as a disc of
radius r. This term, calculated as

⟨θi(t)⟩r = arctan

(
⟨sin θ(t)⟩r
⟨cos θ(t)⟩r

)
, (2)

implements the local interaction rule among agents,
able to modify the direction of their velocity without
affecting its modulus. A modified version of the model
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that also acts on the modulus of the velocity was intro-
duced by Couzin and co-workers [Couzin et al., 2002].
Considering that individuals in living groups tend to
keep a vital space free of neighbors and have different
mechanisms of adjustment of their motion direction as
function of the distance from their neighbors, the model
includes rules for repulsion, attraction and orientation,
and is able to reproduce different kinds of collective
behaviors observed in animal groups such as swarm-
ing, torus formation, or parallel formation [Buscarino
et al., 2009].
A further extension of the model was formulated in

[Couzin et al., 2005; Couzin et al., 2006] to account
for the experimental observations of groups of animals
whose direction is driven by a minority of individu-
als. The presence of experienced (informed) individ-
uals is included in the model by assuming that a subset
of individuals has a preferential direction of motion,
and defining a motion updating rule that mixes the so-
cial criteria (i.e., repulsion, orientation and attraction of
neighboring agents) with the individualistic one, that is,
the motion towards the preferential direction.
Finally, among other variations of the Vicsek model

we mention the inclusion of particle’s symmetry
changes, mechanisms of local cohesion, and the
characterization of the fluid in which the particles
move [Chaté et al., 2008]; the consideration of inter-
actions which are mostly local, yet with a small per-
centage of long-range interactions [Buscarino et al.,
2006; Buscarino et al., 2007]; the exponential weight-
ing of neighbor connections, and the limitedness of
the visual fields [Wang et al., 2013]; the introduction
of several alignment mechanisms [Romenskyy et al.,
2013; Meschede et al., 2013]; the description of pro-
cesses of collective decision making in short time (such
as synchronized landing of bird flocks) [Bhattacharya
and Vicsek, 2010]; and the characterization of animal
group motion, made possible thanks to technological
advances in image capturing and processing [Newlands
and Porcelli et al., 2008; Ballerini et al., 2008].
It is well known that different characteristics of the

space induce difference in the locomotion patterns of
animal groups. For example, the swimming activity
of some fish species is influenced by the water tem-
perature, while flight routes of pigeons tend to align
to the earth geomagnetic field intensity during hom-
ing [Dennis et al., 2007]. Thus, the study of models
for collective behavior relying on anisotropic proper-
ties of the space may provide useful insights in collec-
tive dynamics. Inspired by this evidence, we define the
concept of spatial pinning control. The idea underly-
ing pinning control is that the control of high dimen-
sional systems can be achieved by controlling a subset
of their state variables. The variables selected for con-
trol are called the pinned ones, and the pinned set can
be either time-invariant [Porfiri and diBernardo, 2008]
or time-varying [Porfiri and Fiorilli, 2009]. Several cri-
teria have been defined for the selection of the pinning
set. In this work, we assume that the ability of pin-

ning a certain set of variables is related to the spatial
characteristics of the environment. That is, a variable
is pinned if the agent that owns it lays on a specific re-
gion of the available space. A similar framework was
introduced in [Frasca et al., 2012] to study synchro-
nization in a system of agents moving in an anisotropic
space. Achieving coordination of motion through spa-
tial pinning control is of twofold interest. Firstly, it is
a valuable extension of the Vicsek model that incor-
porates the concept of anisotropic space, extending the
modeling capability for the description of natural phe-
nomena. Secondly, the definition of control paradigms
which exploit privileged limited zones of the control
space may constitute a valuable tool for the realiza-
tion of distributed control strategies for mobile robots,
commanded through wireless systems whose effect is
present only in limited portions of the space.
With this in mind, in this work we investigate a system

of self-propelled particles where the rule for direction
updating depends on their position on the plane. We
assume that the plane where the agents move contains
a control region where agents can receive a particular
control signal that tends to impose a privileged direc-
tion in their motion (referring to the model in [Couzin
et al., 2005; Couzin et al., 2006], this is equivalent to
having a time-varying set of informed individuals). On
the other hand, agents external to the control region
have no preferential direction and update their direc-
tion according to the classical Vicsek model. In partic-
ular, we show that, under particular conditions, by act-
ing only on the parameters of the control area, a global
control of the system can be attained, that is, agents
will move along the preferential direction even outside
of the control area. Moreover, we highlight the role
of the noise in the global control performance of the
model.
The rest of the paper is organized as follows: in Sec-

tion 2 the model is discussed; in Section 3 numerical
results are illustrated and discussed; in Section 4 our
conclusions are drawn.

2 Model
We consider N moving agents distributed on a planar

space Γ = {(x, y) ∈ R2 : 0 ≤ x ≤ L, 0 ≤ y ≤ L},
with periodic boundary conditions, and define a further
region Γc ⊆ Γ as Γc = {(x, y) ∈ R2 : 0 ≤ x ≤
Lc, 0 ≤ y ≤ Lc} with Lc ≤ L. We refer to Γc as
the control region. In fact, we assume that the sys-
tem’s agents that, at time t, are located in the control
region Γc, are forced by an external driving signal to
follow a preferential direction θ. On the other hand, the
command θ is absent outside of the control region. In
analogy with the mechanisms of informed individuals
adopted in [Couzin et al., 2005; Couzin et al., 2006],
a weighted mix between a social criterion (that is, the
average direction of the Vicsek model) and the prefer-
ential direction is applied.
As for the Vicsek model in Eqs. (1)-(2), we in-
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Figure 1. Scheme illustrating the spatial pinning control of Vicsek’s
agents.

dicate the position of the i−th agent at time t as
xi(t) =

[
xi yi

]T , and its velocity as vi(t) =
v(cos(θi), sin(θi(t)), where v is the velocity modu-
lus, which is constant in time and identical for every
agent. To incorporate the definition of the control law
discussed above, the motion update rule is modified as
follows:

{
xi(t+∆t) = xi(t) + vi(t)∆t
θi(t+∆t) = (1− wi(t)) (⟨θi(t)⟩r +∆θi) + wi(t)θ

(3)
where θ ∈ [0, 2π[ represents the preferential direction
wi(t) ∈ [0, 1] is the weight between the social criterion
and the preferential direction. Since only agents in Γc

are controlled towards the preferential direction, wi(t)
is given by

wi(t) =

{
w if xi(t) ∈ Γc

0 otherwise (4)

It is evident that the effect of the control region on
the global system performance depends on the magni-
tude of the control action w, and on the linear size of
the control region, Lc. Thus, these two variables will
be considered as system parameters. The considered
framework is schematically illustrated in Fig. 1.
To characterize the system behavior, two order param-

eters are considered. The first one quantifies the capa-
bility for the agents of moving in the same direction.
This is the average normalized velocity calculated as:

va = ⟨ 1

Nv

∣∣∣∣∣
N∑
i=1

vi

∣∣∣∣∣⟩t (5)

where ⟨⟩t denotes average over time. Clearly, va ∈
[0, 1]. The value va = 0 indicates that the agents are not
coordinated, while va = 1 indicate that all the agents
are moving in the same direction.
The second one represents the capability for the agents

of following the preferential direction, and is computed
as [Couzin et al., 2005; Couzin et al., 2006]:

vd = ⟨1−
∠(

∑N
i=1

1
N

vi(t)
|vj(t)| − g)

π
⟩t (6)

where ∠ represents the direction of the resulting vector
and g is the unit vector pointing towards the prefer-
ential direction θ. Clearly, vd ∈ [0, 1] represents the
agreement between the average direction of the ensem-
ble and the preferential one. In fact, vd is closer to 1
as long as all the agents tend to align to the preferential
direction, and, on the contrary, it approaches zero when
all the agents tend to move opposite to the preferential
direction.

3 Results
Our analysis mainly focuses on the system behavior

with respect to different values of the noise level η, and
to the two parameters defining the control law, Lc and
w. Even though other parameters are important for the
system characterization, such as the number of agents
N , their density ρ = N

L2 , the velocity modulus v, the
interaction radius r, their role is more related to the
general characteristics of the Vicsek model, rather than
to the peculiarities of the proposed approach, and has
been extensively characterized in the literature [Vicsek
et al., 1995; Bhattacharya and Vicsek, 2010]. Thus,
their effect is not explicitly discussed in our work, and
in the following we keep them constant to the following
values: N = 100, v = 0.03, r = 1, ρ = 4 (and so
L = 5). Without any lack of generality the preferential
direction has been fixed as θ = π

4 , and the time step to
∆t = 1.
Figs. 2 and 3 show the order parameters va and vd with

respect to Lc and w for different values of the noise
level η. We observe that for low values of the noise
level, global control can be attained also at low values
of Lc and w, while for increasing values of the noise
level global control requires large values of both Lc and
w. So, in the case of low noise level, further illustrated
in Fig. 4, where several snapshots of a simulation are
shown, a small control region suffices to control the
global behavior of the system. In the limit case of zero
noise (η = 0), illustrated in Fig. 5, in the presence of
a small control region it is interesting to note that, first,
the agents reach a coordinated state (an ordered mo-
tion of all the particles towards the same spontaneously
chosen direction) as the result of the spontaneous or-
ganization of the Vicsek model and, then, they align
towards the preferential direction θ. Thus, a low noise
level does not prevent the achievement of a global con-
trolled state, originating from the interplay between the
self-organization properties of the Vicsek model and
the application of a weak control law.
We next consider intermediate values of the noise

level (η = {2, 3}). In this case, it is still possible to ob-
tain high values of va and vd, although not equal to one
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Figure 2. Order parameter va with respect to Lc and w for differ-
ent values of the noise level η: (a) η = 1; (b) η = 2; (c) η = 3;
(d) η = 4. Results are averaged over 20 different realizations.
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Figure 3. Order parameter vd with respect to Lc and w for differ-
ent values of the noise level η: (a) η = 1; (b) η = 2; (c) η = 3;
(d) η = 4. Results are averaged over 20 different realizations.

(that is, a quite ordered motion towards the preferen-
tial direction), but this requires large values of both Lc

and w. This is evident in Fig. 6, where we compare the
behavior of the system, under the same level of noise
(η = 2), for three case studies obtained by choosing
different sets of parameters of the control law. When
a strong control law is applied (relatively high values
of Lc and w) the system shows a coordinated behav-
ior (Fig. 6(a)), while, when one of the two conditions
(large area, high value of w) does not hold, then global
control is not attained (in Fig. 6(b) the control area is
too small, despite the high value of w, while in Fig. 6(c)
w is too small, despite the large control area).
For high values of the noise level, we observe that

control is not attained even in the presence of a quite
large control region and high values of w. In Fig. 2(d)
va becomes close to the unit only when Lc → L and
w → 1, which is trivial, since all the area is controlled.
Apart from this limit condition, we observe that, when
the control region is large and w is high, a low value of
the order parameter va indicates that the agents tend to
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Figure 4. Snapshots of a simulation of N = 100 Vicsek’s agents
with spatial pinning control for ρ = 4, Lc = 1, w = 0.5 and
η = 1: (a) t = 0; (b) t = 10; (c) t = 25; (d) t = 35; (e)
t = 72; (f) t = 150.

stay away from the control region. In fact, agents in the
control region are forced to follow an ordered motion
towards the preferential direction, while their motion is
not ordered outside of the control region. In this case,
it can be noted that when agents approach the control
region, they escape very soon from it, since they tend
to follow a straight trajectory in the preferential direc-
tion, and tend to spend more time in the external region,
since their escape time is ruled by a Brownian motion.
This is evident in Fig. 7, where the control region is for
most of the time free of agents. This emergent behavior
is due to the fact that, under these conditions, agents are
subjected to two strong and opposite forces: the control
action and the tendency towards a disordered motion,
as imposed by setting a large value of η. To mediate
between these two forces, agents self-organize to oc-
cupy a region of the space which allows them to avoid
the control action. Under these conditions, therefore,
the only effect of the control signal is to deplete a re-
gion of the space, without any success in inducing an
ordered motion of agents.
We now provide a mathematical argument to explain

the behavior of the system observed in the previous
simulations. To this aim, we study the control of a set
of agents under some ideal conditions. The first as-
sumption is that each agent knows the heading of all
other ones, that is, the radius r is large enough to cover
the whole space, so that ⟨θi(t)⟩r is identical for each
agent, that is, ⟨θi(t)⟩r = Θ, ∀i. Secondly, we assume
that agents move fast enough for considering that, in
average and at each time instant, the control action is
applied to a fraction of agents proportional to the ra-
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Figure 5. Snapshots of a simulation of N = 100 Vicsek’s agents
with spatial pinning control for ρ = 4, Lc = 1, w = 0.9 and
η = 0: (a) t = 5; (b) t = 50; (c) t = 100; (d) t = 150; (e)
t = 250; (f) t = 400.

Figure 6. Snapshots at t = 400 for three different sets of param-
eters of the control law for ρ = 4 and η = 2: (a) Lc = 4,
w = 0.5; (b) Lc = 1, w = 0.9; (c) Lc = 3, w = 0.1.

tio between the control region and the whole area, that
is, L2

c/L
2. This consideration allows us to formulate

the assumption of fast switching [Stilwell et al., 2006;
Frasca et al., 2008]. According to the fast switching
approach, it is possible to analyze the average behavior
(in time) of the system, by assuming that every agent is
controlled by an equivalent control parameter wL2

c/L
2

at each time instant, instead of considering that L2
c/L

2

agents are controlled through the actual command w.
Obviously, both hypotheses represent favorable condi-
tions for control, that are met only in limit cases. Nev-
ertheless, we show in the following that even in the
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Figure 7. Snapshots of a simulation of N = 100 Vicsek’s agents
with spatial pinning control for ρ = 1, Lc = 5, w = 0.9 and
η = 4: (a) t = 0; (b) t = 50; (c) t = 100; (d) t = 155; (e)
t = 250; (f) t = 350.

most favorable conditions, the noise level constitutes
a strong limiting factor for achieving self-coordination
of agents.
Under the previously mentioned conditions, the pa-

rameter va is computed as:

va = ⟨ 1
N

∣∣∣∑N
i=1 e

jθi

∣∣∣⟩t =
= ⟨ 1

N

∣∣∣∣∑N
i=1 e

j(1−w
L2
c

L2 )Θej(1−w
L2
c

L2 )∆θiejw
L2
c

L2 θ

∣∣∣∣⟩t
(7)

and thus

va = ⟨ 1
N

∣∣∣∣∣
N∑
i=1

ej(1−w
L2
c

L2 )∆θi

∣∣∣∣∣⟩t (8)

In Eq. (8) va is function of w, L2
c

L2 and of the distribu-
tion of ∆θi, so ultimately of η. According to Eq. (8),
even in the most favorable case, va is limited by the
noise. In fact, va can take values close to one only if
(1− w

L2
c

L2 )∆θi ≃ 0, that is, if noise is small or, oth-
erwise, if both w and L2

c/L
2 take values close to one.

Thus, a small value for even only one of the two pa-
rameters (either w or L2

c

L2 ), suffices to vanish the effect
of the control action when a significant level of noise is
present in the system.
In analogy with Fig. 2, we show in Fig. 8 the behavior

of va, calculated from (8), for four different values of
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Figure 8. Order parameter va, calculated from (8), with respect to
Lc/L and w for different values of the noise level η: (a) η = 1;
(b) η = 2; (c) η = 3; (d) η = 4.

the noise level. The good agreement between the re-
sults from numerical simulations of the system of Vic-
sek’s agents and Eq. (8) indicates that noise is funda-
mental in shaping the behavior of the order parameter.

4 Conclusions
In this work, we have investigated a system of Vic-

sek’s agents, interacting on a planar anisotropic space.
In particular, we assumed the existence of a limited
control region where the information on a preferen-
tial direction to follow is transmitted. Our analysis
revealed that the best results in terms of motion co-
ordination are obtained when the control action oper-
ates in synergy with the self-organizing capabilities of
the Vicsek’s agents. In fact, for low levels of noise a
global control can be attained even with a weak con-
trol action: under these conditions, at first agents self-
organize towards a spontaneously emerging direction
and, subsequently, as soon as the information about the
preferential direction is spread through the system, they
align along the desired direction of motion. Coordina-
tion also occurs in the presence of intermediate levels
of noise, but, when noise is large, even a strong con-
trol action leads to poor performance and, opposite to
what may be expected, it has a counter intuitive effect,
with the net result of depleting the control region. We
supported our numerical analysis with a mathematical
argument dealing with the most favorable case, yet able
to provide a useful insight on the mechanisms underly-
ing the observed phenomena.
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