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Topological pumping and duality transformations are paradigmatic concepts in condensed matter and
statistical mechanics. In this paper, we extend the concept of topological pumping of particles to topological
pumping of quantum correlations. We propose a scheme to find pumping protocols for highly correlated states
by mapping them to uncorrelated ones. We show that one way to achieve this is to use dualities, because they are
nonlocal transformations that preserve the topological properties of the system. By using them, we demonstrate
that topological pumping of kinks and clusterlike excitations can be realized. We find that the entanglement of
these highly correlated excitations is strongly modified during the pumping process and the interactions enhance
the robustness against disorder. Our paper paves the way to explore topological pumping beyond the notion of
particles and opens an avenue to investigate the relation between correlations and topology.
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I. INTRODUCTION

In 1983, Thouless demonstrated that the topological prop-
erties of the wave function of an extended system can be
exploited to realize quantum pumps (see [1–7]). This mecha-
nism can perform topologically protected quantum transport,
which is robust against disorder and weak interactions [2]. The
remarkable progress of quantum technology has allowed the
implementation of Thouless’s idea to unprecedented degrees.
Recently, quantum pumping of particles has been realized
in diverse platforms ranging from ultracold optical super-
lattices [8,9] to waveguide arrays [10,11]. In the context of
quantum simulation, quantum pumping in low-dimensional
systems can be used to simulate higher dimensional quantum
systems [12]. For example, recent experiments have demon-
strated that topological pumping in two-dimensional systems
can be used to explore the exotic physics of quantum Hall
effect in four dimensions using cold atoms [13] and photonic
systems [14].
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In this paper, we address the problem of topological pump-
ing of quantum correlations. The cornerstone of our approach
is to map the highly correlated states that we want to pump to
uncorrelated ones, for which topological pumping protocols
are well known [see Fig. 1(a)]. Thus, the topological pumping
of correlated states can be obtained by a suitable inverse
mapping. However, in general, finding the right mapping is
a nontrivial problem, since it has to reduce the correlations
of the states, while preserving the topological properties of
the system. Here, we show that dualities can be exploited
to achieve this goal [15–24]. While the duality can change
the entanglement of the collective excitations [24,25], the
topological properties of the energy bands are unaltered. In
this way, we can extend the idea of topological pumping to
transport highly entangled excitations. Due to its topological
nature, the proposed quantum pumping is protected against
disorder and some type of interactions.

To illustrate our approach, we show how to perform topo-
logical pumping of cluster and kink excitations [26,27], which
are related to spin flips by duality, as depicted in Fig. 1(b).
We are now able to explore the pumping dynamics of these
entangled excitations for the first time. We show that bipartite
entanglement is dramatically affected by duality and pump-
ing: spin flips become highly entangled at the anticrossings
of the spectrum. Contrary to this, the entanglement present
in kinks and cluster states is reduced or stays constant for
specific bipartite divisions. One of the most appealing features
of topological pumping is its robustness against disorder.
In most cases, introducing interactions between excitations
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FIG. 1. Topological pumping of highly correlated states. (a) De-
piction of our scheme, which allows us to pump correlations of
the operator Ô(t ). The main challenge is to find an operator B̂
that enables the pumping protocol. To do this, one needs to find a
unitary transformation Û that maps the many-body operator Ô(t )
to a single-particle operator Ôsingle(t ). In the single-particle picture
we know what operator B̂single is required in order to pump particles.
By transforming the operator back, we can construct the operator B̂.
(b) A particular example where duality transformations enable us to
develop a protocol to pump cluster states. Under duality, the cluster
excitations map to kinks and finally to spin-flip excitations, which
can be mapped to single particles for which pumping is known.

destroys topological transport [28]. However, we find that for
a particular type of interaction topological pumping is still
possible and, furthermore, robustness against certain types of
disorder is strongly enhanced.

II. TOPOLOGICAL PUMPING AND HIGHLY
CORRELATED STATES

In the following, we discuss our general procedure, which
is schematically presented in Fig. 1(a). We consider a general
Hamiltonian of the form

Ĥ (t ) = Ô(t ) + B̂, (1)

where the operator Ô(t ) creates many-body correlations in the
system. Our goal is to pump these correlations. In principle,
the task can be achieved by finding a time-independent op-
erator B̂ that is noncommuting with Ô(t ). However, to find
the right operator can be nontrivial, because, in general, not
all operators B̂ allow topological pumping. The operator B̂
must couple the eigenstates of Ô(t ) to lift the degeneracies
between them at all times t during the pumping process. In
this paper, we aim to find a unitary transformation Û that
allows us to map the correlated problem to a simpler one,
for which the topological pumping protocol is well known.
The unitary operator Û has to be sufficiently nonlocal in
space to uncorrelate Ô(t ). If such unitary mapping can be
obtained, then Ô(t ) can be transformed to a single-particle
operator Ôsingle(t ). Then, the corresponding single-particle
pumping operator B̂single can be found by resorting to known
frameworks of topological pumping of single particles:

Ĥsingle(t ) = Ôsingle(t ) + B̂single. (2)

Finally, the correlation pumping operator B̂ is obtained via the
inverse transformation B̂ = Û B̂singleÛ †. We discuss below an
example of our general scheme, where Û is constructed by

combining duality and rotations in a spin system. In order to
highlight the capability of our scheme, we show below how to
perform topological pumping of cluster and kink states.

A. Mapping cluster states to spin flips

Let us begin by considering the time-dependent operator
Ô(t ) = −h̄

∑N
j=1 Gj (t )μz

j−1μ
x
jμ

z
j+1, where μα

j (α ∈ {x, y, z})
are Pauli matrices acting on the jth site. The eigenstates of
this operator are clusterlike states, which are highly entangled
objects relevant for quantum computation [29] or quantum
memories [30]. In order to be able to pump cluster states,
we need to find a suitable unitary operator Û . With this aim,
let us consider the Kramers-Wannier duality τ z

j τ
z
j+1 = μx

j ,
τ x

j = μz
jμ

z
j+1, τ

y
j τ

y
j+1 = μz

jμ
x
j+1μ

z
j+1. Here, τα

j are the Pauli
matrices after the dual transformation [15,16]. By applying
the duality transformation, rotating the spins around the x axis,
and then applying the duality again [see Fig. 1(b)], one can
remove the correlations in Ô(t ). This allows us to map the lat-
ter to a single-particle operator Ôsingle(t ) = −h̄

∑N
j=1 Gj (t )σ x

j
in terms of new Pauli matrices σ x

j . In contrast to the original
operator Ô(t ), the eigenstates Ôsingle(t ) are uncorrelated states
known as spin flips. Now it is quite direct to find an operator
B̂single enabling us to perform topological pumping of spin
flips. To do this, let us consider the one-dimensional quantum
Ising model in a transverse field [26]

Ĥflip(t ) = h̄
N∑

j=1

[−Gj (t )σ x
j + Jσ z

j σ
z
j+1

]
, (3)

which is a paradigmatic model in condensed matter and
statistical physics. We consider a transverse field strength
Gj (t ) = g0 + g1 cos[2π ( j − 1)b + ωt + φ0], which is adia-
batically modulated in time. Here ω is the frequency of the
drive and its period is T = 2π/ω. The parameters φ0 and
1/b determine the initial phase shift and the spatial period
of the modulation, respectively. In addition, J is the strength
of the spin-spin interaction. We assume periodic boundary
conditions σα

j = σα
j+N and explore the specific case b = 1/3.

However, our results remain valid for any rational value b =
p/q, where p and q are coprimes. In the following, we will
show that B̂single = h̄J

∑N
j=1 σ z

j σ
z
j+1 is the operator that allows

us to perform topological pumping of spin flips.

B. Topological pumping of cluster states

Due to the spatial modulation of the transverse field, the
Ising Hamiltonian of Eq. (3) exhibits topological features that
we can exploit to perform topological pumping. To gain some
intuition about this, let us consider the weak-coupling regime
g0 � J , where the collective excitations are spin flips. Since
the interaction between neighboring spins is small, the total
number of excitations N̂ = 1/2

∑N
j=1(1 + σ x

j ) is approxi-
mately conserved. Thus, the spectrum is divided into different
bands associated with a fixed number of spin flips (see Fig. 2).
Within a given band, the Hamiltonian (3) exhibits the same
dynamics as the Aubry-Andre (AA) model [10,31], which is a
toy model for topological pumping [1,2]. The current of trans-
ported particles is intimately related to the Chern numbers C
of the Harper-Hofstadter model [32]. In Appendices A and B
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FIG. 2. Topological pumping of spin excitations. (a) Depic-
tion of trimers, where the sites A, B, and C have energies EA =
g1 cos(ωt ), EB = g1 cos(2π/3 + ωt ), and EC = g1 cos(4π/3 + ωt ),
respectively. (b) Instantaneous energies of a single spin-flip exci-
tation per trimer in the limit g0 � J . The dashed lines show the
local energies of the sites A (blue), B (orange), and C (green) for
J = 0. The solid lines show the spectrum for J �= 0. At the crossings,
the energies of two neighboring spins are degenerate. The spin-
spin interaction hybridizes the excitations and lifts the degeneracy,
creating an energy gap �E ≈ 2J . The number of anticrossings is
related to the Chern number C of the respective band. For trimers,
particles are pumped by 3C sites per driving period.

we describe these models in detail. During the pumping
process, the Chern number C determines the number of lattice
sites that a single particle is transported per cycle [33]. In
other words, the mean position changes as x(T ) − x(0) =
1/2

∑N
j=1 j(〈σ x

j (T )〉 − 〈σ x
j (0)〉) = C, where C is the Chern

number associated to the relevant band, x(t ) = 〈x̂(t )〉, and x̂ =
1/2

∑N
j=1 j(σ x

j + 1) is the position operator. For our choice
of Gj (t ) with a trimer structure, the particle is transported 3C
sites per driving period.

From our previous discussion, we conclude that the oper-
ator B̂single = h̄J

∑N
j=1 σ z

j σ
z
j+1 allows us to perform topolog-

ical pumping of single-particle excitations. By applying the
inverse of the above transformations, we can construct the
operator B̂ = h̄J

∑N
j=1 μz

jμ
z
j+1 that allows us to pump cluster

states. This gives rise to the cluster-Ising Hamiltonian [34–37]

Ĥ cluster(t ) = h̄
N∑

j=1

[−Gj (t )μz
j−1μ

x
jμ

z
j+1 + Jμz

jμ
z
j+1

]
. (4)

By repeatedly applying spin rotations and duality transforma-
tions, there is a plethora of complex many-body spin operators
that can be reduced to single-particle operators, as we show in
Appendix C. These models host excitations with a wide range
of topological phases [38], for which we can now construct
a pumping protocol. As an example, by using the duality, we
can find a Hamiltonian to pump kinks, which are eigenstates
of the operator Ô(t ) = −h̄

∑N
j=1 Gj (t )τ z

j τ
z
j+1. In fact, as the

FIG. 3. (a) Evolution of the expectation value of the driving
operator of the Hamiltonian. For spin flips [Eq. (3)] Xj (t ) = 〈σ x

j 〉, for
the kink model [Eq. (5)] Xj (t ) = 〈τ z

j τ
z
j+1〉, and for the cluster-Ising

model [Eq. (4)] Xj (t ) = 〈μz
jμ

x
j+1μ

z
j+2〉. (b) Expectation value of the

nondriven operator of the model Hamiltonians. For spin flips Yj (t ) =
〈σ z

j σ
z
j+1〉, for the kink model Yj (t ) = 〈τ x

j 〉, and for the cluster-Ising
model Yj (t ) = 〈μz

jμ
z
j+1〉. The initial state is the eigenstate with one

excitation per trimer in the lowest band with Chern number C = −1.
Increasing or decreasing the number of trimers in the chain does
not substantially affect the dynamics. Parameters for all graphs
are N = 9, g0 = 10J , g1 = 3J , initial phase φ0 = 0, and frequency
ω = 0.02J .

Hamiltonian

Ĥkink(t ) = h̄
N∑

j=1

[−Gj (t )τ z
j τ

z
j+1 + Jτ x

j

]
(5)

is dual to the Ising Hamiltonian (3), the natural choice of
the operator that allows us to pump kinks is B̂ = h̄J

∑N
j=1 τ x

j .
During topological pumping, the change of the mean position
is related to the Chern number. In the case of Hamilto-
nian (4), we can show that correlations can be pumped (see
Appendix B), as follows:

x(T ) − x(0) = 1

2

N∑
j=1

j
(〈
μz

jμ
x
j+1μ

z
j+2(T )

〉
− 〈

μz
jμ

x
j+1μ

z
j+2(0)

〉) = C. (6)

To illustrate this, we depict the dynamics of topological
pumping of quantum correlations in Fig. 3(a).

III. ENTANGLEMENT DYNAMICS
AND TOPOLOGICAL PUMPING

Kinks and clusters are highly entangled states, whereas
spin flips are very close to product states. A natural question
that arises is the following: what is the dynamics of entangle-
ment during topological pumping and how does this depend
on the character of the excitations? To answer this question we
divide the spin chain into two subsystems A and B; perform
a partial trace over A, ρ̂B = TrA(ρ̂ ); and calculate the von
Neumann entropy S = −TrB(ρ̂B log ρ̂B) [36]. Here ρ̂ is the
density matrix of the total system. We consider two types of
partitions: In partition 1 [Fig. 4(a)], A is the first trimer, and B
is the rest. In partition 2 [Fig. 4(b)], A is the first site of each
trimer, and B is the rest. The system is translationally invariant
for each trimer. Thus, these two partitions highlight the local

013135-3



HAUG, AMICO, KWEK, MUNRO, AND BASTIDAS PHYSICAL REVIEW RESEARCH 2, 013135 (2020)

FIG. 4. Evolution of von Neumann entropy for the dual models
with two types of partitions: (a) first trimer and (b) first site of each
trimer that is traced out. The degree of entanglement as measured
by the von Neumann entropy is normalized relative to the maximal
possible entanglement. The parameters are the same as in Fig. 3.

and extended entanglement properties of the spins. We find
that the entanglement exhibits dramatic changes during the
pumping process. In particular, the entanglement of the spin
flips increases at the anticrossings. Then, the spin flips are in
a superposition state of being at two sites, which could be
measured in experiments [8,9]. In contrast, the entangled kink
and cluster states lose entanglement at the anticrossings for
the case 2 partition, and have nearly unchanged entanglement
for case 1. The difference arises because partition 2 extends
over all trimers, whereas partition 1 is measuring only a single
trimer, highlighting the nonlocal structure of the quantum
state. These properties can also be seen in the structure of the
quantum states. The spin-flip, kink, and cluster-Ising Hamilto-
nians are related by duality transformation, which changes the
wave function and entanglement profoundly. We can calculate
the states for a single excitation per trimer exactly in the limit
g0 � J in Table I at and away from anticrossings. For our
chosen values (g0 = 10J , g1 = 3J), we find an overlap of the
analytic states with the numeric results of more than 95% both
at and away from the anticrossing. The overlap decreases with
increasing g0 or J and is nearly unaffected by system size as
we checked up to N = 9.

IV. EFFECT OF DISORDER AND INTERACTIONS

Topological pumping is generally considered with nonin-
teracting particles. It is known that interactions can break
topological pumping in some situations [28], while it is still
possible in specific cases [7,39]. While some intuition about
this question is present for the single-particle case, how does
interaction affect pumping of nonlocal quantum correlations?

FIG. 5. Fidelity of the state F = |〈
(0))|
(3T )〉|2 after three
pump cycles for random disorder strength δ applied either to Gj (t ) or
to J of the models. Disorder is sampled randomly between [−δ, δ].
Without interaction K , fidelity starts to decay when disorder is on
the order of the energy gap δc ≈ 0.7J , independent of which the
variable is disordered. With interaction K , pumping is more robust
for disorder in Gj (t ), however it is unchanged for J . Parameters
are N = 9, g1 = 3J , initial phase φ0 = 0, and angular frequency
ω = 0.02J .

Our scheme can shed light on this question, as the duality
transformation can relate different types of interactions. We
find that the lowest band with one excitation per trimer
(Chern number C = −1) can be pumped even when adding
the interaction term Ĥflip

int = h̄K
∑

j σ
x
j σ

x
j+1 to the spin-flip

Hamiltonian Ĥflip. However, interaction destroys pumping in
the other bands. The pumping of that specific band persists
as the single excitations of each trimer are highly localized
and separated by a large distance of three sites. Thus, they
couple only weakly to each other and the energy gap is nearly
unchanged compared to the noninteracting case. This reason-
ing is valid for any model that can be reduced to spin flips
via the transformation Û . The corresponding transformed in-
teraction terms are Ĥkink

int = h̄K
∑

j σ
z
j σ

z
j+2 for kink Hamilto-

nian Eq. (5) and Ĥ cluster
int = h̄K

∑
j σ

z
j σ

y
j+1σ

y
j+2σ

z
j+3 for cluster-

Ising Eq. (4). Interaction has a profound impact on the ro-
bustness to disorder. We implement random spatial disorder
� j with strength δ in either variable G′

j (t ) = Gj (t ) + � j

or J ′ = J + � j of our Hamiltonians, where � j is randomly
sampled between [−δ, δ]. In Fig. 5 we show the fidelity

TABLE I. Eigenstates with one excitation per trimer in the pumping process of the spin-flip, kink, and cluster-Ising models. We show the
analytic states at and away from the anticrossing in the limit g0 � J . States are given in terms of the eigenstates of the z basis |0〉 and |1〉 for
kinks and in the x basis for spin-flip and cluster-Ising models. For the cluster-Ising model we define the ground state of the cluster model as∏N

i=1 cμz
i,i+1|000〉x , with cμz

i,i+1 being the control phase gate acting on site i, i + 1.

Model Away from anticrossing At anticrossing

Spin flip |010〉 ⊗ · · · ⊗ |010〉x

√
3√

2L
[(|01〉 − |10〉)|0〉 ⊗ · · · ⊗ (|01〉 − |10〉)|0〉x]

Kink 1√
2
(|100〉 ⊗ · · · ⊗ |100〉 + |011〉 ⊗ · · · ⊗ |011〉z )

√
3√

4L
[|1〉(|0〉 − |1〉)|0〉 ⊗ · · · ⊗ |1〉(|0〉 − |1〉)|0〉z+
|0〉(|0〉 − |1〉)|1〉 ⊗ · · · ⊗ |0〉(|0〉 − |1〉)|1〉z]

Cluster Ising
∏N/3

j=0 μz
3 j+2

∏N
i=1 cμz

i,i+1|000〉 ⊗ · · · ⊗ |000〉x
∏N/3

j=0
1√
2

(
μz

3 j+2 − μz
3 j+1

) ∏N
i=1 cμz

i,i+1|000〉 ⊗ · · · ⊗ |000〉x
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FIG. 6. Fidelity of the state F = |〈
(0))|
(9T )〉|2 after nine
pump cycles for varying driving frequency ω and different interaction
strength K . For ω < 0.1J , pumping is stable. For higher frequencies,
the fidelity starts to oscillate. Parameters are N = 9, g1 = 3J , and
initial phase φ0 = 0.

F = |〈
(0)|
(3T )〉|2 of the pumped state after three pump
cycles. We observe that without interaction K = 0 the fidelity
is reduced above a critical disorder, independent of whether
disorder is applied to Gj (t ) or J . However, with interaction
K = J , pumping is much more stable for disorder applied
to Gj (t ). This effect cannot be attributed to a change in the
energy gap, as it is nearly unchanged with interaction K .
However, we observe that the system is more robust against
disorder when the interaction operator commutes with the part
of the Hamiltonian that is disordered, i.e., for the spin-flip
model Ĥflip

int commutes with σ x
i σ x

i+1, but not with σ z
i σ z

i+1. We
conjecture that the increased stability arises when the inter-
action Hamiltonian acts as a stabilizer on the pumped state,
and leads to a renormalization of disorder due to interaction
g [40]. These findings on the stability against disorder found
for spin flips can be immediately applied to pumping of kinks
and the cluster-Ising model via the mapping scheme. In Fig. 6,
we illustrate the frequency dependence of the pumping. We
measure the overlap between the initial state and the pumped
state after nine pumping cycles. Fidelity of the pumping is
unity below a critical driving frequency. Interaction decreases
the critical driving frequency slightly. Above this frequency,
we observe strong oscillations in the pumping fidelity with
frequency.

V. CONCLUSIONS

In conclusion, we have proposed a scheme to perform
topological pumping of quantum correlations. Our approach
is based on a unitary transformation that maps correlated
states to uncorrelated ones, where known protocols for topo-
logical pumping can be used. To illustrate our general idea,
we exploit spin dualities to realize topological pumping of
cluster states, which are states relevant for quantum compu-
tation [29] or quantum memories [30]. We also show that the
pumping process can reduce the bipartite entanglement for
kinks and cluster excitations, but enhances it for single spin
flips. Recent experiments have realized topological pumping
of particles [8,9], without considering the entanglement. It

would be of considerable interest to revisit these experiments
to measure the entanglement dynamics. The spin-flip and kink
models we considered are experimentally realizable in cur-
rent quantum simulators [41–43] that are available in several
platforms such as superconducting qubits [44–46], trapped
ions [47], Rydberg atoms [48], and cold atoms [49–52].
Cluster states have been realized in photonic systems [53] and
cluster Hamiltonians could be realized with cold atoms [54].
Our approach could be applied to find pumping schemes for
other types of quantum correlations and to transport them,
while being protected against disorder. Robustness against
specific types of disorder can be enhanced by certain inter-
action terms, which can be determined by using our method.
It would be interesting to investigate the implication of our
results for error correction in spin chains [55] and the role of
other type of dualities [56] on topological pumping.
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APPENDIX A: HARPER-HOFSTADTER MODEL
AND TOPOLOGICAL PUMPING
IN THE AUBRY-ANDRE MODEL

The Harper-Hofstadter model describes a Bloch electron
moving in a two-dimensional lattice under the effect of a
magnetic field:

ĤHH = −h̄Jx

∑
mx,my

(
f †
mx,my

fmx+1,my − fmx,my f †
mx+1,my

+ H.c
)

− h̄Jy

∑
mx,my

(
e2iπmxb f †

mx,my
fmx,my+1

− e−2iπmxb fmx,my f †
mx,my+1

)
. (A1)

Here fmx,my and f †
mx,my

are fermionic operators and Jx and Jy

are hoppings strengths along x and y directions, respectively.
When the electron completes a loop in the lattice, it acquires a
phase φ proportional to the magnetic flux through the loop, as
it is depicted in Fig. 7. Within a unit cell, the flux is denoted
as φ = 2πb, where b is a real number. The physics of the
Harper model is extremely rich and it is closely related to
the integer quantum Hall effect and topological pumping. The
reason for the nontrivial features of the model is the character
of the real number b. For example, if it is a rational b = p/q
with p, q integers, the magnetic flux through a unit cell is
commensurable with the flux quanta. Figure 7(b) shows the
case b = 1/3, where the system is decomposed in terms of a
sublattice. In this case, one can transform the Hamiltonian to
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FIG. 7. The Harper-Hofstadter model of electrons in a two-
dimensional lattice. (a) Depiction of the flux through a unit cell.
(b) The lattice described by the Harper-Hofstadter model.

quasimomentum representation, as follows:

ĤHH =
∑
kx,ky



†
kx,ky

ĤHH
kx,ky



†
kx,ky

, (A2)

where 

†
kx,ky

= (F †
A,kx,ky

, F †
B,kx ,ky

, F †
C,kx,ky

). The operators F †
n,kx,ky

with n ∈ {A, B,C} are the Fourier transform of the fermionic
operators in real space. Due to our choice b = 1/3, the Hamil-
tonian ĤHH

kx,ky
is a 3×3 matrix and the system exhibits three

bands that we denote by A, B, and C, respectively. For a given
band, n ∈ {A, B,C}, one can calculate the associated Chern
number

Cn = 1

2π

∫
FBZ

�n(kx, ky)dkxdky , (A3)

with the Berry curvature

�n(kx, ky) = i
(〈
∂kx un(kx, ky)

∣∣∂ky un(kx, ky)
〉

− 〈
∂ky un(kx, ky )

∣∣∂kx un(k, t )
〉)

, (A4)

and un(kx, ky) being the eigenstate of the nth band of the
model in Fourier space.

An important step to establish the intimate relation be-
tween the Harper-Hofstadter model and topological pump-
ing is to reduce the dimension of the system from a two-
dimensional lattice to a set of decoupled one-dimensional
lattices. To achieve this, we assume periodic boundary condi-
tions along the y direction; one can transform the y direction
in Eq. (A1) into momentum representation, as follows:

ĤHH = −2h̄Jy

∑
mx,ky

cos(2πbmx + ky)
(

f †
mx,ky

fmx,ky − fmx,ky f †
mx,ky

)

− h̄Jx

∑
mx,ky

(
f †
mx,ky

fmx+1,ky − fmx,my f †
mx+1,ky

)

=
∑

ky

Ĥ (ky). (A5)

This Hamiltonian Ĥ (ky) is very important for our paper,
because now we can modulate the quasimomentum ky = ωt +
φ0 adiabatically in time to perform topological pumping. After
this procedure, we obtain the Aubry-Andre model:

ĤAA(t ) = −2h̄Jy

∑
j

cos(2πb j + ωt + φ0)[ f †
j f j + H.c]

− h̄Jx

∑
j

( f †
j f j+1 + H.c). (A6)

Note that as we are working with a one-dimensional system
we consider an index j to label the lattice sites. Similarly
to the two-dimensional Harper-Hofstadter model Eq. (A1),
for our choice b = 1/3, the Hamiltonian Eq. (A6) exhibits
three bands. This can be derived by Fourier transforming the
annihilation and creation operators along the lattice index. Its
bands have nontrivial topological Chern numbers, which are
defined as

Cn = 1

2π

∫ 2π

0

∫ T

0
�n(k, t )dtdk , (A7)

with the Berry curvature �n(k, t ) = i(〈∂t un(k, t )|
∂kun(k, t )〉 − 〈∂kun(k, t )|∂t un(k, t )〉) and un(k, t ) being the
eigenstate of the nth band of the model in Fourier space [8,33].
We neglected the band index n for simplicity in the main text.
The anomalous velocity ẋ = �nω gives the speed with which
the particles move during the pumping process. To understand
the meaning of this quantity, let us consider an initial state
|ψ (0)〉, representing a particle localized at a site j0 along
the lattice. Depending on the position j0, the mean energy
of the particle should be in one of the bands A, B, or C of
the system. Now we can define the operator x̂ = ∑

j j f †
j f j in

such a way that x(t ) = 〈ψ (t )|x̂|ψ (t )〉. After a single period T
of the time modulation, the position of the particle changes
proportionally to the Chern number, as x(T ) − x(0) = Cn,
where n is the band index and x(0) is proportional to j0 [57]
(see also Fig. 3 in main text).

APPENDIX B: MAPPING THE ISING MODEL
TO THE AUBRY-ANDRE MODEL IN THE LIMIT

OF WEAK SPIN INTERACTIONS

The excitations above the paramagnetic ground state of
the spin-flip Hamiltonian Ĥflip(t ) in Eq. (3) of the main
text are spin flips. In general, in the one-dimensional
quantum Ising model the number of spin flips N̂ flips =
1/2

∑N
j=1(1 − σ x

j ) is not conserved. However, if the cou-

pling J between the spins in the z direction is weak, N̂ flips

is approximately conserved, and we can obtain an effec-
tive Hamiltonian that preserves the number of spin flips,
even under an adiabatic modulation of the onsite energies
Gj (t ) = g0 + g1 cos[2π ( j − 1)b + ωt + φ0]. In order to do
this, we go to a rotating frame with the unitary operator
V̂ (t ) = exp (−ig0t

∑N
j=1 σ x

j ), where the Hamiltonian is given

by Ĥflip
R (t ) = V̂ †(t )(Ĥflip(t ) − ih̄∂t )V̂ (t ). After neglecting fast

oscillating terms in Ĥflip
R (t ) with frequencies proportional to

g0 and after going back to the laboratory frame, we obtain an
effective Hamiltonian of the form

Ĥflip(t ) ≈ h̄
N∑

j=1

[−Gj (t )σ x
j + J

(
σ z

j σ
z
j+1 + σ

y
j σ

y
j+1

)]
, (B1)

which is valid in the limit g0 � J . Under the rotating wave
approximation, one just keeps terms in the Hamiltonian that
preserve the number of spin flips. In this case, one can use the
Jordan-Wigner transformation

σ z
l = − f †

l ei�̂l − fl e
−i�̂l , σ

y
l = −i f †

l ei�̂l + i fl e
−i�̂l ,

σ x
l = 2 f †

l fl − 1, (B2)
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with �̂l = ∑
j<l f †

j f j to map Eq. (B1) to the Aubry-Andre
model discussed above:

Ĥflip(t ) ≈ 2h̄
N∑

j=1

[−Gj (t ) f †
j f j + J ( f †

j f j+1 + H.c.)], (B3)

where f †
j ( f j) are fermionic creation (annihilation) operators.

With the definition of Gj (t ), this model maps to the Aubry-
Andre model of Eq. (A6), which has been widely studied for
topological pumping.

In the previous section, we discussed the relation between
the Chern number and the change in the mean position x
of the particle. As we are working with spin flips here, we
can define a single spin flip initially localized at a given site
j0. The position operator x̂ = ∑

j j f †
j f j of the spin flip is

given by x̂ = 1/2
∑N

j=1 j(σ x
j + 1) and its mean value reads

x(t ) = 〈ψ (t )|x̂|ψ (t )〉, where |ψ (t )〉 represent the state during
the pumping process. During topological pumping, the change
of the position is related to the Chern number. In our case,
we obtain the relation x(T ) − x(0) = 1/2

∑N
j=1 j(〈σ x

j (T )〉 −
〈σ x

j (0)〉) = Cn, where Cn is the Chern number. Now if we take
into account the duality, we can show that a similar relation is
satisfied for clusterlike states:

x(T ) − x(0) = 1

2

N∑
j=1

j
(〈
μz

jμ
x
j+1μ

z
j+2(T )

〉
−〈

μz
jμ

x
j+1μ

z
j+2(0)

〉) = Cn. (B4)

In this case, however, the center of mass of the excitation,
i.e., its mean position, is given by a three-point correlation
function. A similar expression can be obtained for kinks,
where the center of mass is obtained by calculating a two-
point correlation function.

APPENDIX C: HIGHER-ORDER DUALITIES

Our procedure can also reduce more complex models to
single particles. For example, let us consider the many-body
operator

Ô(t ) = −h̄(−1)r
N∑

j=1

Gj (t )μ̃z
j−1

[
r∏

m=0

μ̃x
m+ j

]
μ̃z

j+1+r,

where r is a positive integer. By repeatedly applying π

rotations around the x axis of the Pauli matrices and then
applying the duality, it can be subsequently reduced to spin
flips Ôsingle(t ) = −h̄

∑
j G j (t )σ x

j . After this reduction, it is
quite simple to find the operator B̂single = h̄J

∑
j σ

z
j σ

z
j+1 that

allows us to perform topological pumping of spin flips.
Now we can apply the inverse transformation and obtain
the operator B̂ = h̄(−1)rJ

∑N
j=1 μ̃z

j−1[
∏r−1

m=0 μ̃x
m+ j]μ̃

z
j+r . By

considering the aforementioned operators, we can construct
the Hamiltonian

Ĥ (t ) = −h̄(−1)r
N∑

j=1

Gj (t )μ̃z
j−1

[
r∏

m=0

μ̃x
m+ j

]
μ̃z

j+1+r

+ h̄(−1)rJ
N∑

j=1

μ̃z
j−1

[
r−1∏
m=0

μ̃x
m+ j

]
μ̃z

j+r, (C1)

which allows us to pump highly correlated states. As a
direct consequence, the (r + 2)-point correlation function
� j−1, j,..., j+1+r (t ) = 〈μ̃z

j−1[
∏r

m=0 μ̃x
m+ j]μ̃

z
j+1+r (t )〉 satisfies

x(T ) − x(0) = 1

2

N∑
j=1

j[� j−1, j,..., j+1+r (T )

−� j−1, j,..., j+1+r (0)] = Cn. (C2)

This equation establishes a link between quantum correlations
and the Chern number, which is a topological quantity.
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