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The non-overlapping sets of pictures are sets such that no two pictures in the set (properly) 
overlap. They are the generalization to two dimensions of the cross-bifix-free sets of 
strings. Non-overlapping sets of pictures are non-expandable when no other picture can 
be added without violating the property. We propose a general construction method for 
non-expandable non-overlapping (NENO) sets based on some structural properties of NENO 
sets. As an application, we show a first example of a family of NENO sets.
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1. Introduction

The digital technology that pervades every aspect of our lives is bringing communications more and more towards 
pictorial (two-dimensional) environments. The generalization to two dimensions of the formal study of all structures and 
special patterns of the strings is then gaining a growing interest in the scientific community. The two-dimensional strings 
are called pictures and they are represented by two-dimensional (rectangular) arrays over a finite alphabet �. The set of all 
pictures over � is usually denoted by �∗∗ . Extending results from the formal (string) language theory to two dimensions is 
a very challenging task. The two-dimensional structure in fact imposes some intrinsic difficulties even in the basic concepts. 
For example, we can define two concatenation operations (horizontal and vertical concatenations) between two pictures, but 
they are only partial operations and do not induce a monoid structure to the set �∗∗ . Moreover, for example, the definition 
of “prefix” of a string can be extended to a picture by considering its rectangular portion in the top-left corner; nevertheless, 
if one deletes a prefix from a picture, the remaining part is not a picture anymore.

Several results from string language theory have been usefully extended to pictures. Many researchers have investigated 
how the notion of recognizability can be transferred to two dimensions to accept picture languages (see for example [1–9]).

A relevant notion on strings is the one of “border”. Given a string s, a bifix or a border of s is a substring x that is both 
prefix and suffix of s. A string s is bifix-free or unbordered if it has no other bifixes, besides the empty string and s itself. 
Bifix-free strings are strictly related to the theory of codes [10] and are involved in the data structures for pattern matching 
algorithms [11,12]. From a more applicative point of view, bifix-free strings are suitable as synchronization patterns in 
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digital communications and similar communication protocols [13]. In this framework, the cross-bifix-free codes have been 
introduced in [14] by reviving a notion introduced in early sixties. Cross-bifix-free codes are strictly connected with circular 
codes. A set of strings X is a cross-bifix-free code when no prefix of any string is the suffix of any other string in X ; it 
is non-expandable if no other element can be added to X without falsifying the property of the set. Several efforts have 
been made in the last years in order to construct families of non-expandable cross-bifix-free codes. A first family has been 
exhibited in [15]. Subsequently, other families based on different approaches have been shown in [16,17], with the aim of 
finding codes of bigger cardinality.

The notion of border extends very naturally from strings to pictures since it is not related to any scanning direction. 
Informally, we can say that a picture p is bordered if a copy p′ of p can be overlapped on p by putting a corner of p′
somewhere on some position in p. Observe that, differently from the string case, depending on the position of the corner 
of p′ , several different types of picture overlaps are possible. We stay in the general situation when the overlaps can be 
made on any position in p and therefore the borders can be of any size. This leads to a quite different scenario with respect 
to the string case. In fact, we have two pairs of symmetric cases; either p can be overlapped by putting its top-left corner 
in a copy p′ (i.e. the bottom-right corner of p′ is inside p) or we can put the bottom-left corner of p somewhere in some 
position of its copy p′ (i.e. the top-right corner of p′ is inside p). Unbordered pictures, in this general setting, were first 
investigated in [18], where an algorithm for the construction of the set of all unbordered pictures of a fixed size is proposed.

Moving from pictures to sets of pictures, we consider the notion of non-overlapping set of pictures. In a non-overlapping 
set of pictures, each picture is unbordered and moreover no picture can be overlapped on another one of the same set. 
This notion gives therefore the generalization of cross-bifix-free code of strings and provides a family of picture codes 
(see [19–24] for some recent results on picture codes). In particular, non-overlapping sets of pictures are two-dimensional 
comma-free codes (recently studied in [25]) with a stronger property.

An example of a non-overlapping set of pictures was recently given in [26]; its cardinality is calculated using generalized 
Fibonacci sequences. Note that non-overlapping sets of pictures of a fixed size (m, n) could be also found by considering the 
set of all possible pictures of that size and choosing some of them by checking that there are no overlaps. The challenge 
is to find, for each size (m, n), large non-overlapping sets of pictures which cannot be expanded and, at the same time, 
to provide a description for any size of the pictures. In the same paper [26], it is left as main open problem whether it 
is possible to construct a non-expandable non-overlapping set of pictures (we will call it a NENO set, for short). A solution 
to this problem is a generalization to two dimensions of the above cited results on non-expandable cross-bifix-free sets of 
strings.

This paper shows an example of a family of NENO sets. It is obtained following a construction method based on some 
properties of NENO sets. The method can be applied to obtain further examples. More precisely, first, we show some simple 
necessary conditions which are satisfied by any non-overlapping set of pictures. Subsequently, we identify some conditions 
which ensure that a set of pictures is non-overlapping non-expandable. The focus is first on the properties that the frames 
of the pictures may have, and then on the internal part of the pictures. As an application, we exhibit the family of NENO 
sets Y (m, n), for any m, n ≥ 4. It is the first example in the literature.

2. Preliminaries

In this section we recall all the definitions on strings and pictures needed in the rest of the paper. For more details see 
[10] and [5].

2.1. Basic notations on strings

A string is a sequence of zero or more symbols from an alphabet �. Let s = s1s2 . . . sn be a string of length n over �. 
The length of s is denoted |s|. A string w over � of length h, h ≤ n, is a substring (or factor) of s if s = uw v for u, v ∈ �∗ . 
Moreover we say that w occurs at position j of s if w = s j . . . s j+h−1. A string x of length m < n is a prefix of s if x is a 
substring that occurs in s at position 1; it is a suffix of s if it is a substring that occurs in s at position n − m + 1. A string 
x that is both prefix and suffix of s is called a border or a bifix of s. The empty string and s itself are trivial borders of 
s. A string s is unbordered or bifix-free if it has no borders other than the trivial ones. Unbordered strings have received a 
lot of attention since they occur in many applications like message synchronization or string matching. In [13] P.T. Nielsen 
proposed a procedure to generate all bifix-free strings of a given length.

Finally, two strings s and s′ overlap if there exists a string x that is a suffix of s and a prefix of s′ , or vice versa; the 
string x is their overlap and |x| is the length of the overlap. We will equivalently say that s overlaps s′ .

2.2. Basic notations on pictures

A picture over a finite alphabet � is a two-dimensional rectangular array of elements of �. Given a picture p, |p|row

and |p|col denote the number of rows and columns, respectively while size(p) = (|p|row , |p|col) denotes the picture size. The 
pictures of size (m, 0) or (0, n) for all m, n ≥ 0, called empty pictures, will be never considered in this paper. The set of all 
pictures over � of fixed size (m, n) is denoted by �m,n , while the set of all pictures over � is denoted by �∗∗ .
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Let p be a picture of size (m, n). The set of coordinates dom(p) = {1, 2, . . . , m} ×{1, 2, . . . , n} is referred to as the domain
of a picture p. We let p(i, j) denote the symbol in p at coordinates (i, j). We assume the top-left corner of the picture 
to be at position (1, 1). Moreover, to easily detect border positions of pictures, we use initials of words “top”, “bottom”, 
“left” and “right”; then, for example, the tl-corner of p refers to position (1, 1) while the br-corner refers to position (m, n). 
Furthermore, we denote by rF (p), rL(p) ∈ �n the first and the last row of p, respectively and by cF (p), cL(p) ∈ �m the first 
and the last column of p, respectively. Then, the frame of p is f rame(p) = (rF (p), rL(p), cF (p), cL(p)).

For the sequel, it is convenient to extend the notation for the frame of a picture to languages. Let X ⊆ �m,n . Let us denote 
by R F (X) ⊆ �n the set R F (X) = {rF (p) | p ∈ X} of the first rows of all pictures in X . In a similar way, R L(X), C F (X), and 
CL(X) will denote the sets of the last rows, of the first columns, and of the last columns of all pictures in X , respectively. 
The frame of X is the quadruple f rame(X) = (R F (X), R L(X), C F (X), CL(X)).

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} ×{ j, j + 1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n, also 
specified by the pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain [(i, j), (i′, j′)] is denoted by 
p[(i, j), (i′, j′)]. Then, a non-empty picture x is subpicture of p if x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; 
we say that x occurs at position (i, j) (its tl-corner).

Observe that the notion of subpicture generalizes very naturally to two dimensions the notion of substring. On the other 
hand, the notions of prefix and suffix of a string implicitly assume the left-to-right reading direction. In two dimensions, 
there are four corners and four scanning-directions from a corner toward the opposite one. Hence, we introduce the defini-
tion of four different “prefixes” of a picture, each one referring to one corner.

Definition 1. Given pictures p ∈ �m,n , x ∈ �h,k , with 1 ≤ h ≤ m, 1 ≤ k ≤ n,
x is a tl-prefix of p if x is a subpicture of p occurring at position (1, 1),
x is a tr-prefix of p if x is a subpicture of p occurring at position (1, n − k + 1),
x is a bl-prefix of p if x is a subpicture of p occurring at position (m − h + 1, 1),
x is a br-prefix of p if x is a subpicture of p occurring at position (m − h + 1, n − k + 1).

Several operations can be defined on pictures (cf. [5]). Two concatenation products are usually considered, the column 
and the row concatenation. The reverse operation on strings can be generalized to pictures and gives rise to two different 
mirror operations (called row- and col-mirror) obtained by reflecting with respect to a vertical and a horizontal axis, respec-
tively. Another operation that has no counterpart in one dimension is the rotation. The rotation of a picture p of size (m, n), 
is the clockwise rotation of p by 90◦ , denoted by p90◦

. Note that p90◦
has size (n, m). All the operations defined on pictures 

can be extended in the usual way to sets of pictures.
We conclude by remarking that any string s = y1 y2 · · · yn can be identified either with a single-row or with a single-

column picture, i.e. a picture of size (1, n) or (n, 1), whereas any picture in �m,n can be viewed as a string of length n on 
the alphabet of the columns �m , and as a string of length m on the alphabet of the rows �n .

3. Non-overlapping sets of pictures

In this section we set up all the necessary definitions and notations on non-overlapping pictures. The notion is strictly 
related to the one of “unbordered picture” already introduced and studied in [18]. Here, we state directly the definition of 
non-overlapping pictures obtaining the notion of unbordered picture as a particular case.

Recall that two strings overlap when the prefix of one of them is the suffix of the other one. This notion can be extended 
very naturally to two dimensions by taking into account that now four different corners exist. Informally, we say that two 
pictures p and q overlap when we can find the same rectangular portion at a corner of p and at the opposite corner of q. 
Observe that there are two different kinds of overlaps depending on the pair of opposite corners involved.

Definition 2. Let p ∈ �m,n and q ∈ �m′,n′
.

The pictures p and q tl-overlap if there exists a picture x ∈ �h,k , with 1 ≤ h ≤ min{m, m′} and 1 ≤ k ≤ min{n, n′}, which 
is a tl-prefix of p and a br-prefix of q, or vice versa.

The pictures p and q bl-overlap if there exists a picture x ∈ �h,k , with 1 ≤ h ≤ min{m, m′} and 1 ≤ k ≤ min{n, n′}, which 
is a bl-prefix of p and a tr-prefix of q, or vice versa.

The pictures p and q overlap if they tl-overlap or they bl-overlap.
The picture x is called an overlap of p and q, and its size (h, k) is the size of the overlap.

For the sequel, it is useful to identify some special cases of picture overlaps and we list them in the definition below. 
Examples are given in Fig. 1 where the first pair of pictures tl-overlap, the second pair h-slide overlap, the third one v-slide 
overlap, and the last pair shows two pictures that frame-overlap (and also bl-overlap).

Definition 3. Let p ∈ �m,n and q ∈ �m′,n′
, then

• p and q properly overlap if they have an overlap x ∈ �h,k with x 	= p and x 	= q
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Fig. 1. From left to right: a pair of pictures that tl-overlap, h-slide overlap, v-slide overlap, frame-overlap (and also bl-overlap).

• p and q h-slide overlap if they have an overlap x ∈ �h,k with h = m = m′
• p and q v-slide overlap if they have an overlap x ∈ �h,k with k = n = n′
• p and q frame-overlap if they have an overlap x ∈ �h,k with h = 1 or k = 1

The case when p overlaps with itself leads to the notions of border of a picture, self-overlapping and unbordered pictures. 
As for the overlaps, there are two different kinds of borders (tl-borders and bl-border) depending on the pair of opposite 
corners that hold the border. A tl-border is called a diagonal border in [27].

The notion of “non-overlapping” is naturally extended to sets of pictures in order to generalize the notion of cross-bifix-
free sets of strings, introduced in [14]. Notice that, in analogy to the case of cross-bifix-free sets of strings, we will consider 
sets of pictures of fixed size.

Definition 4. A set of pictures X ⊆ �m,n is non-overlapping if for any p, q ∈ X , p and q do not properly overlap.
Moreover, a set X ⊆ �m,n is non-expandable non-overlapping, NENO for short, if X is non-overlapping and for any p ∈

�m,n \ X , there exists q ∈ X such that p and q overlap.

In the string case, for any length n, the set containing only the string 10n is non-overlapping (cross-bifix-free) and 
non-expandable. The real challenge is to find large sets of strings satisfying the property, as discussed in the Introduction. 
In the two-dimensional case, it seems that there is not a NENO set containing only one picture, for each size (m, n). This 
because there are a lot of different kinds of overlaps to be taken into account. However, we can show some particular 

examples, if we fix the size. For example, a set with only the following picture 0 0 1 1
0 1 0 1

is a NENO set of size (2, 4). 

This can be easily verified in an exhaustive way, because there are only four unbordered pictures of size (2, 4) (see [18]).
Very recently, in [26], a set of non-overlapping matrices has been presented by exploiting some techniques from the 

string case. The authors leave open the problem of finding non-expandable non-overlapping sets. And this appears to be a 
difficult problem. No examples of NENO sets defined for any size (m, n) are found in the literature.

Note that, in general, a NENO set X of size (m, n) could be produced by an exhaustive procedure that first generates all 
unbordered pictures in �m,n , then systematically chooses p ∈ �m,n , and finally adds p to X when it verifies that p does 
not overlap any picture already in X . This procedure is not only computationally heavy, but it also produces a set whose 
pictures can be given only by enumeration; the pictures are not classified by their structural properties nor by a uniform 
description.

In the sequel, we propose some conditions for NENO sets that will be used in Section 5 to show a family of NENO sets 
Y (m, n), for any size (m, n). Observe that further examples can be simply obtained applying to a NENO set the operations 
of rotation, col- and row-mirror operations, and permutation or renaming of symbols in �.

Let us now consider some properties which are necessarily satisfied by any non-overlapping set of pictures. First, observe 
that any picture in a non-overlapping set is necessarily unbordered. In order to show some properties on the frames of 
the pictures in a non-overlapping set, let us introduce the following definition. Note that in a cross-non-overlapping pair 
(S1, S2), it is not required that S1 and S2 are cross-bifix-free sets.

Definition 5. Let S1, S2 ⊆ �n and S1 ∩ S2 = ∅.
The pair (S1, S2) is cross-non-overlapping if for any s1 ∈ S1, s2 ∈ S2, s1 and s2 do not overlap.

Proposition 6. Let X ⊆ �m,n. If X is non-overlapping then the two pairs (R F (X), R L(X)) and (C F (X), CL(X)) are cross-non-
overlapping.

Proof. Suppose to the contrary that there exist s1 ∈ R F (X), s2 ∈ R L(X), and s1 and s2 overlap. Then any pictures p1, p2 ∈ X
with rF (p1) = s1 and rL(p2) = s2 are such that p1 and p2 overlap, against X non-overlapping. An analogous reasoning holds 
for the sets of columns. �

Some more properties can be stated in the case of the binary alphabet. If X is a non-overlapping set over a binary 
alphabet then the four corners of any picture in X carry the same quadruple of symbols and not any quadruple is allowed. 
We state this simple necessary condition in the lemma below.

Let corners(p) = (p(1, 1), p(1, n), p(m, 1), p(m, n)), for any picture p ∈ �m,n .
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Lemma 7. Let � = {0, 1} and X ⊆ �m,n. If X is a non-overlapping set then only four cases are possible

a) corners(p) = (0, 0, 1, 1), for any picture p ∈ X
b) corners(p) = (1, 1, 0, 0), for any picture p ∈ X
c) corners(p) = (1, 0, 1, 0), for any picture p ∈ X
d) corners(p) = (0, 1, 0, 1), for any picture p ∈ X.

Proof. Given an unbordered picture p, corners(p) must be of the form a), b), c) or d) otherwise p would have a border of 
size (1, 1). Since any picture in a non-overlapping set is necessarily unbordered, we have that, for any p ∈ X , corners(p)

must be of the form a), b), c) or d). The proof is completed by noting that, for any p, q ∈ X , it must be corners(p) =
corners(q); if the sets corners(p) and corners(q) were of two different forms among a), b), c) or d), then p and q would 
have an overlap of size (1, 1) against the hypothesis that X is non-overlapping. �
4. Properties and conditions for a NENO set

In this section we present some properties on non-expandable non-overlapping sets. The focus will be firstly on the 
frames of the pictures in a NENO set and their properties related to the non-expandability of the set (see Proposition 12). 
Subsequently, we will present some further conditions on the internal part of the pictures in a NENO set (see Proposi-
tion 14). The obtained conditions, altogether, will be exploited to present an example of a NENO set in the next section.

Let us introduce the following definition on string sets, with the aim of investigating the frames of the pictures in NENO 
sets.

Definition 8. Let S1, S2 ⊆ �n and S1 ∩ S2 = ∅. The pair (S1, S2) is full if for any s /∈ S1 ∪ S2, there exist s1 ∈ S1, s2 ∈ S2 such 
that s and s1 overlap, and s and s2 overlap.

Example 9. Let � = {0, 1} and let S1, S2 ⊆ �n be the languages S1 = {1n} and S2 = {0w0 | w ∈ {0, 1}n−2}. The pair (S1, S2)

is cross-non-overlapping, since the strings in S1 do not contain occurrences of symbol 0.
Let us show that it is also full. Let s be any string s /∈ S1 ∪ S2. Since s /∈ S2, three cases are possible, s = 0x1, s = 1y0, or 

s = 1z1. If s = 0x1 or s = 1y0 then s overlaps the string in S1 and any string in S2 with an overlap of length 1. If s = 1z1
then z contains at least one occurrence of 0, because s /∈ S1. Then s = 1k0r1, for some k ≥ 1 and r ∈ �∗ . Therefore, s and 1n

overlap, and also s and 0r10k overlap, with 0r10k ∈ S2.

Example 10. Let � = {0, 1} and let S3, S4 ⊆ �m be the languages S3 = {110m−2} and S4 = {1w0 | |w| = m − 2, w 	=
0m−2, 1w0 with no suffix in 110+}. The pair (S3, S4) is cross-non-overlapping. Indeed, consider s′ = 110m−2 ∈ S3 and 
s′′ = 1w0 ∈ S4 and suppose that there exists u such that s′ = xu and s′′ = uy or s′ = ux and s′′ = yu. In the first case, it 
must be |u| = m − 1 and, hence, w = 0m−2 against the definition of S4. In the second case, it must be |u| ≥ 3 and, hence, 
w would have a suffix in 110+ against the definition of S4.

Let us show that the pair (S3, S4) is full. Let s be any string s /∈ S3 ∪ S4. If s ∈ 0�∗ or s ∈ �∗1 then s overlaps the string 
in S3 and any string in S4 with an overlap of length 1. Consider the case that s = 1w0. Since s /∈ S4, w = 0m−2 or w has 
a suffix in 110+ . In the first case s = 10m−1. Then s and the string in S3 overlap with an overlap of length m − 1; and s
overlaps any string in S4 that has 010 as a suffix, with an overlap of length 2.

In the second case s = 1x110k with k ≥ 1, and x ∈ �∗ . Then s and the string in S3 overlap with an overlap of length 
k + 2, and s and any string 10k y0 ∈ S4, for some y, overlap with an overlap of length k + 1.

Recall that the frame of a language X is the quadruple of the sets of its first and last rows and columns, f rame(X) =
(R F (X), R L(X), C F (X), CL(X)).

Note that not any quadruple of string languages can be the frame of a set of pictures, since their strings need to match in 
the lengths and in the corner positions. Given four string languages S1, S2 ⊆ �n and S3, S4 ⊆ �m , we say that the quadruple 
(S1, S2, S3, S4) is frame-compatible if there exists a picture language X ⊆ �m,n such that f rame(X) = (S1, S2, S3, S4). In the 
case of non-overlapping sets of pictures, the constrains are even stronger. As previously remarked (see Lemma 7), if X
is a non-overlapping set on � = {0, 1}, then all the pictures in X have the same set of corners and, for this set, only 
four cases are possible, following which symbols appear in the corners of pictures in X . Hence, for example, a quadruple 
(S1, S2, S3, S4) can be the frame of a non-overlapping set X such that, for all p ∈ X , corners(p) = (0, 0, 1, 1), if S1 ⊆ 0�∗0, 
S2 ⊆ 1�∗1, and S3, S4 ⊆ 0�∗1.

We give the following definition.

Definition 11. Let X ⊆ �m,n . X is frame-complete if for any p, q ∈ X , p and q do not frame-overlap, and if for any picture 
p ∈ �m,n \ X there exists a picture q ∈ X such that p and q frame-overlap.
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Note that being frame-complete is a sufficient condition for a set X to be non-expandable with respect to the overlapping. 
Any picture not in the language overlaps the frame of some picture in the language. However, no warranty is given at this 
stage on the non-overlapping property of the pictures inside the set X . Frame-complete sets of pictures can be obtained 
due to the following proposition. Recall that (in view of Proposition 6) the pairs of languages that form the frame of a 
non-overlapping set of pictures are necessarily cross-non-overlapping.

Proposition 12. Let S1, S2 ⊆ �n, S3, S4 ⊆ �m and (S1, S2, S3, S4) be a quadruple of frame-compatible string languages.
If the pairs (S1, S2) and (S3, S4) are cross non-overlapping and full then the set X of all the pictures p with f rame(p) ∈ S1 × S2 ×

S3 × S4 is frame-complete.

Proof. The frame-compatibility of (S1, S2, S3, S4) guarantees that X is not empty.
Moreover, since the pairs (S1, S2) and (S3, S4) are cross-non-overlapping, then, for any p, q ∈ X , we are sure that p and 

q do not frame-overlap.
Now let p be any picture p ∈ �m,n \ X . Let us show that there exists a picture q ∈ X such that p and q frame-overlap. 

The definition of X implies that f rame(p) /∈ S1 × S2 × S3 × S4. Hence, either rF (p) /∈ S1, or rL(p) /∈ S2, or cF (p) /∈ S3, or 
cL(p) /∈ S4. Suppose without loss of generality that rF (p) /∈ S1.

If also rF (p) /∈ S2 then there exists s ∈ S2 such that rF (p) and s overlap (because (S1, S2) is full). Consider any picture q
in X with rL(q) = s. Then, p and q frame-overlap.

If rF (p) ∈ S2 then consider any picture q in X with rL(q) = rF (p). Then, p and q frame-overlap (and also v-slide over-
lap). �
Example 13. Let � = {0, 1}. Referring to the sets S1, S2, S3, and S4 in Examples 9 and 10, let X(m, n) ⊆ �m,n , with 
m, n ≥ 4, be the set of all the pictures with R F (X(m, n)) = S1, R L(X(m, n)) = S2, C F (X(m, n)) = S3, and CL(X(m, n)) = S4. 
The sets R F (X(m, n)), R L(X(m, n)), C F (X(m, n)), CL(X(m, n)) satisfy the conditions of Proposition 12 and therefore X(m, n)

is frame-complete.

The next proposition states some sufficient conditions for a subset of a frame-complete set to be NENO. The interest is 
now devoted also to the internal part of the pictures.

Proposition 14. Let X ⊆ �m,n be a frame-complete set. If a subset Y of X is such that

a) f rame(Y ) = f rame(X)

b) Y is non-overlapping
c) for any p ∈ X \ Y there exists q ∈ Y such that p and q overlap

then Y is a NENO set.

Proof. The set Y is non-overlapping by condition b). Let us show that Y is non-expandable. Let p be any picture p ∈
�m,n \ Y , and let us show that there exists q ∈ Y such that p and q overlap. If p ∈ X then condition c) implies the goal. Sup-
pose p /∈ X . Then there exists x ∈ X such that p and x frame-overlap, because X is frame-complete. Condition a) guarantees 
that there exists q ∈ Y such that f rame(q) = f rame(x) and hence p and q frame-overlap, too. �
5. Construction of a family of NENO sets

In this section we exhibit a family of non-expandable non-overlapping sets over the binary alphabet � = {0, 1}. This is 
accomplished in two main steps.

The goal of the first step is to meet the non-expandability property, and it is accomplished by a proper definition of 
the frames of the pictures. It consists in the construction, for all m, n ≥ 4, of a frame-complete set X(m, n) of pictures. We 
choose a quadruple of frame-compatible string languages, (S1, S2, S3, S4), with S1, S2 ⊆ �n and S3, S4 ⊆ �m , such that the 
pairs (S1, S2) and (S3, S4) are cross non-overlapping and full. Subsequently, we define the set X(m, n) of all the pictures p
with f rame(p) ∈ S1 × S2 × S3 × S4. The set X(m, n) is frame-complete by Proposition 12.

In the subsequent step, the non-overlapping property is attained by imposing some conditions on the internal part of the 
pictures. To be more precise, the second step consists in selecting a subset Y (m, n) of X(m, n). If Y (m, n) is chosen satisfying 
conditions a), b), and c) in Proposition 14, then Proposition 14 ensures that Y (m, n) is a NENO set. Observe that the second 
step of the construction needs to balance accurately two opposite operations. On one side, one has to remove from X(m, n)

those pictures that overlap other pictures in the set. On the other hand, it is necessary not to remove “too many” pictures, 
in order to achieve the non-expandability property. The following family X(m, n), for m, n ≥ 4, reaches this goal.
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Fig. 2. From left to right: a generic picture in X(m,n), a picture in Y (m,n) and pictures in X(m,n) \ Y (m,n) that violate condition 1) and 2), respectively.

Definition 15. Let � = {0, 1} and m, n ≥ 4.
Let S1, S2 ⊆ �n and S3, S4 ⊆ �m be the languages S1 = {1n}, S2 = {0w0 | w ∈ {0, 1}n−2}, S3 = {110m−2}, and S4 =

{1w0 | |w| = m − 2, w 	= 0m−2, 1w0 with no suffix in 110+}.
Let X(m, n) ⊆ �m,n be the set of all the pictures with R F (X(m, n)) = S1, R L(X(m, n)) = S2, C F (X(m, n)) = S3, and 

CL(X(m, n)) = S4.
The set Y (m, n) ⊆ X(m, n) is the set of all pictures p ∈ X(m, n) such that

1) there exists no 2 ≤ j ≤ n such that p(2, j) = p(3, j) = · · · = p(m − 1, j) = 0
2) there exists no (i, j), with (i, j) 	= (1, 1) such that p(i, j) = p(i, j +1) = · · · = p(i, n) = 1 and p(i, j)p(i +1, j) · · · p(m, j) ∈

110∗ .

Fig. 2 shows a generic picture in X(m, n), a picture in Y (m, n), and two pictures which are in X(m, n), but are not in 
Y (m, n) because they violate condition 1) and 2), respectively.

Note that X(m, n) ⊆ �m,n in the definition is the frame-complete set introduced in Example 13. The set Y (m, n) has been 
extracted from X(m, n) in such a way that it satisfies the sufficient conditions in Proposition 14. More precisely, conditions 
1) and 2) in the definition of Y (m, n) are designed in order to avoid the overlaps between two pictures in Y (m, n). In 
particular, condition 1) prevents bl-overlaps. The bl-corner of a picture p in X(m, n) cannot be placed inside another picture 
p′ of X(m, n), unless when it is placed on the (m − 1)-th row (in all the other cases the 0’s in the first column of p
would meet the 1’s in the first row of p′). Condition 1) prevents this possibility in the pictures in Y (m, n). In a similar way, 
condition 2) forbids tl-overlaps. On the contrary, the pictures in X(m, n) which do not satisfy conditions 1) and 2), i.e. the 
pictures in X(m, n) \ Y (m, n), will necessarily overlap some pictures in Y (m, n).

The following proposition shows, in a more accurate way, that Y (m, n) satisfies the conditions a), b), and c) of Proposi-
tion 14, and then Y (m, n) is a NENO set.

Proposition 16. The language Y (m, n) in Definition 15 is a NENO set, for any m, n ≥ 4.

Proof. Let X(m, n) and Y (m, n) be the languages defined in Definition 15. The set X(m, n) is frame-complete, as shown in 
Example 13. Let us show that Y (m, n) satisfies the conditions a), b), and c), of Proposition 14.

a) f rame(Y (m, n)) = f rame(X(m, n)).
Since Y (m, n) ⊆ X(m, n), we have f rame(Y (m, n)) ⊆ f rame(X(m, n)). Let us show the inverse inclusion, namely, that for 
any p ∈ X(m, n) there exists q ∈ Y (m, n) with f rame(q) = f rame(p). It is trivial if p ∈ Y (m, n). Suppose p ∈ X(m, n) \
Y (m, n). Then, p does not satisfy condition 1) or condition 2) (or both) in Definition 15. It is possible to obtain a picture 
q ∈ Y (m, n) and f rame(q) = f rame(p), by exchanging some symbols in p. More precisely, for any 1 ≤ j ≤ n such that 
p(2, j) = p(3, j) = · · · = p(m − 1, j) = 0, one can replace with 1 one occurrence of 0 among p(3, j), · · · , p(m − 1, j). 
This replacement reduces the violations of condition 1) and does not introduce any violation to condition 2).
Suppose now that there exists (i, j), with (i, j) 	= (1, 1) such that p(i, j) = p(i, j + 1) = · · · = p(i, n) = 1 and p(i, j)p(i +
1, j) · · · p(m, j) ∈ 110∗ . Recalling that m, n ≥ 4, there always exists one position among (i, j), (i, j + 1), · · · , (i, n) and 
(i + 1, j), · · · , (m, j) that is not on the frame of p. Exchanging the symbol in such position removes the violation and 
does not introduce any violation to condition 1).

b) Y (m, n) is non-overlapping.
Let p, q ∈ Y (m, n). The pictures p and q cannot frame-overlap, because the pairs (R F (X(m, n)), R L(X(m, n))), 
(C F (X(m, n)), CL(X(m, n))) are cross-non-overlapping (as shown in Examples 9 and 10).
The pictures p and q cannot h-slide overlap, because otherwise there would exist a position (1, j) with (i, j) 	= (1, 1)

violating condition 2).
The pictures p and q cannot v-slide overlap because the first column of any picture in Y (m, n) is unbordered.
Moreover, p and q cannot tl-overlap with an overlap of size (r, c) with 1 < r ≤ m − 1 and 1 < c ≤ n − 1. Suppose to 
the contrary that there exists x of size (r, c) with 1 < r ≤ m − 1 and 1 < c ≤ n − 1, such that x is a tl-prefix of p and a 
br-prefix of q.
Finally, p and q cannot bl-overlap with an overlap of size (r, c) with 1 < r ≤ m − 1 and 1 < c ≤ n − 1. Suppose to the 
contrary that there exists x of size (r, c) with 1 < r ≤ m − 1 and 1 < c ≤ n − 1, such that x is a bl-prefix of p and a 
tr-prefix of q.
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Since rF (q) = 1n , r cannot be strictly less than m − 1. On the other hand, if r = m − 1 then the picture q violates 
condition 1) in the column j = n − c + 1.

c) For any p ∈ X(m, n) \ Y (m, n) there exists q ∈ Y (m, n) such that p and q overlap.
If p ∈ X(m, n) \ Y (m, n) then f rame(p) ∈ S1 × S2 × S3 × S4, but p does not satisfy condition 1) or condition 2) (or both) 
in Definition 15.
If p does not satisfy condition 1) then let j be the greatest index 2 ≤ j ≤ n such that p(2, j) = p(3, j) = · · · =
p(m − 1, j) = 0. Then there exists q ∈ Y (m, n) with the bl-prefix of q of size (m − 1, n − j + 1) equal to the tr-prefix of p
of size (m − 1, n − j + 1). Note that since j 	= 1 the last column of q can be constructed so that no violation of condition 
2) appears in q, by inserting some occurrences of 0’s where necessary. Furthermore, such 0’s are not necessary in each 
position q(2, n), q(3, n), · · · , q(m − 1, n) since the last column of p cannot be in 1+0+ .
If p satisfies condition 1), but not condition 2), then let (i, j) be the lowest among the rightmost positions such that 
p(i, j) = p(i, j + 1) = · · · = p(i, n) = 1 and p(i, j)p(i + 1, j) · · · p(m, j) ∈ 110∗ . Then there exists q ∈ Y (m, n) with the 
tl-prefix of q of size (m − i + 1, n − j + 1) equal to the br-prefix of p of size (m − i + 1, n − j + 1). �

We conclude the section with some remarks. Following the results presented in Section 4, for any m, n ≥ 4, we have 
extracted from the frame-complete set X(m, n) a NENO set Y (m, n), by imposing two conditions on the internal part of its 
pictures. Such conditions are designed so that the pictures in X(m, n) that satisfy them cannot overlap one another, whereas 
as soon as a picture in X(m, n) does not satisfy a condition, it necessarily overlaps a picture in Y (m, n).

Let us emphasize that not any choice of the conditions has this nice property. There are conceivable conditions avoiding 
any overlap among pictures in X(m, n) when satisfied, which do not necessarily imply an overlap among pictures in Y (m, n)

when they are not satisfied. As an example, consider the language M(m, n) ⊆ X(m, n), defined by replacing in the definition 
of Y (m, n), condition 1) with the following condition.

1)bis if there exists (i, j), with (i, j) 	= (1, n) such that p(i, 1) = p(i, 2) = · · · = p(i, j) = 1 then p(i, j)p(i +1, j) · · · p(m, j)
has a suffix in 110∗ .

Condition 1)bis seems to avoid bl-overlaps in a similar way as condition 1) does. Nevertheless, one can show that M(m, n)

is non-overlapping, but it is not non-expandable. A counter-example, for m = n = 5, is the picture p =
1 1 1 1 1
1 0 1 1 1
0 1 0 1 0
0 1 0 0 1
0 1 0 1 0

. Picture 

p belongs to X(m, n) \ M(m, n), but there is no picture q ∈ X such that p and q overlap.

6. Cardinality of non-overlapping sets of pictures

In the previous sections we have discussed a construction method of NENO sets and presented a family of NENO sets. We 
consider now the question of how large this family is and how large a NENO set can be. The question has been extensively 
investigated in the string case. Let C(n, q) denote the maximum size of a cross-bifix-free code of strings of length n over 
an alphabet of cardinality q. In [17], it is shown that C(n, q) ≤ qn

2n−1 . The non-expandable cross-bifix-free sets of strings 
introduced in [15–17] have been compared with this bound.

Let us apply the upper bound on strings, in order to obtain a simple upper bound on the size of a non-overlapping set 
of pictures. Let C(m, n, q) denote the maximum size of a non-overlapping set of pictures of size (m, n) over an alphabet of 
cardinality q.

Proposition 17. Let m, n, q be integers and N = max{m, n}. Then

C(m,n,q) ≤ qmn

2N − 1
.

Proof. Let X ⊆ �m,n and |�| = q. Note that X can be viewed as a set col(X) of strings of length n on the alphabet of the 
columns �m , and |�m| = qm . The key observation is that if X is non-overlapping then col(X) is cross-bifix-free. Actually, 
an overlapping of two strings in col(X) would give a h-slide-overlap of two pictures in X . Therefore, applying the upper 
bound given in [17] on the cardinality of the cross-bifix-free sets of strings, |X | ≤ (qm)n

2n−1 . In an analogous manner, X can be 
viewed as a set row(X) of strings of length m on the alphabet of the rows �n , and |�n| = qn . Hence, |X | ≤ (qn)m

2m−1 . Finally, 
|X | ≤ min{ qmn

2n−1 , qmn

2m−1 } = qmn

2N−1 . �
Let us now evaluate the cardinality of the NENO sets Y (m, n) introduced in Definition 15. We are going to present a 

lower bound on the cardinality of Y (m, n).
Let � = {0, 1}. Define the set Z(m, n) of all the pictures z ∈ �m,n with f rame(z) ∈ f rame(Y (m, n)) and such that
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1) there exists no 2 ≤ j ≤ n such that p(2, j) = p(3, j) = · · · = p(m − 1, j) = 0
2)bis there exists no (i, j) such that p(i, j)p(i + 1, j) · · · p(m, j) ∈ 110∗ , with (i, j) 	= (1, 1).

Observe that Z(m, n) ⊆ Y (m, n), since condition 2)bis implies condition 2) in the definition of Y (m, n). Therefore, 
|Y (m, n)| ≥ |Z(m, n)|. In the next proposition we will evaluate |Z(m, n)|, obtaining a lower bound on |Y (m, n)|.

Proposition 18. Let Y (m, n) be the NENO set in Definition 15. Then

|Y (m,n)| ≥ (
2m−2 − 1

)n−2 · 2m−3

Proof. Let � = {0, 1} and Z(m, n) ⊆ �m,n be the set defined above. We prove that |Z(m, n)| = (
2m−2 − 1

)n−2 · 2m−3. This 
shows the statement since Z(m, n) ⊆ Y (m, n).

Define the sets I(m), L(m) ⊆ �m as follows.

I(m) = {1ya | a ∈ �, y 	= 0m−2 and 1ya with no suffix in 110∗}
L(m) = {1x0 | x 	= 0m−2 and 1x0 with no suffix in 110+}.

Consider any picture z ∈ Z(m, n). The first column of z is 110m−2; the internal columns of z, that is the columns with 
index 2 ≤ j ≤ n − 1, are all strings in I(m), while the last column of z is a string in L(m).

Let us show that |I(m)| = 2m−2 − 1. There are 
∑m−3

i=0 2i = 2m−2 − 1 strings of the form 1ya and length m with a suffix in 
110+ , while there are 2 strings of this form and length with y = 0m−2 are 2. Therefore, |I(m)| = 2m−1 − (

2m−2 − 1
) − 2 =

2m−2 − 1.
Let us show that |L(m)| = 2m−3. There are 

∑m−4
i=0 2i = 2m−3 − 1 strings of the form 1x0 and length m with a suffix in 

110∗ , while there is just one string of this form and length with x = 0m−2. Therefore, |L(m)| = 2m−2 −(
2m−3 −1

)−1 = 2m−3.
Any picture z ∈ Z(m, n) is just the catenation of the column 110m−2 with n − 2 columns in I(m) and then a column in 

L(m), with no other constraints. Hence |Z(m, n)| = |I(m)|n−2 · |L(m)| = (
2m−2 − 1

)n−2 · 2m−3. �
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