Description of Diaspidiotus aetnensis sp. n. (Hemiptera: Coccomorpha: Diaspididae) living on endemic birch in Sicily (Italy), with a key to Diaspidiotus species recorded on Betulaceae

SALVATORE NUCIFORA ${ }^{1, *}$, GILLIAN W. WATSON ${ }^{2}$, AGATINO RUSSO ${ }^{1}$ \& GAETANA MAZZEO ${ }^{1}$
${ }^{1}$ Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Santa Sofia 100, 95125 Catania, Italy. E-mail: s.nucifora@unict.it,E-mail: agarusso@unict.it gamazzeo@unict.it
${ }^{2}$ Department of Life Sciences, The Natural History Museum, London SW7 5BD, U.K. E-mail: gillian.watson@nhm.ac.uk *Corresponding author. E-mail: s.nucifora@unict.it

Abstract

The adult female of a new species of armoured scale insect, Diaspidiotus aetnensis Nucifora, Watson and Mazzeo sp. n. (Hemiptera: Coccomorpha: Diaspididae), is described and illustrated. It was collected in Sicily on the endemic birch, Betula aetnensis Raf. (Betulaceae). We provide supplementary notes on Diaspidiotus alni (Marchal), D. wuenni (Lindinger) and D. lenticularis (Lindinger), and a key to the Diaspidiotus species recorded on Betulaceae worldwide.

Key words: armoured scale, Betula aetnensis, Betula pendula, diaspidid, Mount Etna, Genista aetnensis

Introduction

An endemic Sicilian birch, Betula aetnensis Raf. is restricted to the western and northeastern slopes of Mount Etna between 1,300 and 2,100 m a.s.l., with just two populations inside the Etna Regional Park (Poli 1965; 1982). For a long time it was considered to be a subspecies of B. pendula Roth, which is present in other Italian regions as well as in other sites in Sicily (Strano 2010). However, it is thought that B. aetnensis became confined to favorable habitats on Mount Etna, where it differentiated into a new species as a result of genetic isolation (Mazzeo et al. 2016).

Fifty-four species of armoured scale insect (Hemiptera: Coccomorpha: Diaspididae) have been recorded living on members of the plant family Betulaceae (García Morales et al. 2016); 28 of these feed on species of Betula, of which nine belong to the genus Diaspidiotus Berlese (in Berlese \& Leonardi 1896). The only other diaspidid species that has been recorded on birch trees in Italy is Chionaspis salicis Linnaeus (1758) on Betula pubescens Ehrh. (as B. alba L. in Matile Ferrero \& Pellizzari 2002).

Periodical observations of the Sicilian scale insect fauna over the last 20 years (Mazzeo et al. 2016) have resulted in collections of an undescribed armoured scale insect from Betula aetnensis. The adult female is here described and illustrated. Some new data of Diaspidiotus. lenticularis (Lindinger 1912) are also reported.

Materials and methods

Adult females were slide-mounted in Canada balsam using the method described in Watson (2002). They were examined using a compound Nikon Labophot microscope at magnifications between 40 and $1000 x$. The specimens were compared with descriptions, illustrations, and keys to known species of the genus Diaspidiotus and other allied Aspidiotinae genera (Ferris 1942; Lupo 1948; Balachowsky 1950; Schmutterer 1959; Zahradník 1972; Kosztarab \& Kozár 1978; Danzig 1993; Miller \& Davidson 2005) facilitated by information in the ScaleNet database online (García Morales et al. 2016). In the following description, measurements are given in micrometres $(\mu \mathrm{m})$. Measurements and frequencies for the holotype are followed by the range taken from all the adult female specimens in the slide-mounted type series.

Type material is deposited at the following institutions: Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Italy (Di3A UNICT); The Natural History Museum, London, U.K. (BMNH); and the Muséum nationale d'histoire naturelle, Paris, France (MNHN).

Taxonomy

Diaspidiotus aetnensis Nucifora, Watson and Mazzeo sp. n.

(Figs 1 and 2)

Material examined. All the specimens are mounted individually on slides, and were collected by S. Nucifora.
Holotype. Adult female mounted in Canada balsam: right label: on Betula / aetnensis Raf. / Sicily, ITALY / Mt. Etna, eastern slope / (on branch) / 8.iii. 2016 / S. Nucifora leg.; left label: Diaspidiotus / aetnensis / HOLOTYPE / Nucifora, Watson / \& Mazzeo / Di3A-UNICT. The geographic coordinates, as shown on label on the back of the slide, are: Lat. N $37^{\circ} 47^{\prime} 02.0^{\prime \prime}$ / Lon. E $15^{\circ} 03^{\prime} 34.7^{\prime \prime} / 1625 \mathrm{~m}$ a.s.l. Specimen deposited at Di3A UNICT.

Paratypes. Nineteen adult females, all from: ITALY, Sicily, Mt. Etna, eastern slope (Municipality of Sant'Alfio), on bark of B. aetnensis. Specimens deposited at Di3A UNICT: 7 adult females, 8.iii.2016; 1 adult female, 24.vii.2010; 1 adult female, 2.x.1997. Specimens deposited at BMNH: 1 adult female, 8.iii.2016; 2 adult females, 24.vii.2010; 1 adult female, 11.vii.2009; 1 adult female (with its second-instar exuviae), 14.vii. 2005. Specimens deposited at MNHN: 2 adult females, 23.iii.2014; 1 adult female, 24.vii.2010; 2 adult females, 11.vii. 2009.

Other material examined, all from ITALY, Sicily, Mt. Etna, eastern slope (Municipality of Sant'Alfio), on bark of B. aetnensis, deposited at Di3A UNICT: 3 adult females, 10.iii.2019; 2 adult females, 18.ix.2011; 1 adult female, 24.vii.2010; 2 adult females, 11.vii. 2009.

Description of adult female. Appearance in life: scale cover of adult female subcircular, diameter 0.9-1.9 mm (usually $1.2-1.6 \mathrm{~mm}$), almost flat; in large specimens, scale cover is more irregular in outline. Central area of cover (over exuviae) opaque sandy brown, being darker towards the centre and whitish toward the outer edge. Exuviae central to subcentral; first-instar exuviae pale yellow, second-instar exuviae yellowish. Ventral scale extremely thin, white and fragile, remaining on plant surface when scale cover and insect are removed. Exposed adult female yellow, rather flat, pygidium darker and flatter than rest of body. Scale cover of second-instar male similar to that of female but oval, measuring $0.6-0.8 \mathrm{~mm} \times 0.4-0.6 \mathrm{~mm}$, whitish to sandy brown by exuviae but fading to white at margins; exuviae yellow, situated at widest part of scale cover; ventral scale similar to that of female.

Slide-mounted adult female (Fig. 1): young adult female egg-shaped or pyriform, becoming almost circular at maturity due to expansion of cephalothorax, with lateral abdominal lobes sometimes extending posteriorly on either side of pygidium. Body measurements ($\mathrm{n}=20$): 640 (576-1239) long, maximum width 545 (477-1162).

Pygidium broadly rounded; posterior margin with 3 pairs of lobes; median lobes (L_{1}) well developed, slightly convergent, each lobe broad, rounded, slightly protruding with 1 notch on external lateral margin. Second lobes $\left(L_{2}\right)$ poorly developed, merging with margin; third lobes $\left(L_{3}\right)$ even less developed but always visible, tooth shaped. L_{1} typically each with 2 paraphyses extending from the basal corners, anteromesal and anteromesad, these generally most evident on the ventral surface. Each side of pygidium with 2 additional pairs of paraphyses, each short, spindle-shaped and thickened towards inner end, visible on both surfaces: a medium-sized paraphysis (PL1) originating lateral to anterolateral basal corner of L_{1}, paired with a slightly smaller paraphysis (PL2) of similar shape, originating just mesad of anteromesad base of L_{2}; small third and fourth paraphyses (PL3 and PL4) forming a pair, situated between L_{2} and L_{3}, with smallest paraphysis (PL4) originating just mesad of anteromesad base of L_{3}. All four paraphyses curved, tending to touch proximal ends, each pair forming an arch framing a marginal crypt, there being 2 marginal crypts on each side of pygidium. Ventral sclerotizations present on each side of pygidium: L_{1} with fusiform sclerosis originating at L_{1} anteromesad base, broader than PL1; far smaller, teardropshaped sclerosis originating on the outside basal corner of L_{1}. With a large wing-shaped sclerotised thickening, arising from mesad basal margins of L_{1} and L_{2}, with anterolateral end forming a point directed towards distal end of perigenital apophysis. Perigenital apophyses with basal and distal portions strong and central section thin. Dorsal apophyses present on each side of pygidium: mediobasal apophysis usually with a central break dividing
it into two parts, but sometimes entire, moderately strongly sclerotised; latero-basal apophysis more strongly sclerotised, a bit wider laterally and curved towards base of pygidium. Plates: absent from between L_{1}; lateral plates underdeveloped, not much evident, spine-shaped or fringed; with 2 plates between L_{1} and L_{2}, the one adjacent to L_{1} plug-shaped, the other notched on the outside margin; with 2 plates present between L_{2} and L_{3}, the one adjacent to L_{2} similar to an inverted drop, having a wide base and pointed tip, and with other plate notched on the outside margin. Dorsal ducts: space between L_{1} containing a median duct with oval orifice on margin and long glandular tube extending to level of anal opening; each side of pygidium with 15-26 dorsal ducts, all of similar length to median duct, with orifices arranged as follows: usually 3 (sometimes 2, rarely 4) in intersegmental crypt between L_{1} and L_{2}; only 1 in intersegmental crypt between L_{2} and L_{3}; with a marginal orifice mesad to second crypt, overlapping base of ventral bristles on L_{2}; usually with 4-9 orifices in an oblique line starting from submargin near L_{3}, leading anteriorly towards latero-basal apophysis but not reaching that level; plus 5-10 orifices forming a second, outer row, typically forming an arc beginning with 2 orifices in marginal area of segment VI and continuing with $3-8$ orifices in an oblique row to the latero-basal apophysis; also with 1 (sometimes 2 or 3) orifices on the submargin of segment V. Segment IV sometimes with 1-4 dorsal submarginal ducts (Fig. 2). Anal opening: small, slightly longer than wide, located at proximal end of a furrow beginning between L_{1}, widening anteriorly until same width as anal opening; two short parallel scleroses bracket the anal opening and extend a short distance anteriorly beyond it. Perivulvar pores: usually absent, but sometimes $1-3$ pores present on each side. Ventral microducts: each side of pygidium with 3 clusters of microducts in marginal and submarginal areas; with about 10 ducts on segment VI, about 6 on segment V and about 4 on segment IV.

Prepygidium (free abdominal segments anterior to pygidium): cuticle membranous, with segment margins somewhat expanded laterally. Dorsal ducts absent from prepygidial segments. Ventral microducts: a few submarginal or submedian microducts on prepygidial area, mostly on segment II.

Cephalothorax (prosoma): cuticle not thickened; cuticle just anterior to anterior spiracle with characteristic sculpture, with plaques that always end with a small ventral gland. Prothorax with marginal tubercle on each side. Setae along margin each long and slender with pointed apex. Margins of thoracic segments slightly lobed in young adult female and, exceptionally, expanding to project laterally to pygidium in post-reproductive female. Spiracles not associated with pores. Ventral microducts: present in submedian and submarginal areas of metathorax. Antennae: each bearing 1 conspicuous seta.

Etymology. The species epithet aetnensis is formed by combining the Latinised name of the mountain, "Etna", with the Latin ending "-ensis", meaning "from".

Comments. Of the 58 species of Diaspididae reported on Betulaceae, 14 (24\%) belong to the genus Diaspidiotus Berlese. These Diaspidiotus species are mostly polyphagous, with hosts belonging to 47 plant families and with preferences for Salicaceae, Fabaceae, Fagaceae, Rosaceae, Juglandaceae, Moraceae and Oleaceae (García Morales et al. 2016). Of the 28 species of Diaspididae reported on Betula, nine (32\%) belong to Diaspidiotus. The latter species all have perivulvar pores; D. aetnensis $\mathbf{s p} . \mathbf{n}$. is an exception, as it usually lacks them. Other Palaearctic Diaspidiotus species that lack perivulvar pores are: D. alni (Marchal 1909), D. distinctus (Leonardi 1900), and D. wuenni (Lindinger 1923), but they have not been collected on Betula. Diaspidiotus alni is known on species of Alnus, Carpinus (Betulaceae), Fagus, Quercus (Fagaceae) and Populus (Salicaceae); D. distinctus on species of Corylus (Betulaceae), Gonocytisus (Fabaceae) and Quercus (Fagaceae); and D. wuenni feeds on species of Alnus (Betulaceae), Castanea and Quercus (Fagaceae). Among the latter Diaspidiotus species, D. alni and D. wuenni seem to be closest morphologically to D. aetnensis.

Diaspidiotus aetnensis sp. n. has a body outline and pygidial morphology very similar to D. alni, especially the median lobes $\left(\mathrm{L}_{1}\right)$ and the paraphyses between segments VI, VII, and VIII, but differs as follows (condition in D. alni in brackets): pygidial margin with plates developed (plates reduced or absent); segment IV with dorsal ducts, especially in larger individuals (without ducts); and pygidium with about 45 (31-54) dorsal ducts (fewer than 32 ducts).

Both D. aetnensis $\mathbf{s p}$. n. and D. lenticularis occur on Betula, and sometimes D. lenticularis also lacks perivulvar pores. Diaspidiotus aetnensis sp. n. differs as follows (condition in D. lenticularis in brackets): prepygidial macroducts absent (present). We have collected D. lenticularis on the bark of B. pendula Roth (=B. alba L.) in the Nebrodi Mountains in Sicily, and in Italy (Lazio, in Caldara di Manziana), but never on B. aetnensis.

FIGURE 1. Diaspidiotus aetnensis Nucifora, Watson and Mazzeo sp. n., adult female; showing features of the dorsum on the left side and those of the venter on the right. A) habitus, B) pygidium, C) detail of dorsal pygidial margin showing duct between median lobes.

Diaspidiotus aetnensis sp. n. resembles D. wиenni in having similar plates and in the number of dorsal ducts, but differs in having segment IV with dorsal ducts, especially in larger individuals (D. wuenni without ducts); the shape and proportions of the marginal paraphyses situated between segments VIII and VII, in relation to the size of a median lobe $\left(\mathrm{L}_{1}\right)$ are also different between these species.

FIGURE 2. Pygidial detail of an adult female Diaspidiotus aetnensis Nucifora, Watson and Mazzeo sp. n., to show dorsal marginal, submarginal and submedian areas of abdominal segments IV, V and VI; note that segment IV has 2 dorsal macroducts.

Specimens of D. aetnensis sp. n. were usually found on the bark of the trunk and branches; more rarely, they were found on exposed roots, but were never observed feeding on the leaves. In the same location in the eastern slope of the volcano, we found Diaspidiotus lenticularis on Genista aetnensis (Biv.) DC. (a new host association), growing amongst the Etna birches.

Key to adult females of Diaspidiotus species recorded on Betulaceae

1 (0) Prosoma with 1 or 2 constrictions on each side
Prosoma without any constrictions. 3
2 (1) Prosoma with 1 constriction on each side; prepygidial dorsal ducts present Diaspidiotus ostreaeformis (Curtis)
Prosoma with 2 constrictions on each side; prepygidial dorsal ducts absent Diaspidiotus juglansregiae (Comstock)
3 (1) Pygidial plates reduced or absent 4
Pygidial plates relatively well developed 6
4 (3) Perivulvar pores present; second lobes (L_{2}) well developed Diaspidiotus lenticularis (Lindinger)

- Perivulvar pores absent; second lobes (L_{2}) reduced or absent 5
5 (4) Median lobes $\left(\mathrm{L}_{\mathrm{L}}\right)$ with 1 dorsal duct present between them Diaspidiotus alni (Marchal)
Median lobes (L_{1}) without dorsal duct between them Diaspidiotus distinctus (Leonardi)
6 (3) Perivulvar pores numbering $0-3$ in total per side. 7
- Perivulvar pores numbering more than 3 in total per side 8
7 (6) Pygidium with marginal crypt between L_{1} and L_{2} containing 3 duct orifices, with another duct orifice anterior to this group . .- Pygidium with marginal crypt between L_{1} and L_{2} containing 2 or 3 duct orifices, without any additional duct orifice anterior tothis group. Diaspidiotus aetnensis Nucifora, Watson and Mazzeo sp. n.
8 (6) Median lobes (L_{L}) without dorsal ducts between them 9
Median lobes $\left(\mathrm{L}_{1}\right)$ with 1 dorsal duct present between them 11
9 (8) Prepygidial dorsal ducts present in marginal or submarginal areas Diaspidiotus aesculi (Johnson)
Prepygidial dorsal ducts absent from both marginal and submarginal areas 10
10 (9) Pygidial segment VI margins bearing numerous long, simple plates .Diaspidiotus uvae (Comstock)Pygidial segment VI margins without long, simple plates, but sometimes with short, spine-like plates.
Diaspidiotus osborni (Newell \& Cockerell)
11 (8) Prepygidial dorsal ducts present in marginal or submarginal areas 12
Prepygidial dorsal ducts absent from both marginal and submarginal areas 14
12 (11) Pygidial segments IV and V with dorsal ducts. Diaspidiotus gigas (Thiem and Gerneck)
Pygidial segments IV and V without any dorsal ducts 13
13 (12) Space between median lobes $\left(\mathrm{L}_{1}\right)$ containing 2 narrow plates Diaspidiotus zonatus (Frauenfeld)
Space between median lobes $\left(\mathrm{L}_{\mathrm{l}}\right)$ containing only 1 narrow plate. Diaspidiotus ancylus (Putnam)
14 (11) L_{3} well developed; with 2 fringed plates between L_{1} and L_{2} Diaspidiotus pyri (Lichtenstein)
- $\quad L_{3}$ absent or much reduced; fringed plates absent from between L_{1} and L_{2} Diaspidiotus forbesi (Johnson)

Acknowledgements

We are grateful to Ambra Cucinotta, who kindly prepared the drawings following our suggestions. We also wish to thank Dr Chris Hodgson and two anonymous reviewers for their constructive comments and suggestions, which greatly improved the manuscript.

References

Balachowsky, A.S. (1950) Les cochenilles de France, d'Europe, du Nord de l'Afrique et du Bassin Méditerranéen. V. Monographie des Coccoidea; Diaspidinae (deuxième partie) Aspidiotini. In: Entomologique Applicata Actualités Sciences et Industrielles. Hermann et cie, Paris, pp. 1-163.
Berlese, A.M. \& Leonardi, G. (1896) Diagnosi di cocciniglie nuove. (Cont.). Rivista di Patologia Vegetale, Firenze, 4, 345352.

Danzig, E.M. (1993) Fauna of Russia and neighbouring countries. Rhynchota. Vol. X. Suborder scale insects (Coccinea): families Phoenicococcidae and Diaspididae. Nauka Publishing House, St. Petersburg, 452 pp.
Ferris, G.F. (1942) Atlas of the scale insects of North America. Series 4. Stanford University Press Palo Alto, California, 70 pp.
García Morales, M., Denno, B.D., Miller, D.R., Miller, G.L., Ben-Dov, Y. \& Hardy, N.B. (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Database. [database, http://scalenet.info] https://doi.org/10.1093/database/bav118
Kosztarab, M.P. \& Kozár, F. (1988) Scale Insects of Central Europe. Dr W. Junk Publishers, Dordrecht, and Akademiai Kiado, Budapest, 456 pp. https://doi.org/10.1007/978-94-009-4045-1
Leonardi, G. (1900) Generi e specie di diaspiti. Saggio di sistematica degli Aspidiotus. Rivista di Patologia Vegetale. Firenze, 8, 298-363.
Lindinger, L. (1912) Die Schildläuse (Coccidae) Europas, Nordafrikas und Vorder-Asiens, einschliesslich der Azoren, der Kanaren und Madeiras. Ulmer, Stuttgart, 388 pp.
Lindinger, L. (1923) Einführung in die Kenntnis der deutschen Schildläuse. Entomologisches Jahrbuch, 32, 138-152.

Linnaeus, C. (1758) Systema Naturae, per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae, [4] + 824 pp. https://doi.org/10.5962/bhl.title. 542
Lupo, V. (1948) Revisione delle cocciniglie Italiane. VI. (Aspidiotus, Quadraspidiotus, Diaspidiotus, Rhizaspidiotus, Nuculaspis). Bollettino del R. Laboratorio di Entomologia Agraria, Portici 8, 137-208.
Matile-Ferrero, D. \& Pellizzari, G. (2002) Contribution to the knowledge of the scale insects (Hemiptera Coccoidea) from the Aosta Valley (Italy). Bollettino di Zoologia Agraria e di Bachicoltura, Series II, 34 (3), 347-360.
Marchal, P. (1909) Sur les cochenilles du midi de la France et de la Corse. Les Comptes-Rendus de l'Academie des Sciences, Paris, 148, 871-872.
Mazzeo, G., Nucifora, S., Russo, A., Suma, P. \& Longo, S. (2016) An updated list of the scale insect (Hemiptera Coccomorpha) fauna of some Sicilian endemic plants. Redia, XCIX, 201-206. https://doi.org/10.19263/REDIA-99.16.26
Miller, D.R. \& Davidson, J.A. (2005) Armored Scale Insect Pests of Trees and Shrubs. Cornell University Press, Ithaca, New York, 442 pp .
Poli, E. (1965) La vegetazione altomontana dell'Etna. Flora et Vegetatio Italica. Ed. Gianasso, Catania, Memoria, 5, 1-241.
Poli, E. (1982) Zonation altitudinale de la végétation de l'Etna comparée avec celle d'autres hauts volcans. Ecologia Mediterrапеа, 8 (1/2), 339-354.
Schmutterer, H. (1959) Schildläuse oder Coccoidea. 1. Deckelschildläuse oder Diaspididae. Die Tierwelt Deutschlands und der angrenzenden Meeresteile. Fischer, Jena, 260 pp.
Strano, F. (2010) Betula aetnensis Raf. nel Parco Naturale dell’Etna: analisi vegetazionale ed ecologica. Dottorato di ricerca in biologia ed ecologia vegetale in ambiente mediterraneo-XXIII Ciclo. Available from: http://dspace.unict.it/bitstream/10761/135/1/Tesi\ Fabio\ Strano.pdf (accessed 19 September 2018)
Watson, G.W. (2002) Arthropods of economic importance: Diaspididae of the world. Series Title: World Biodiversity Database. Expert Center for Taxonomic Identification (ETI) Bioinformatics, Leiden. UNESCO Publishing, Paris. CD-Rom. Available from: https://diaspididae.linnaeus.naturalis.nl/linnaeus_ng/app/views/index/index.php?epi=155\&\&letter=1 (accessed 19 September 2018)
Zahradník, J. (1972) Überfamilie Neococcoidea Dispididae. In: Die Forstschädlinge Europas. Paul Parey, Hamburg-Berlin, pp. 422-446.

