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The transport coefficients of strongly interacting matter are currently subject of intense theoretical and 
phenomenological studies due to their relevance for the characterization of the quark–gluon plasma 
produced in ultra-relativistic heavy-ion collisions (uRHIC). We discuss the connection between the shear 
viscosity to entropy density ratio, η/s, and the electric conductivity, σel. Once the relaxation time is tuned 
to have a minimum value of η/s = 1/4π near the critical temperature Tc , one simultaneously predicts 
σel/T very close to recent lQCD data. More generally, we discuss why the ratio of (η/s)/(σel/T ) supplies 
a measure of the quark to gluon scattering rates whose knowledge would allow to significantly advance 
in the understanding of the QGP phase. We also predict that (η/s)/(σel/T ), independently on the running 
coupling αs(T ), should increase up to about ∼ 20 for T → Tc , while it goes down to a nearly flat behavior 
around � 4 for T ≥ 4 Tc . Therefore we in general predict a stronger T dependence of σel/T with respect 
to η/s that in a quasi-particle approach is constrained by lQCD thermodynamics. A conformal theory, 
instead, predicts a similar T dependence of η/s and σel/T .

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Relativistic Heavy Ion Collider (RHIC) at BNL and Large Hadron 
Collider (LHC) at CERN have produced a very hot and dense system 
of strongly interacting particles as in the Early Universe with tem-
peratures largely above Tc � 160 MeV [1–3], the transition tem-
perature from nuclear matter to the Quark–Gluon Plasma (QGP) 
[4–6]. The phenomenological studies by viscous hydrodynamics 
[7–10] and parton transport [11–16] of the collective behavior 
have shown that the QGP has a very small value of η/s, quite 
close to the conjectured lower-bound limit for a strongly interact-
ing system in the limit of infinite coupling η/s = 1/4π [17]. This 
suggests that hot QCD matter could be a nearly perfect fluid with 
the smallest η/s ever observed, even less dissipative than the ultra 
cold matter created by magnetic traps [18,19]. As for atomic and 
molecular systems a minimum in η/s is expected slightly above Tc

[20,21].
Another key transport coefficient, yet much less studied, is σel . 

This transport coefficient represents the linear response of the 
system to an applied external electric field. Several processes oc-
curring in uRHIC as well as in the Early Universe are regulated 
by the electric conductivity. Indeed HICs are expected to generate 
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very high electric and magnetic fields (eE � eB � m2
π , with mπ

the pion mass) in the very early stage of the collisions [22,23]. 
A large value of σel would determine a relaxation time for the 
electromagnetic field of the order of ∼ 1–2 fm/c [24,25], which 
would be of fundamental importance for the strength of the Chiral-
Magnetic Effect [26], a signature of the CP violation of the strong 
interaction. Also in mass asymmetric collisions, like Cu + Au, the 
electric field directed from Au to Cu induces a current result-
ing in charge asymmetric collective flow directly related to σel

[23]. Furthermore the emission rate of soft photons should be di-
rectly proportional to σel [27–29]. Despite its relevance there is 
yet only a poor theoretical and phenomenological knowledge of 
σel and its temperature dependence. First preliminary studies in 
lQCD have extracted only few estimates with large uncertainties 
[30,33] and only recently more safe extrapolation has been devel-
oped [31,32,35].

In this Letter, we point out the main elements determining σel

for a QGP plasma and in particular its connection with η. In fact, 
while one may expect that the QGP is quite a good conductor due 
to the deconfinement of color charges, on the other hand, the very 
small η/s indicates large scattering rates which can largely damp 
the conductivity, especially if the plasma is dominated by gluons 
that do not carry any electric charge.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The electric conductivity can be formally derived from the 
Green–Kubo formula and it is related to the relaxation of the 
current–current correlator for a system in thermal equilibrium. It 
can be written as σel = V /(3 T ) 〈�J (t = 0) · �J (t = 0)〉 · τ , where τ is 
the relaxation time of the correlator whose initial value can be re-
lated to the thermal average ρ e2

3T 〈p2/E2〉 [36], with ρ and E the 
density and energy of the charge carriers. Generalizing to the case 
of QGP one can write:

σel = e2

3T

〈 �p 2

E2

〉 ∑
j=q,q̄

f 2
j τ jρ j = e2

�

3T

〈 �p 2

E2

〉
τqρq (1)

where e2
� = e2 ∑ū,d̄,s̄

j=u,d,s f 2
j = 4e2/3 with f j the fractional quark 

charge. Eq. (1) in the non-relativistic limit reduces formally to the 
Drude formula τe2ρ

m , even if we notice that τ in Eq. (1) has not to 
be equal to 1/(σρ) as in the Drude model. The relaxation time of 
a particle of species j in terms of cross-sections and particle den-
sities can be written in the relaxation time approximation (RTA) as 
τ−1

j = ∑
i=q,q̄,g〈ρi vi j

relσ
i j
tr 〉 where j = q, ̄q while the sum runs over 

all particle species with ρi the density of species i, vij
rel is the rel-

ative velocity and σ i j
tr is the transport scattering cross-section. In 

Ref. [37] it has been shown that RTA is able to describe with quite 
good approximation σel in agreement with numerically simulation 
of the Dynamical QP model (DQPM) known as PHSD, see also more 
generally for a numerical approach Refs. [41,42].

As done within the Hard-Thermal-Loop (HTL) approach, we will 
consider the total transport cross section regulated by a screening 
Debye mass mD = g(T )T , with g(T ) being the strong coupling:

σ
i j
tr (s) =

∫
dσ

dt
sin2 	dt = β i j πα2

s

m2
D

s

s + m2
D

h(a) (2)

where αs = g2/4π , the differential cross section dσ
dt = dσ

dq2 �
α2

s /(q2 + m2
D)2 where q2 = s

2 (1 − cos θ). The function h(a) =
4a(1 + a)[(2a + 1) ln(1 + 1/a) − 2], with a = m2

D/s accounts for the 
anisotropy of the scatterings: for mD → ∞, h(a) → 2/3 and one 
recovers the isotropic limit. The coefficient β i j depends on the pair 
of interacting particles: βqq = 16/9, βqq′ = 8/9, βqg = 2, β gg = 9. 
These factors are directly related to the quark and gluon Casimir 
factor, for example βqq/β gg = (C F /C A)2 = (4/9)2.

The shear viscosity η is known from the Green–Kubo relation to 
be given by η = V /T 〈�2

xy(t = 0)〉 · τ , where the initial value of the 
correlator of the transverse components of the energy–momentum 
tensor can be written as ρ

15T 〈p4/E2〉 [38–40]. Hence for a system 
with different species can be written as [43,44]:

η = 1

15T

〈
p4

E2

〉 (
τqρ

tot
q + τgρg

)
(3)

where the relaxation time τg has a similar expression as above 
with j = g while ρtot is the sum of all quarks and anti-quarks 
flavor density. The thermodynamical averages entering Eqs. (1)
and (3), will be fixed employing a quasi-particle (QP) model tuned 
to reproduce the lattice QCD thermodynamics [45], similarly to 
[46–49]. The quark and gluon masses are given by m2

g = 3/4 g2T 2

and m2
q = 1/3 g2T 2 in terms of a running coupling g(T ) that is 

determined by a fit to the lattice energy density, which allows 
to well describe also the pressure P and entropy density s above 
Tc = 160 MeV. In Ref. [45] we have obtained:

g2
QP(T ) = 48π2/

(
11Nc − 2N f

)
ln

[
λ

(
T − Ts

)]2

(4)

Tc Tc
Fig. 1. Shear viscosity to entropy density ratio η/s: dashed line represents QP model 
results, dot-dashed line is pQCD, stars is DQPM [50]. Red thick solid line and blue 
thin solid line are obtained rescaling g(T ). Blue dotted line is AdS/CFT result from 
[17]. Symbols are lattice date: full squares [58], diamonds and triangles [59], open 
and full circles [53].

with λ = 2.6, Ts/Tc = 0.57. We warn that the previous equation is 
a good parametrization only for T > 1.1 Tc . We notice that a self-
consistent dynamical model (DQPM), that includes also the per-
tinent spectral function, has been developed in [14] and leads to 
nearly the same behavior of the strong coupling g(T ). We will con-
sider the DQPM explicitly, showing that the considerations elabo-
rated in this Letter are quite general and can be only marginally 
affected by particle width.

We notice that the only approximation made in deriving Eq. (3)
is to consider 〈p4/E2〉 equal for quarks and gluons. We have ver-
ified that 〈p4/E2〉g � 〈p4/E2〉q within a 5% in the QP model but 
also more generally even when mq and mg are largely different 
but mq,g � 3T , which means that Eq. (3) is valid also for light and 
strange current quark masses and massless gluons. The 〈p4/E2〉
in a massless approximation is simply 4ε T /ρ , we have checked 
that the validity of this expression is kept using the QP model (i.e. 
massive excitation) with a discrepancy of about 2%. Hence the first 
term in Eq. (3) is determined by the lQCD thermodynamics and 
does not rely on the detailed mq,g(T ) in the QP model. We note 
that even if the QP model is able to correctly describe the ther-
modynamics it is not obvious that it correctly describes dynamical 
quantities like the relaxation times with the same coupling g(T )

employed to fit the thermodynamics. However our key point will 
be to find a quantity independent of g(T ), see Eq. (5).

For its general interest and asymptotic validity for T → ∞, we 
also consider the behavior of the pQCD running coupling con-
stant for the evaluation of transport relaxation time: gpQCD(T ) =
8π2

9 ln−1
(

2π T
�QCD

)
. On one hand, close to Tc , such a case misses 

the dynamics of the phase transition, on the other hand it al-
lows to see explicitly what is the impact of a different running 
coupling. The η/s calculated is shown in Fig. 1: red dashed line 
is the result for the QP model using gQP(T ) for relaxation times 
and transport coefficient, blue dot-dashed line labeled as gpQCD , 
means that we used the pQCD running coupling for evaluating 
the relaxation time, green stars are the DQPM [50] and by sym-
bols several lQCD results. We warn that the different lQCD data 
are obtained with different methods and actions. The main differ-
ence between our QP model and DQPM comes from the fact that 
the latter assumes isotropic scatterings which decrease the relax-
ation time by about 30–40%. Anyway, the η/s predicted is toward 
higher value with respect to the conjectured minimum value of 
η/s ∼ 1/4π , supported also by several phenomenological estimates 
[7–11]. However within the QP model it has been discussed in the 
literature also another approach for τ where the relaxation times 
are τq,g = Cq,g g4T ln(a/g2) [51] with Cq,g and a fixed to repro-
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Fig. 2. Electric conductivity σel/T as a function of T /Tc : red dashed line represents 
QP model results, blue dot-dashed line is pQCD, red thick solid line and blue thin 
solid line are respectively QP and pQCD considering the rescaled g(T ) in order to re-
produce the minimum of η/s. Green line are AdS/CFT results from [54]. Green stars 
represent DQPM [37]. Symbols are Lattice data: grey squares [30], violet triangles 
[31], green circle [32], yellow diamond [33], orange square [34] and red diamonds 
[35]. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

duce both the pQCD estimate asymptotically [52] and a minimum 
for η/s(T ) = 1/4π [45,48]. In the T region of interest, the result is 
quite similar to upscaling the coupling g(T ) by a k-factor in such a 
way to have the minimum of η/s(T ) = 1/4π . Therefore we do not 
employ the above parametrization but compute the transport coef-
ficients using the definition of τ of Eq. (6), where enters the cross 
section in Eq. (2) with the coupling upscaled. The corresponding 
curves are shown in Fig. 1 by red thick solid line for the gQP(T )

coupling (rescaled by k = 1.59) and by blue thin solid line for the 
gpQCD(T ) (rescaled by k = 2.08). One obtains τg � τq/2 ∼ 0.2 fm/c
and also η/s(T ) roughly linearly rising with T in agreement with 
quenched lQCD estimates, full circles [53].

A main point we want to stress is that, once the relaxation time 
is set to an η/s(T ) = 0.08, the σel/T predicted, with the same τq

as for η/s, is in quite good agreement with most of the lQCD data, 
shown by symbols in Fig. 2 (see caption for details). Therefore a 
low σel/T is obtained at variance with the early lQCD estimate, 
Ref. [30], as a consequence of the small τq,g entailed by η/s �
0.08. In Fig. 2, we show also the predictions of DQPM (green stars) 
[37,50].

In Fig. 2, we also plot by green dotted line the N = 4 Super 
Yang Mills electric conductivity [54] that predicts a constant be-
havior for σel/T = e2N2

c /(16π). We note that in our framework 
one instead expects that, even if the η/s is independent of the 
temperature, the σel should still have a strong T-dependence. This 
can be seen noticing that one can write approximately, η/s �
T −2τρ , being 〈p4/E2〉 � εT /ρ , and σel/T � T /m(T )η/s, being 
〈p2/E2〉 � T /m(T ), which means an extra T dependence for σel

leading to a steep decrease of σel/T close to Tc . m(T ) increases 
as T → Tc because it is fitted to reproduce the decrease of en-
ergy density ε in lQCD. We notice that for a conformal theory 
T μ
μ = ε − 3P = 0, as for massless particles, one has σel/T ∼ η/s

like found in AdS/CFT. It seems that the large interaction measure 
is the origin of such extra T dependence of σel/T with respect 
to η/s. This indication is corroborated also by the recent result 
in AdS/QCD [61] that presents a similar strong T dependence for 
T > Tc at variance with AdS/CFT.

The σel appears to be self-consistent with a minimal η/s, but 
the specific T dependence of both are largely dependent on the 
modeling of τq,g , we point out that the ratio (η/s)/(σel/T ) can be 
Fig. 3. Shear viscosity η/s to σ/T ratio as a function of T /Tc : red solid line is the 
QP model, blue dashed line pQCD, green stars DQPM [50]. Orange line is obtained 
using Cq = 10 Cq

pQCD , black thin line C g = 10 C g
pQCD . Green dotted line represents

AdS/CFT results [17,54]. Symbols are obtained using available lattice data (see text 
for details).

written, from Eq. (1) and Eq. (3), as:

η/s

σel/T
= 6

5

T 〈p2/E2〉−1

s e2
�

〈
p4

E2

〉(
1 + τg

τq

ρg

ρtot
q

)
(5)

in terms of generic relaxation times. Eq. (5) is quite general and 
does not rely on specific features or validity of the quasi-particle 
model. A main feature of such a ratio is its independence on 
the k-factor introduced above, and, more importantly, even on the 
g(T ) coupling as we can see writing explicitly the transport relax-
ation time for quarks and gluons:

τ−1
q = 〈σ(s)tr vrel〉(ρq

ū,d̄,s̄∑
i=u,d,s

βqi + ρgβ
qg)

τ−1
g = 〈σ(s)tr vrel〉

(
ρtot

q βqg + ρgβ
gg) (6)

where the β i j were defined above. Hence the ratio of transport 
relaxation times appearing in Eq. (5) can be written as:

τg

τq
=

Cq + ρg
ρq

6 + ρg
ρq

C g
(7)

where the coefficients Cq = (βqq + βqq̄ + 2βqq̄′ + 2βqq′
)/βqg and 

C g = β gg/βqg are the relative magnitude between quark–(anti-)
quark and gg with respect to q(q̄)g scatterings. Using the stan-
dard pQCD factors for βi j , Cq|pQCD = 28

9 � 3.1 and C g |pQCD = 9
2 .

In Fig. 3 we show (η/s)/(σel/T ) as a function of T /Tc : the red 
thick solid line is the prediction for the ratio using gQP(T ), but it 
is clear from the Eq. (5) that the ratio is completely independent 
of the running coupling itself; the result for gpQCD(T ) is shown 
by blue dashed line. The ratio is instead sensitive just to the rela-
tive strength of the quark (anti-quark) scatterings with respect to 
the gluonic ones, hence we suggest that a measurement in lQCD 
can shed light on the relative scattering rates of quarks and glu-
ons, providing an insight into their relative role. It is not known 
if such ratios, linked to the Casimir factors of SU(3)c , are kept 
also in the non-perturbative regime, which may be not so unlikely 
[55]. We remark that we have computed the ratio in a very large 
temperature range 1–10 Tc : at large temperatures (T > 5–10 Tc) 
deviation from the obtained value, (η/s)/(σel/T ) � 3, would be 
quite surprising, on the other hand for T < 1.2–1.5 Tc one may cast 
doubts on the validity of the Casimir coefficients. In the follow-
ing we evaluate also the impact of modified Casimir Coefficients. 
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As T → Tc a steep increase is predicted that is essentially reg-
ulated by 〈p2/E2〉. It is interesting to notice that in the massless 
limit (conformal theory) the factor before the parenthesis in Eq. (5)
becomes a temperature independent constant and hence also the 
ratio. This is in quite close agreement with the AdS/CFT prediction 
shown by dotted line in Fig. 3.

We also briefly want to mention that one possible scenario 
could be that when the QGP approaches the phase transition, the 
confinement dynamics becomes dominant and the qq̄ scattering, 
precursors of mesonic states, and di-quark qq states, precursor of 
baryonic states, are strongly enhanced by a resonant scattering 
with respect to other channels, as found in a T-matrix approach in 
the heavy quark sector [56]. For this reason, we explore the sen-
sitivity of the ratio (η/s)/(σel/T ) on the magnitude of Cq and C g . 
The orange solid line shows the behavior for an enhancement of 
the quark scatterings, Cq = 10 Cq

pQCD . We can see in Fig. 3 that 
this would lead to an enhancement of the ratio by about a 40%. 
We also see that instead the ratio is not very sensitive to a pos-
sible enhancement of only the gg scattering with respect to the 
qq̄, qq, qg; in fact even for C g = 10C g

pQCD one obtains the thin 
black solid line. This is due to the fact that already in the pQCD 
case τg/τq ∼ 0.3–0.4. Furthermore already in the massless limit 
ρg/ρ

tot
q � dg/dq+q̄ = 4/9 even not dwelling on the details of the 

QP model where the larger gluon mass further decreases this ra-
tio. Therefore the second term in parenthesis in Eq. (5) is of the 
order of 10−1 and further decrease of its value would not be visi-
ble because the ratio is anyway dominated by the first term equal 
to one. We reported in Fig. 3 also the ratio from the DQPM model, 
as deduced from [50] and we can see that, even if it is not evalu-
ated through Eq. (5), it is in very good agreement with our general 
prediction. We notice that the value of the coupling and hence 
of the screening mass determines the absolute value and the T-
dependence of the transport coefficients. However, their specific 
behavior cancels out in the (η/s)/(σel/T ) which remains sensi-
tive only to ratio of the relaxation times. In this respect we have 
also considered the screening mass extracted from Lattice QCD in 
Ref. [60] finding that the T-dependence of the ratio is identical to 
the red solid line in Fig. 3.

In Fig. 3 we also display by symbols the ratio evaluated from 
the available lQCD data, considering for 4πη/s � 4 while for σel/T
we choose red diamonds [35] as a lower limit (filled symbols) and 
the others in Fig. 2 as an upper limit (open symbols), excluding 
only the grey squares [57]. To compute (η/s)/(σel/T ) we do an 
interpolation between the data point of σel . We warn to consider 
these estimates only as first rough indications, in fact the lattice 
data collected are obtained with different actions among them and 
have quite different Tc with respect to the most realistic one, Tc ∼
160 MeV [4,5], that we employed to tune the QP model [45].

In this Letter we point out the direct relation between the 
shear viscosity η and the electric conductivity σel . In particular, 
we have discussed why most recent lQCD data [31,32,35] predict-
ing an electric conductivity σel � 10−2T (for T < 2 Tc), appear to 
be consistent with a fluid at the minimal conjectured viscosity 
4πη/s � 1, while the data of Ref. [30] appear to be hardly recon-
cilable with it. Also a steep rise of σel/T , in agreement with lQCD 
data, appears quite naturally in the quasi-particle approach as in-
verse of the self-energy determining the effective masses needed 
to correctly reproduce the lQCD thermodynamics. This result is at 
variance with the AdS/CFT [54], but our analysis suggests that it 
is due to the conformal thermodynamics that does not reflect the 
QCD one. It is quite interesting that an AdS/QCD approach [61], 
able to correctly describe the interaction measure of lQCD, also 
modifies the AdS/CFT result predicting a strong T dependence of 
σel/T for T < 2–3 Tc . We note that the extra T dependence pre-
dicted for σel/T with respect to η/s is determined by the 〈p2/E2〉
constrained to reproduce the lQCD thermodynamics. If instead one 
imposes conformality with m = 0, this leads to 〈p2/E2〉 = 1 and 
the T dependence of η/s becomes quite similar to the one of σel/T
apart from differences that can arise between quark and gluon re-
laxation times.

We identify the dimensionless ratio (η/s)/(σel/T ) as not af-
fected by the uncertainties in the running coupling g(T ). Moreover,
due to the fact that gluons do not carry an electric charge, the ra-
tio is regulated by the relative strength and chemical composition 
of the QGP through the term (1 + τgρg/τqρ

tot
q ). Our analysis pro-

vides the baseline of such a ratio that in this decade will most 
likely be more safely evaluated thanks to the developments of 
lQCD techniques. This will provide a first and pivotal insight into 
the understanding of the relative role of quarks and gluons in the 
QGP. Deviations from our predictions for (η/s)/(σel/T ) especially 
at high temperature T � 2–3 Tc , where a quasi-particle picture can 
be derived from QCD within the HTL scheme [62], would be quite 
compelling.
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