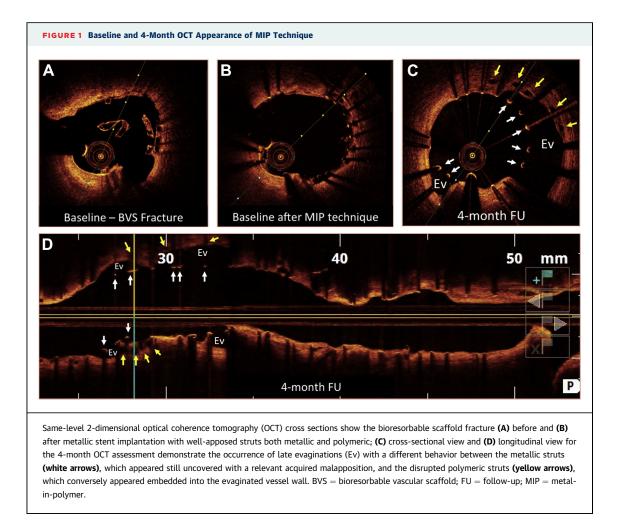
Is the Metallic Stent a Safe Treatment for Bioresorbable Scaffold Failure?

Insights From Optical Coherence Tomography

Piera Capranzano, MD, Bruno Francaviglia, MD, Davide Capodanno, MD, PHD, Sergio Buccheri, MD, Claudia Ina Tamburino, MD, Giuseppe Gargiulo, MD, Corrado Tamburino, MD, PHD

58-year-old diabetic man with unstable angina underwent implantation in overlapping of 3 (2.5/28, 2.5/28, and 3.0/28 mm) Absorb bioresorbable vascular scaffolds (BVS) (Abbott Vascular, Santa Clara, California) in a long and heavily fibrocalcified left anterior descending artery stenosis. Post-implantation optical coherence tomography (OCT) showed a severe fracture of the proximal 3.0/28 mm BVS (Figure 1A) treated through the metal-in-polymer (MIP) technique with a conventional 3.0/30 mm drug-eluting stent (Figure 1B). Four months later because of effort angina a new angiography was performed; the OCT (Figures 1C and 1D) revealed multiple evaginations along the segment previously treated by MIP technique, with a different behavior between the metallic struts, which showed a large lateacquired malapposition, and the polymeric struts well apposed to the evaginated vessel wall; furthermore, while the nonapposed metallic struts were still uncovered, the disrupted scaffold struts were well covered and embedded into the vessel wall.


Metallic stent implantation represents a common treatment option for BVS failure, as acute struts fracture, to reduce the risk of future device-related events. However, our case shows that the positive remodeling or evaginations occurring after BVS implantation may lead to a progressive and persistent late-acquired malapposition of the metallic stent when the MIP technique is performed, providing a new trigger for late thrombosis. An OCT evaluation might be planned when MIP technique is used to ruleout a late malapposition before dual antiplatelet therapy discontinuation. Finally, alternative strategies, such as scaffold-in-scaffold implantation with another properly calibrated bioresorbable scaffold, might be considered for BVS failure.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Piera Capranzano, Cardiovascular Department, Ferrarotto Hospital, University of Catania, Citelli 1, 95124 Catania, Italy. E-mail: pcapranzano@gmail.com.

KEY WORDS bioresorbable scaffolds, failure, fracture, evagination, metal-in-polymer, positive remodeling, struts apposition

Manuscript received February 5, 2016; accepted February 11, 2016.

From the Cardiovascular Department, Ferrarotto Hospital, University of Catania, Catania, Italy. Dr. Corrado Tamburino has received honoraria/lecture fees from Abbott Vascular. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

