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a b s t r a c t 

Pairwise comparison is a widely used approach to elicit comparative judgements from a decision maker 

(DM), and there are a number of methods that can be used to then subsequently derive a consistent pref- 

erence vector from the DM’s judgements. While the most widely used method is the eigenvector method, 

the row geometric mean approach has gained popularity due to its mathematical properties and its ease 

of implementation. In this paper, we discuss a spanning tree method and prove the mathematical equiv- 

alence of its preference vector to that of the row geometric mean approach. This is an important finding 

due to the fact that it identifies an approach for generating a preference vector which has the mathemat- 

ical properties of the row geometric mean preference vector, and yet, in its entirety, the spanning tree 

method has more to offer than the row geometric mean method, in that, it is inherently applicable to 

incomplete sets of pairwise comparison judgements, and also facilitates the use of statistical and visual 

techniques to gain insights into inconsistency in the DM’s judgements. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Pairwise comparison (PC) is a widely used approach to elicit

omparative judgements from a decision maker (DM). In the PC

ethod, the DM is asked a series of questions to compare the

vailable options in pairs, and eventually, a prioritization method

s applied to these judgements in order to estimate the DM’s pref-

rences in the form of a preference vector. The preference vector

s a vector of weights representing the relative strength of pref-

rences for available options. However, since the judgements ac-

uired from the DM often contain inconsistency, the process of

stimating a preference vector is not necessarily straightforward.

nconsistency occurs when the direct comparative value of a pair

f options does not match the indirect comparative value derived

rom an intermediate third option. For example, if option A is de-

lared twice as preferred as option B and option B is declared three
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imes as preferred as option C, then the indirect comparative value

uggests that option A be preferred six times more than option C

nd yet the DM may directly declare option A to be say five times

s preferred as option C, which is obviously inconsistent with the

ther two comparative judgements. That is the direct comparative

alue of Option A and Option C (i.e. 5) does not match the indi-

ect comparative value of Option A and Option C derived from an

ntermediate third option B (i.e. 6). Of course, the number of com-

arisons increases with the number of options which, in turn, in-

reases the possibility of having at least some and possibly a high

umber of inconsistent comparisons. Therefore, any prioritization

ethod must be able to estimate the preference vector from an

nconsistent set of comparisons. 

Historically, the principal right eigenvector (REV) prioritization

ethod ( Saaty, 1977 ) has been widely used for estimating the pref-

rence vector for both consistent and (acceptably) inconsistent PC

udgements where, in the REV method, the PC judgements are

sed to construct a PC matrix, the principal eigenvector of which

s taken as the preference vector. The inconsistency is measured

n terms of the Consistency Ratio (CR) which is an Eigenvalue

ased measure with the PC matrix only considered acceptable if

he CR value remains below a certain limit (usually CR < 0.1).
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A

Johnson (1979) discovered that, for the same problem, the use of

left eigenvectors may produce a different solution to that of the

right eigenvector approach, yet considered the use of left eigen-

vectors to be as equally justified as the use of right eigenvectors.

Therefore, the REV method has been criticized due to this left-

right eigenvector asymmetry, the use of arbitrary thresholds for

inconsistency acceptability, as well as a few other further issues

( Bana e Costa & Vansnick, 2008; Barzilai, 1997; Barzilai, Cook, &

Golany, 1987 ). Due to these shortcomings, several other prioritiza-

tion methods for preference vector estimation have been proposed

in the literature which also begin by constructing a PC matrix

from the PC judgements. For example, the logarithmic least squares

(LLS) method, proposed in Crawford and Williams (1985) , assumes

that the most preferred approach for prioritization is to find the

vector that minimizes the sum of the logarithmic residuals from a

given set of judgements. Considering the multiplicative properties

of PC, Crawford and Williams (1985) showed that the LLS method

always generates a unique solution, and in the case of a complete

set of PC judgements, the LLS solution is identical to the solution

calculated using the row geometric mean (RGM) of the constructed

PC matrix. In addition to these approaches, there exists a number

of other optimization-based methods like direct least squares (DLS)

( Chu, Kalaba, & Spingarn, 1979 ), logarithmic least absolute value

(LLAV) ( Cook & Kress, 1988 ), and fuzzy preference programming

( Mikhailov, 20 0 0 ). Choo and Wedley (2004) analysed and numeri-

cally compared a variety of these prioritization methods and con-

cluded that there is no single best method that outperforms the

others in every situation. 

Although REV is the most commonly used method, the RGM ap-

proach has gained popularity due to its mathematical properties,

and while shown to be equivalent to the LLS approach ( Crawford

& Williams, 1985 ), RGM has additional benefits due to its ease of

implementation ( Crawford, 1987; Williams & Crawford, 1980 ). In-

deed ( Williams & Crawford, 1980 ) proposed using the RGM method

rather than the REV method due to its ease of computation, and

also demonstrated its advantages arising from common statistical

and mathematical properties. Since the objective of the prioritiza-

tion method is to obtain a single preference vector from an incon-

sistent PC matrix, most methods therefore justifiably focus on this

aspect, and therefore assess inconsistency only by measuring it for

the purpose of accepting or rejecting the provided PC judgements

as suitable rather than analysing inconsistency. That is, while fo-

cusing on this “single solution” aspect, an in-depth analysis of the

inconsistency is neglected. 

We contend that a prioritization method must have the capa-

bilities to focus on both aspects of the problem, i.e. production of

a single “good quality” preference vector and also facilitation of

an in-depth inconsistency analysis. The latter aspect is illustrated

in Section 4.1 by establishing an underlying universe of potential

preference vectors and then examining the degree of homogene-

ity within them. In this way we can start to unravel any incon-

sistency in the decision maker’s judgements by translating incon-

sistency into a number of different possible mindsets. This is im-

portant particularly of course when inconsistency is high and so

where the DM may need significant help to resolve his/her incon-

sistency, but also sometimes even when CR is low, as situations can

arise where even though the CR value might otherwise be regarded

as acceptably low, it is clear that using this acceptability criterion

may be quite inappropriate - see illustration in Section 4.1 . 

Also, Harker (1987b) investigated incomplete sets of judge-

ments where the DMs are allowed to respond with “do not know”

or “not sure” to some judgements. This is an important issue to

investigate as the probability of acquiring an incomplete set of

PC judgements increases with an increase in the total number

of items for comparison ( Fedrizzi & Giove, 2007, 2013; Schubert,

2014 ). Both the REV and the RGM methods are inappropriate in
uch cases due to the fact that the PC matrix cannot be con-

tructed without estimating/imputing the missing judgements (see

ection 4.2 for details). 

Indeed, several criteria have been suggested to compare pri-

ritization methods in the literature. For example, minimal de-

iation from the DM’s judgements ( Kou & Lin, 2014; Lin, 2007;

iraj, Mikhailov, & Keane, 2012b ), computational complexity, abil-

ty to handle incomplete sets of judgements ( Ergu, Kou, Peng,

hi, & Shi, 2011; Harker, 1987a; Srdjevic, Srdjevic, & Blagoje-

ic, 2014 ), adhering to geometric properties ( Aguaron & Moreno-

imenez, 2003; Barzilai, 1997 ), and ability to measure inconsistency

 Brunelli, Canal, & Fedrizzi, 2013; Brunelli & Fedrizzi, 2015; Toma-

hevskii, 2015 ). While there is no consensus with regards to which

f these “conventional” performance measures should be used for

omparative assessment, we contend that a prioritization method

hould meet as many of these criteria as possible, and must also

ave the ability to facilitate the analysis of inconsistency. 

In this context, a graph-theoretic approach was recently for-

ulated to calculate a preference vector by taking the average of

ll possible preference vectors calculated through enumeration of

ll possible spanning trees (EAST) ( Tsyganok, 2010 ; see also Siraj,

ikhailov, & Keane, 2012a ). The proposed method was shown to

ave a number of desirable properties including, for example, pro-

ucing a solution with minimal deviation from the PC judgements

nd measuring the level of inconsistency in these judgements.

owever, since the original method used the arithmetic mean to

alculate the average, it failed to satisfy the criterion of adhering to

eometric properties. We have therefore investigated the use of the

eometric mean of all “spanning tree” preference vectors (GMAST).

In this paper, we report on the quality of the GMAST method’s

reference vector and its adherence to the conventional perfor-

ance criteria, and provide some initial insights into its capabil-

ty to facilitate the analysis of inconsistency. We therefore focus on

he GMAST preference vector and prove its mathematical equiv-

lence to that of the RGM method. This is an important finding

ue to the fact that it establishes the quality of the GMAST pref-

rence vector by proving that it has the mathematical properties

f the RGM preference vector and yet, the GMAST method in its

ntirety has additional benefits. That is, unlike RGM, the GMAST

ethod is inherently applicable to incomplete PC matrices (see

ection 4.2 ), and also facilitates in-depth inconsistency analysis

see Sections 4.1 and 6 ). Indeed, with respect to all of the perfor-

ance criteria, the GMAST method in its entirety outperforms all

he other existing prioritization methods. 

. Problem formulation 

Assume that we are interested in determining a preference

ector w = ( w 1 , w 2 , ..., w n ) where 
w i 
w j 

represents the DM’s relative

reference for element i compared to element j . Because we are

nly interested in the ratio 
w i 
w j 

, w is not unique and there is a

lass of equivalent vectors satisfying our requirement where any

ember of the class only differs from another member by a mul-

iplicative scalar. 

Assuming that A = [ a i j ] is the DM’s PC matrix (i.e. a ij = the ac-

uired DM’s judgement for element i compared to element j ), then

he objective of a prioritization method is to derive a w from A . 

Since a ii = 1 for all i = 1 , 2 , ..., n, we have 

 = 

⎡ 

⎢ ⎢ ⎣ 

1 a 12 a 13 ... a 1 n 
a 21 1 a 23 ... a 2 n 
a 31 a 32 1 ... ... 

... ... ... 1 ... 

a n 1 a n 2 ... ... 1 

⎤ 

⎥ ⎥ ⎦ 
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nd w = f ( A ) for some formulation f , where f is essentially

he prioritization method. 

There are many ways of deriving a w . For example, we could

hoose the k th column a k = ( a 1 k , a 2 k , ..., a nk ) 
T of A and use this as

 preference vector w k . The problem is that there is no reason why

ny column of A should be more appropriate than any other. 

Fortunately, if A is consistent (i.e. a i j = a ik a k j ∀ i, j, k ) then every

 k derived from a column a k is equivalent (i.e. only differs from

ny other by a scalar) and so all w k are equivalent to a single pref-

rence vector w and therefore any column can be chosen to derive

 . However, if A is inconsistent (i.e. ∃ i , j for which a ij � = a ik a kj for

ome k ) then the w k represented by the columns a k of A are not

ll equivalent and have to be amalgamated in some way to form a

reference vector estimate ˆ w . 

For example, using the RGM approach, we obtain the following:

ˆ  = 

(
ˆ w i 

)
where ˆ w i = 

( 

n ∏ 

j=1 

a i j 

) 

1 
n 

(1) 

r using the GMAST approach, we obtain the following: 

ˆ  = 

(
ˆ w i 

)
where ˆ w i = 

( 

η∏ 

τ=1 

ˆ w i (τ ) 

) 

1 
η

(2) 

here ˆ w i (τ ) are the preference weights in the preference vector

ˆ 
 τ = ( ̂  w i (τ ) ) derived from spanning tree τ and where η = n n −2 . 

In fact, there are many approaches that can be used to generate

ˆ  and comparing their properties is a subject of much debate. As

 result of this need for comparison and the fact that any ˆ w can

e represented in several equivalent forms, it is usual to normal-

ze ˆ w in some way. The two most popular forms being ideal-mode

nd distributed-mode where if ˆ u = ( ̂  u i ) represents the normalized

ersion then, in ideal-mode: 

ˆ 
 = 

ˆ w 

ˆ w 1 

= 

(
1 , 

ˆ w 2 

ˆ w 1 

, 
ˆ w 3 

ˆ w 1 

, ..., 
ˆ w n 

ˆ w 1 

)
(3) 

.e. ˆ u is ˆ w normalized to have w 1 as a reference, and in distributed-

ode: 

ˆ 
 = 

ˆ w ∑ 

i ˆ w i 

= 

(
ˆ w 1 ∑ 

i ˆ w i 

, 
ˆ w 2 ∑ 

i ˆ w i 

, ..., 
ˆ w n ∑ 

i ˆ w i 

)
.e. ˆ u is ˆ w normalized to have the sum of all weights equal to 1

i.e. 
∑ 

ˆ u i = 1 ). 

For example, in the case of RGM, since from (1) with i = 1 , we

ave ˆ w 1 = ( 
∏ n 

j=1 a 1 j ) 
1 
n . Then, using (3) for normalization, we have

deal-mode RGM is ˆ u = ( ̂  u i ) where: 

ˆ 
 i = 

ˆ w i 

ˆ w 1 

= 

(∏ n 
j=1 a i j 

) 1 
n (∏ n 

j=1 a 1 j 
) 1 

n 

= 

( 

n ∏ 

j=1 

a i j 

a 1 j 

) 

1 
n 

hich by reciprocity gives: 

ˆ 
 i = 

( 

n ∏ 

j=1 

a i j a j1 

) 

1 
n 

(4) 

In order to prove the equivalence of the RGM preference vec-

or and GMAST’s preference vector, we initially focus on the ideal

odes equivalence before generalizing the equivalence to any

ode. We see later that this generalization is straight forward

ince for any ratio-based preference vector ˆ u i / ̂  u j = ˆ w i / ̂  w j and so

quivalence is unaffected by the mode of representation. 
However, before proving the RGM and GMAST preference vec-

ors equivalence, we discuss some fundamentals of the “spanning

ree” approach. 

.1. Fundamentals of the “spanning tree” approach for pairwise 

omparisons 

It is important to note that, because of reciprocity, the PC ma-

rix A = [ a i j ] contains only n (n −1) 
2 information bearing values a ij 

which without loss of generality can be taken as the n (n −1) 
2 a ij 

n the lower triangle of A ). 

And that these n (n −1) 
2 a ij can be represented as a complete

raph with n nodes (one node per element and one edge per a ij ). 

And there are η = n n −2 spanning trees of this graph (Cayley’s

heorem) where each spanning tree τ consists of a subset E τ of

(n − 1) of the graph’s n (n −1) 
2 edges where the spanning tree τ con-

ects node i to node j either 

• directly by the edge [ i → j ] (if [ i → j] ∈ E τ ), or 
• indirectly by a path of edges (say [ i → k 1 → k 2 → ��� → k s →

j ]) where { [ i → k 1 ] , [ k 1 → k 2 ] , ..., [ k s → j] } ⊆ E τ (if [ i → j] / ∈ E τ ). 

There are therefore (n − 1) direct edges [ i → j ], and there-

ore there must be n (n −1) 
2 − ( n − 1 ) = 

(n −1)(n −2) 
2 indirect paths [ i →

 1 → k 2 → . . . → k s → j] . 

Therefore mapping each [ i → j] ∈ E τ to the corresponding a ij 

nd letting A τ = 

{
a i j : [ i → j] ∈ E τ

}
. 

Then [ i → j] ∈ E τ ⇐⇒ a i j ∈ A τ and | E τ | = | A τ | = (n − 1) 

That is A τ defines a sufficient subset of (n − 1) of the n (n −1) 
2 

 ij in the lower triangle of A , and so, analogously to the spanning

rees ability to connect any node i to any node j (directly or indi-

ectly), A τ can be used to construct the lower triangle of an artifi-

ial PC matrix ˆ A τ of n (n −1) 
2 

ˆ a i j(τ ) in which ˆ a i j(τ ) is either 

• set directly as a ij (if [ i → j] ∈ E τ or equivalently, if a i j ∈ A τ ), or
• derived indirectly as a transitive product of some a ij (say

a ik 1 a k 1 k 2 . . . a k s j ) where 
{

a ik 1 , a k 1 k 2 , . . . , a k s j 
}

⊆ A τ (if [ i → j] / ∈
E τ or equivalently, if a i j / ∈ A τ ) 

There are therefore (n − 1) direct ˆ a i j(τ ) in the lower triangle of

ˆ 
 τ , and therefore there must be (n −1)(n −2) 

2 indirect ˆ a i j(τ ) in the

ower triangle of ˆ A τ (corresponding respectively to the (n − 1) di-

ect edges and the (n −1)(n −2) 
2 indirect paths within the spanning

ree τ ). 

And so setting ˆ a ii (τ ) = 1 ∀ i = 1 , 2 , ..., n and using reciprocity to

erive the upper triangle of ˆ A τ , we can construct a necessarily

onsistent (artificial) PC matrix ˆ A τ with 

ˆ 
 τ = 

⎡ 

⎢ ⎢ ⎣ 

1 

ˆ a 12 ˆ a 13 ... ˆ a 1 n 
ˆ a 21 1 

ˆ a 23 ... ˆ a 2 n 
ˆ a 31 ˆ a 32 1 ... ... 

... ... ... 1 ... 

ˆ a n 1 ˆ a n 2 ... ... 1 

⎤ 

⎥ ⎥ ⎦ 

. The equivalence of the RGM and GMAST preference vectors 

Before finalizing the RGM/GMAST equivalence proof, we estab-

ish a number of supporting propositions for GMAST below. 

roposition 1. The GMAST preference vector ˆ w can be represented in

deal mode as ˆ u = 

(
ˆ u i 
)

where: 

ˆ 
 i = 

( 

η∏ 

τ=1 

ˆ a i 1(τ ) 

) 

1 
η

nd each ˆ a i 1(τ ) is either 

• set directly as a (if a ∈ A τ ), or 
i 1 i 1 
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u  
• derived indirectly as a transitive product of a subset of a ij , say

a ik 1 a k 1 k 2 . . . a k s 1 , where 
{

a ik 1 , a k 1 k 2 , . . . , a k s 1 
}

⊆ A τ (if a i 1 / ∈ A τ ). 

Comment. Notice that the product term in the Proposition 1 equa-

tion contains reference to the first column of ˆ A τ (i.e. ˆ a i 1(τ ) ) only.

This is because each 

ˆ A τ is consistent and so any column of ˆ A τ (in-

cluding the first column) represents the preference vector ˆ u τ of ˆ A τ .

Since the first column is naturally in ideal mode, it makes sense

to choose this column. The direct/indirect categorization of ˆ a i 1(τ ) 

is using the result already established in Section 2.1 . See proof of

Proposition 1 in Appendix B . 

Proposition 2. Each ˆ a i j(τ ) is defined directly as a ij in 2 n n −3 of the

n n −2 ˆ A τ (and therefore indirectly in the remaining (n − 2) n n −3 ˆ A τ ). 

Comment. The proof of Proposition 2 follows from the fact that

each ˆ a i j(τ ) is set directly as a ij if and only if the corresponding a ij 
is chosen to form the underlying sufficient subset A τ and the fact

that any given a ij is chosen to form the underlying sufficient subset

A τ in exactly 2 n n −3 of the subsets A τ . See proof of Proposition 2 in

Appendix B . 

Corollary to Propositions 1 and 2 

ˆ u i = ( a i 1 ) 
2 
n 

[ ( 

(n −2) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

) ] 

1 
η

Comment. The proof of the Corollary to Propositions 1 and

2 follows immediately from Proposition 2 by setting j = 1 in

Proposition 2 and by re-arranging the Proposition 1 formula so

that the 2 n n −3 direct ˆ a i j(τ ) are (w.l.o.g) re-labelled as the first

2 n n −3 terms. See proof of Corollary to Propositions 1 and 2 in

Appendix B . 

Proposition 3. The overall product of single indirect ˆ a i 1(τ ) terms (i.e.∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) ) can be rearranged as a product of pairs of direct

terms a ik a k 1 , that is 

(n −2) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) = 

n −2 ∏ 

q =1 

(
a ik q a k q 1 

)s q ∀ i = 1 , 2 , ..., n 

where 

n ∑ 

q =1 

s q = (n − 2) n 

n −3 

Comment. The proof of Proposition 3 follows from the fact that

each indirect ˆ a i 1(τ ) corresponds to a path connecting node i to

node 1 where that path is either initially of length 2 and so of the

form a ik a k 1 for some k , or, if longer than length 2, can be paired

with its reverse path where the product of the paired indirect

ˆ a i 1(τ ) terms reduces to a product of terms of the form a ik a k 1 for

some k . That is, the overall product of single indirect ˆ a i 1(τ ) terms

( 
∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) ) can always be rearranged as a product of pairs

of direct terms a ik a k 1 . See proof of Proposition 3 in Appendix B . 

Proposition 4. The number of spanning trees connecting node i to

node 1 indirectly by a path of length 2 via a given node k (i.e. i →
k → 1 ) for some k ∈ {2, ..., n } where k � = i , is the same ∀ k ∈ {2, ...,

n } where k � = i. 

Comment. The proof of Proposition 4 follows from symmetry in

that the number of spanning trees connecting a given pair of nodes

via some intermediate node must be independent of the choice of

the intermediate node. See proof of Proposition 4 in Appendix B . 
orollary to Proposition 4 . The number of indirect ˆ a i 1(τ ) in the

roduct 
∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) of length 2 (i.e. where ˆ a i 1(τ ) = a ik a k 1 for

ome k ∈ {2, ..., n }, k � = i ) is the same ∀ k ∈ {2, ..., n } where k � = i . 

omment. The Corollary to Proposition 4 follows immediately

rom Proposition 4 in that each indirect ˆ a i 1(τ ) of length 2 corre-

ponds exactly to a path of length 2 in the underlying tree τ . See

he proof of the corollary in Appendix B . 

roposition 5. The number of pairs of spanning trees connecting

ode i to node 1 via a path of length > 2 via k 1 , k s ∈ {2, ..., n },

 1 , k s � = i , k 1 � = k s is the same ∀ { k 1 , k s } ⊆{2, ..., n }, k 1 , k s � = i , k 1 � =
 s . 

omment. The proof of Proposition 5 follows from symmetry in

hat the number of pairs of spanning trees connecting a given pair

f nodes via some intermediate path defined by its starting/ending

odes must be independent of the choice of these starting/ending

odes. See proof of Proposition 5 in Appendix B . 

orollary to Proposition 5 . The number of indirect ˆ a i 1(τ ) in

he product 
∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) of length > 2 (i.e. where ˆ a i 1(τ ) =

 ik 1 
a k 1 k 2 . . . a k s 1 for some k 1 , ..., k s ∈ {2, ..., n }, k q � = i and k q � = k p ∀ q

= p where q, p = 1 , ..., s ) is the same for all { k 1 , k s } ⊆{2, ..., n }, k 1 ,

 s � = i . 

omment. The Corollary to Proposition 5 follows immediately

rom Proposition 5 in that each indirect ˆ a i 1(τ ) of length > 2 cor-

esponds exactly to a path of length > 2 in the underlying tree τ .

ee proof of the corollary in Appendix B . 

.1. Proof of the Equivalence of the RGM and GMAST preference 

ectors 

.1.1. Ideal-mode RGM 

The expression for ideal-mode RGM is ˆ u = 

(
ˆ u i 
)

where ˆ u i =∏ n 
j=1 a i j a j1 

) 1 
n , as given in (4) , which can be expanded as: 

ˆ 
 i = ( a i 1 a 11 × a i 2 a 21 × · · · × a ii a i 1 × · · · × a in a n 1 ) 

1 
n (5)

Gathering the 1st and i th product pairs together then since a ii =
 11 = 1 , we can re-arrange as: 

ˆ 
 i = 

( 

( a i 1 ) 
2 ×

n −2 ∏ 

q =1 

a ik q a k q 1 

) 

1 
n 

= ( a i 1 ) 
2 
n ×

( 

n −2 ∏ 

q =1 

a ik q a k q 1 

) 

1 
n 

(6)

here k q ∈ {2,…, n } and k q � = i and k q � = k p ∀ q � = p . 

.1.2. Ideal-mode GMAST 

By Proposition 1 , ideal-mode GMAST is ˆ u = 

(
ˆ u i 
)

where ˆ u i =∏ η
τ=1 

ˆ a i 1(τ ) 

) 1 
η and each ˆ a i 1(τ ) is either 

• set directly as a i 1 (if a i 1 ∈ A τ ), or 
• derived indirectly as a transitive product of a subset of a ij , say

a ik 1 a k 1 k 2 . . . a k s 1 , where 
{

a ik 1 , a k 1 k 2 , . . . , a k s 1 
}

⊆ A τ (if a i 1 / ∈ A τ ). 

But by the Corollaries to Propositions 1 and 2 : 

ˆ 
 i = ( a i 1 ) 

2 
n ×

[ 

( n −2 ) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

] 

1 
η

(7)
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Table 1 

The “spanning trees” solutions for A ex (in ideal-mode). 

1.000 0.599 0.500 0.167
1.000 0.333 0.500 0.167
1.000 0.333 0.500 0.167
1.000 0.599 0.500 0.167
1.000 0.333 0.500 0.167
1.000 0.333 0.500 0.167
1.000 0.599 0.500 0.167
1.000 0.333 0.500 0.167
1.000 0.333 0.278 0.167
1.000 0.333 0.278 0.167
1.000 0.333 0.500 0.167
1.000 0.333 0.278 0.093
1.000 0.333 0.500 0.167
1.000 0.333 0.278 0.167
1.000 0.333 0.500 0.167
1.000 0.599 0.500 0.300
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And by Proposition 3 , we have: 

 

( n −2 ) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

] 

1 
η

= 

[ 

n −2 ∏ 

q =1 

(
a ik q a k q 1 

)s q 

] 

1 
η

where 

n −2 ∑ 

q =1 

s q = ( n − 2 ) n 

n −

(8) 

But by the Corollaries to Propositions 4 and 5 , s q = s ∀ q =
 , 2 , ... ( n − 2 ) and so 

n −2 ∑ 

q =1 

s q = ( n − 2 ) s 

 ( n − 2 ) s = ( n − 2 ) n 

n −3 

∴ s = n 

n −3 (9) 

Therefore setting η = n n −2 and s q = s = n n −3 in (8) , we obtain

he following 

 

( n −2 ) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

] 

1 
η

= 

[ 

n −2 ∏ 

q =1 

(
a ik q a k q 1 

)n n −3 

] 

1 

n n −2 

= 

⎡ 

⎣ 

( 

n −2 ∏ 

q =1 

a ik q a k q 1 

) n n −3 
⎤ 

⎦ 

1 

n n −2 

(10) 

Therefore taking (7) and (10) together gives: 

ˆ 
 i = ( a i 1 ) 

2 
n ×

⎡ 

⎣ 

( 

n −2 ∏ 

q =1 

a ik q a k q 1 

) n n −3 
⎤ 

⎦ 

1 

n n −2 

= ( a i 1 ) 
2 
n ×

( 

n −2 ∏ 

q =1 

a ik q a k q 1 

) 

1 
n 

Therefore this gives: 

ˆ 
 i = ( a i 1 ) 

2 
n ×

( 

n −2 ∏ 

q =1 

a ik q a k q 1 

) 

1 
n 

This proves that the ideal-mode solution for RGM ( u 

RGM ) is

quivalent to the ideal-mode solution for GMAST ( u 

GMAST ). 

.1.3. Comparing the RGM and GMAST preference vectors 

Comparing the result of 3.1.1 with that of 3.1.2 proves that the

deal-mode solution for RGM ( ̂  u 

RGM ) is equivalent to the ideal-

ode solution for GMAST ( ̂  u 

GMAST ). 

It therefore follows that any ratio-based preference vec-

ors for RGM and GMAST are equivalent. That is, since

ˆ  RGM = ˆ u 

GMAST , then ˆ u RGM 

i 
= ˆ u GMAST 

i 
∀ i = 1 ...n, and therefore

( ̂  u i / ̂  u j ) 
RGM = ( ̂  u i / ̂  u j ) 

GMAST ∀ i = 1 ...n . And since ˆ u i / ̂  u j = ˆ w i / ̂  w j for

ny ratio-based preference vector (and therefore for both RGM and

MAST), then ( ̂  w i / ̂  w j ) 
RGM = ( ̂  w i / ̂  w j ) 

GMAST ∀ i = 1 ...n . 

This proves that any ratio-based preference vectors obtained

rom RGM and GMAST are equivalent for a PC matrix having a

omplete set of judgements. 

. Illustrative examples for GMAST 

.1. Inconsistency analysis 

While the focus of this paper has been on the mathematical

quivalence of the preference vectors for GMAST and RGM, we

ave also mentioned some of the additional benefits of using the

MAST approach, in particular, the ability to facilitate inconsis-

ency analysis and the inherent ability to handle incomplete PC
atrices. We discuss the former here in this section and the lat-

er in Section 4.2 below. 

There are a number of ways in which GMAST can facilitate in-

onsistency analysis and we illustrate these with the help of the

 × 4 PC matrix example taken from Hartvigsen (2005) i.e. 

 ex = 

⎡ 

⎢ ⎣ 

1 3 2 6 

1 / 3 1 6 / 5 2 

1 / 2 5 / 6 1 3 

1 / 6 1 / 2 1 / 3 1 

⎤ 

⎥ ⎦ 

The CR value for this matrix is 0.016 which falls well below the

idely-accepted threshold of 0.1, and so, the PC matrix is deemed

ligible for using the REV method to calculate the preference vec-

or. However, as discussed by Hartvigsen (2005) , in this exam-

le, the preference vector obtained from the REV method gives

 1 > w 3 > w 2 > w 4 which is not the correct order of preference

since with a little thought it can easily be seen that the correct

rder should be w 1 > w 2 > w 3 > w 4 ). In fact, all the existing meth-

ds were shown to have produced incorrect preference orders (also

y Hartvigsen, 2005 ). In this scenario, the value of CR = 0.016 is

herefore at best misleading in terms of its assessment of accept-

ble inconsistency. However, with the help of the spanning trees

pproach, we can generate the set of 16 possible (ideal-mode) pref-

rence vectors directly from the DM’s comparison judgements, and

nalyse these for inconsistency. 

For example, we can choose to cluster them together according

o their similarity/dissimilarity, as shown in Table 1 , where three

lusters of preference vectors are clearly evident. The largest clus-

er (Cluster 1) shows that on the one hand, the DM prefers El-

ment 3 over Element 2 whereas another cluster (i.e. Cluster 2)

hows that the DM seems to prefer Element 2 over Element 3. In

ther words, the DM is in at least two minds, and the critical is-

ue is with regards to his order of preference for Elements 2 and 3.

he spanning trees approach has uncovered this “two mindedness”

hile the other methods failed to highlight this issue and not only

his but the spanning trees approach has identified where the “two

indedness” arises from. 

Of course, there exist other ways to present this information

n inconsistency to the DM, such as, using a dimensionality re-

uction technique like principal component analysis for better vi-

ualization. For example, Fig. 1 shows the 16 preference vectors

erived from A ex using the first two principal components (on a
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Fig. 1. Visualising the “spanning trees” solutions for A ex on the first two principal 

components axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The “spanning trees” solutions for A ex (in ideal-mode). 

1.000 0.333 0.500 0.167
1.000 0.333 0.500 0.167

1.000 0.333 0.500 0.167
1.000 0.333 0.500 0.167

1.000 0.333 0.500 0.167

1.000 0.333 0.500 0.167

1.000 0.333 0.500 0.167

1.000 0.333 0.500 0.167
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logarithmic scale). Note that in this example, each cluster happens

to contain a set of identical preference vectors, and therefore, the

size of each bubble is proportional to the number of preference

vectors contained within the cluster. Using this representation, it is

easy to see that the single preference vector obtained from other

methods (e.g. REV and RGM) usually represents a compromise and

is not necessarily representative of any of the clusters, and there-

fore is not necessarily representative of any of the DM’s actual

mindsets. 

We consider this inconsistency analysis to be an area of fu-

ture research that has the potential to provide the DM with an aid

to revise their judgements, or to select a more appropriate solu-

tion interactively, as well as to propose a new way of measuring

inconsistency. 

4.2. Incomplete matrices 

As asserted earlier, we contend that GMAST is inherently appli-

cable to incomplete PC matrices while the RGM method is not and

instead requires estimation/imputation of the missing elements in

the PC matrix as a preliminary step. 

The reasoning behind this assertion is not immediately obvious

since it is clearly theoretically possible to calculate the row geo-

metric mean of the non-missing elements of any given row of a

matrix and so, at first glance, it might seem that there is no rea-

son why we should not adopt this ‘non-missing’ approach. How-

ever with the help of the example below we show that this ‘non-

missing’ approach is a fundamentally flawed procedure in that it

can lead to bizarre results. 

For example, considering the following incomplete PC matrix: 

A 

′ 
ex = 

⎡ 

⎢ ⎣ 

1 3 2 6 

1 / 3 1 − 2 

1 / 2 − 1 3 

1 / 6 1 / 2 1 / 3 1 

⎤ 

⎥ ⎦ 

which we have carefully constructed from Hartvigsen (2005) (as

discussed in the previous sub-section) in such a way that the ma-

trix remains (perfectly) consistent although it has a missing judge-

ment a 23 . 

Obviously, as with any case of a consistent set of prefer-

ences, there exists an ideal preference vector and any prioritization

method must be able to produce this ideal preference vector. How-

ever, we show below that while GMAST does find this ideal vector,

the RGM approach does not. In other words, the RGM approach is
eficient in its ability to guarantee always finding the ideal prefer-

nce vector for a consistent but incomplete set of preferences.That

s, we can see that the judgement a 23 (and therefore a 32 ) is miss-

ng in the matrix, but yet the ideal prioritization clearly exists due

o the fact that all the non-missing elements in the matrix are con-

istent with each other. 

The number of spanning trees is obviously reduced as each and

very one of the trees that span the missing elements are now ab-

ent. This can be visualized in Table 2 which shows a subset of

olutions generated by the available spanning trees, and which is

ssentially a subset of Table 1 . The remaining trees are still con-

istent with each other and generate the same preference vec-

or. Therefore, the ’non-missing’ GMAST will still produce the ideal

reference vector. 

The spanning tree analysis has interestingly made it obvious

hat all the “spanning-tree” solutions are identical for this incom-

lete matrix, and are equal to (1, 0.333, 0.5, 0.167) in ideal-mode. 

However, applying ’non-missing’ RGM to A 

′ 
ex , that is taking the

eometric mean of the non-missing elements in each row, gives: 

GM(A 

′ 
ex ) = 

⎡ 

⎢ ⎣ 

( 1 × 3 × 2 × 6 ) 
1 / 4 

( 1 / 3 × 1 × 2 ) 
1 / 3 

( 1 / 3 × 1 × 3 ) 
1 / 3 

( 1 / 6 × 1 / 2 × 1 / 3 × 1 ) 
1 / 4 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

2 . 4495 

0 . 8736 

1 . 1447 

0 . 4082 

⎤ 

⎥ ⎦ 

hich can be represented in ideal-mode as w =
1 0 . 357 0 . 467 0 . 167 

]
. This is clearly not identical to the ideal

reference vector and so does not adhere to the DM’s judgements.

Having said this, if we impute the missing judgement as a 23 =
 21 a 13 = 2 / 3 (or a 23 = a 24 a 43 = 2 / 3 ) , the (complete) RGM ap-

roach will provide the following results: 

GM(A 

′ 
ex ) = 

⎡ 

⎢ ⎣ 

( 1 × 3 × 2 × 6 ) 
1 / 4 

( 1 / 3 × 1 × 2 / 3 × 2 ) 
1 / 3 

( 1 / 3 × 2 / 3 × 1 × 3 ) 
1 / 3 

( 1 / 6 × 1 / 2 × 1 / 3 × 1 ) 
1 / 4 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

2 . 4495 

0 . 8165 

1 . 2247 

0 . 4082 

⎤ 

⎥ ⎦ 

hich gives us the ideal-mode preference vector w =
1 0 . 333 0 . 5 0 . 167 

]
but which does strictly adhere to the DM’s

rovided judgements. That is, the example shows that applying

he RGM operation directly to incomplete PC matrices without

stimating the missing judgements is fundamentally flawed. 

So far, we have discussed the situation in which the PC matrix

s incomplete yet consistent, which we consider sufficient enough
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o highlight the shortcomings of the RGM method in so far as its

bility to handle incomplete PC matrices. However, note that in the

resence of an incomplete yet inconsistent PC matrix, the situation

ecomes more complex due to the fact that no ideal preference

ector exists and so it is no longer merely a matter of checking to

ee whether or not this ideal vector has indeed been found by the

rioritization method. Instead, we use several different criteria to

elatively assess the strength of these methods. We discuss these

riteria in the next section below. 

. Comparative analysis of prioritization methods 

As mentioned earlier, the well-known performance criteria for

omparing prioritization methods are: minimal deviation from the

M’s judgements, computational complexity, ability to handle in-

omplete sets of judgements, adherence to geometric properties,

nd ability to measure inconsistency. As also mentioned earlier, we

ontend that a method must also be able to facilitate inconsistency

nalysis rather than just measure it. 

Focusing on the minimal deviation from the DM’s judgements,

here exist two types of deviations i.e. cardinal and ordinal, and

oth have been well investigated ( Golany & Kress, 1993; Siraj,

ikhailov, & Keane, 2015 ). The optimization methods naturally

utperform other methods with respect to their own (cardinal) ob-

ective error functions, however, as reported in Siraj et al. (2012b) ,

he DLS method does not perform well in the ordinal deviation cri-

erion. Interestingly, the REV and RGM methods perform satisfacto-

ily well in both the cardinal and ordinal deviations criteria. Since

he GMAST preference vector is mathematically equivalent to the

GM preference vector, it also performs satisfactorily with respect

o the cardinal and ordinal deviations. 

In terms of the computational complexity, the RGM method is

rguably the most straightforward process i.e. taking the geometric

ean of all the values in each row of the PC matrix. By contrast,

he optimization methods are relatively more complex as they de-

end upon the optimization method used (e.g. simplex method,

imulated annealing, genetic algorithm etc.) and their selection of

arameters (e.g. number of iterations, acceptable threshold of er-

or, etc.). The REV method depends upon the eigenvector calcu-

ation process which is relatively simpler than the optimization

ethods but not as straightforward as the RGM method. The com-

lexity of the GMAST method varies with the value of n , where if

ll the spanning trees are to be enumerated then the number of

perations are acceptable for n < 9, i.e. within Miller’s definition

f 7 ± 2 as the limit on a DM’s capacity for comparing elements

 Miller, 1956 ). And with partial enumeration, the number of oper-

tions are acceptable for n > 9. 

Considering the ability of handling incomplete sets of judge-

ents, the REV and RGM methods have no inherent capability to

eal with this issue and so they need to have the missing judge-

ents estimated with in a preliminary step ( Ergu et al., 2011;

arker, 1987b ). However, as with the optimization methods (e.g.

L S, DL S, and LLAV), the GMAST method is able to obtain a pref-

rence vector without estimating the missing judgements. This is

n important benefit due to the fact that PC matrices are often in-

omplete - indeed, the probability of acquiring an incomplete set

f comparison judgements from a DM increases with n ( Harker,

987a ). 

Considering the adherence to the geometric properties, as de-

cribed by Barzilai (1997) , the RGM method is the only existing

ethod that strictly adheres to the geometric properties including

he independence of scale inversion and the independence of order

f operations. Since the GMAST preference vector is mathemati-

ally equivalent to the RGM preference vector, the GMAST method

atisfies these geometric properties also. 
With regards to measuring inconsistency, the widely used

ethod of REV proposes the Consistency Ratio (CR) and uses it

long with a threshold to accept or reject the DM’s provided com-

arison judgements as suitable or not for preference vector devel-

pment. Similarly, the Geometric Consistency Index (GCI) has been

ntroduced for the RGM method with the same purpose of accept-

ng/rejecting the DM’s judgements. However, this is only part of

he problem as although the existing methods provide a measure

f inconsistency, they do not attempt to facilitate inconsistency

nalysis. GMAST, on the other hand, does have this ability since the

spanning trees” preference vectors can be analysed statistically to

etect the impact of inconsistency on the variability in the final

olution - for example, finding the clusters of similar preference

ectors and performing inter-cluster and intra-cluster analysis. 

The comparative analysis of the prioritization methods can be

ummarized in Table 3 by evaluating each of them across the six

erformance criteria which should be considered when choosing

 method. The use of label ‘ ’ implies that the method is highly

uitable, ‘ ’ that the method is acceptable, while ‘ ’ implies that

he method performs poorly on the given criterion. For exam-

le, considering the first row “Minimal deviation from DM judge-

ents”, we can comfortably state that all methods perform well

ue to the fact that each method has its own criterion for min-

mal deviation. However, this “equivalence of performance” is not

ecessarily the case when comparing the methods across the other

riteria. For example, considering the second row “Minimal num-

er of ordinal violations”, although most methods have performed

qually well, DLS does not. Furthermore, even when a method per-

orms well in one criterion, it tends to perform less well on an-

ther. For example, considering the third row “Acceptable compu-

ation time”, we see that REV and RGM perform well but yet can-

ot be used for incomplete sets of judgements without some pre-

iminary process (as shown in the fourth row). 

Continuing in this way, and considering the fifth row “Adhering

o the geometric properties”, we see that LLS and RGM are two

f the three methods which satisfy these geometric properties, yet

either of the methods has the ability to facilitate inconsistency

nalysis. That is, we see that each method performs well on some

riteria but tends to fall short of adequacy on other criteria, apart

rom GMAST which performs well on all criteria. 

It can therefore be concluded that although no method consis-

ently outperforms all of the other methods, the GMAST method is

he only method which is better (or equally good) than all the rest

cross all the six criteria. 

. Applications of spanning tree analysis 

.1. Example 

In addition to the illustrative example provided in Section 4.1 ,

e develop the inconsistency analysis ideas further here using

he famous school selection example, first discussed by Saaty

nd Rogers (1976) , where six criteria of “Learning”, “Friends”,

School life”, “Vocational training”, “College preparation”, and “Mu-

ic classes” were shortlisted for assessing the available schools.

hese criteria were compared in a pairwise fashion as given

elow: 

 criteria = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 4 3 1 3 4 

1 / 4 1 7 3 1 / 5 1 

1 / 3 1 / 7 1 1 / 5 1 / 5 1 / 6 

1 1 / 3 5 1 1 1 / 3 

1 / 3 5 5 1 1 3 

1 / 4 1 6 3 1 / 3 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

The arrangement of columns is in the same order as the criteria

ere introduced above. The level of inconsistency in this PC matrix
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Table 3 

Comparison of a number of prioritization methods 

REV LLS RGM DLS LLAV GMAST 

Minimal deviation from DM judgements 

Minimal number of ordinal violations 

Acceptable computation time 

Handling incomplete set of judgements 

Adherence to the geometric properties 

Ability to measure inconsistency 

Ability to facilitate inconsistency analysis 
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was calculated using CR which turned out to be quite high (i.e.

0.24). However, the matrix was still considered for further analysis,

and the following preference vector was obtained using the REV

method (values are rounded up to two decimal places): 

w EV = 

[
0 . 32 0 . 14 0 . 03 0 . 13 0 . 24 0 . 14 

]
The complete problem involved the selection of one out of

three schools by assessing them against each of the six criteria and

coming up with an overall ranking based on their performances in

these six criteria (see Saaty and Rogers, 1976 for complete details).

Eventually, the authors mention that “The son went to school A

because it had almost the same evaluation as school B”. The PC

matrix A criteria can be used to generate 1296 (i.e. n n −2 = 6 4 ) trees

and their respective preference vectors. Due to a large number of

preference vectors, we refrain from listing them all here due to the

limitations of space, however, we can visualize these vectors us-

ing the dimensionality reduction technique (as discussed before in

Section 4 ) by plotting each vector as a point positioned accord-

ing to its projections on the first few principal components. In this

way, we can capture as much variance as possible in the top three

components (first and second components are shown in Figure 2 a

while the first and third components are shown in Fig. 2 b). How-

ever, when the location of these points overlap, we represent this

multiplicity by increasing the size of the point, as shown in these

figures in the form of bubble charts. The size of each bubble rep-

resents the number of preference vectors lying at that location. 

6.2. Analysis 

Fig. 2 is indeed an interesting visual representation revealing

all of the preference vectors that can be obtained directly from

the DM’s comparative judgements. In other words, each and every

one of these preference vectors is a direct reflection of what the

DM has told us i.e. with no aggregation or adjustments (unlike the

REV or RGM preference vectors). However, as stated earlier, there

is nothing to stop the DM (or analyst) from choosing to aggregate

all of these preference vectors e.g. by taking their geometric mean,

which according to the proof in Section 3 , turns out of course to be

identical to the RGM (notice the RGM solution lying in the middle

of all the “spanning tree” preference vectors in the two graphs). 

Note that the figure also shows that the REV and RGM pref-

erence vectors lie close to each other, however, this leads us to a

different discussion which is out of the scope of this article (see

Siraj et al., 2012b for details). 

Just replicating what we might otherwise have produced from

RGM is not of course the point. Rather we want to exploit the ad-

ditional information that GMAST has provided over and above the

generation of the single GMAST/RGM preference vector and we dis-

cuss a number of ideas below. 

6.2.1. Closest representative solution 

Notice in Fig. 2 that REV and GMAST/RGM have all produced

preference vectors that lie somewhere in the middle of the set of
enerated “spanning tree” preference vectors, and so in this sense,

ll are an average representation of the actual preferences provided

y the DM in terms of comparative judgements. All of these prefer-

nce vectors are artificial to a degree - and so in this sense are not

pecific representations of any of the actual preferences provided

y the DM. However, with the help of the spanning tree analysis,

e could choose to identify the “spanning tree” solution that lies

losest to the GMAST/RGM preference vector (e.g. using Euclidean

istance). The idea being to choose a preference vector that is rep-

esentative in both of the senses described above - that is which is

oth an average representation and a specific representation of the

M’s preferences and so because of the latter can be thought of as

 realization of the average representation. This proposition needs

ore investigation for its empirical validity and is considered an

rea of future work. 

.2.2. Subset of trees 

Alternatively, the DM (or analyst) may like to use the

spanning-trees” preference vectors to gain more insights into the

omparison judgements and preference vectors, for example, by

lustering the “spanning tree” preference vectors with respect to

 distance measure. With the result that these clusters could be

ffered to the DM as a visual aid so that the DM could choose to

ccept or reject some of these clusters by inspection, and possibly,

hoose the geometric mean of the filtered “spanning trees” prefer-

nce vectors. 

In Fig. 2 , we have shown the possibility of creating four clus-

ers using the K-Means algorithm with Euclidean distance, n.b. the

se of K-Means is only for demonstration purposes; the number

f clusters and the choice of clustering algorithm are both subject

o further investigation. For example, one may question the use

f K-Means as we have no a priori information about the num-

er of clusters present in the “spanning trees” data; and therefore,

ay seek for some other algorithm like DBSCAN (i.e. density-based

canning) where the number of clusters are not required as an

nput. 

.2.3. Judgements revision 

Another interesting use of the spanning trees analysis is to pro-

ide an interactive aid to the DM in revising his/her comparative

udgements. Since each judgement in the PC matrix contributes to

 certain number of trees, we can highlight the trees for a single

udgement (interactively chosen by the DM). In this way, the DM

an locate the preference vectors affected by one of his/her judge-

ents, and therefore, have the possibility of revising the judge-

ents if required. 

We have discussed these applications to show the benefits of

sing the spanning trees analysis for facilitation of inconsistency

nalysis, however, these applications need to be further developed

s areas of future research. 
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Fig. 2. Visualising the “spanning trees” preference vectors for the school example. 
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. Conclusions 

We have discussed the “spanning tree” method (i.e. GMAST)

nd have proved the mathematical equivalence of its preference

ector to that of the RGM approach while highlighting the ad-

itional benefits of the GMAST method in its entirety. That is,

e have identified an approach for generating a preference vector
hich has the mathematical properties of RGM, and yet, is inher-

ntly applicable to incomplete pairwise comparison matrices and

lso facilitates the use of statistical techniques to gain insights into

nconsistency. That is, in its entirety, the GMAST method has more

o offer than other prioritization methods. 

This opens up several interesting avenues for further research

nto the use of statistical approaches for pairwise comparisons.
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For example, this creates an opportunity to examine the similar-

ity/dissimilarity within the set of “spanning tree” preference vec-

tors (possibly clustering them together based on some distance

measure), or using a democratic approach to select the most pre-

ferred solution, or to present clusters of preference vectors as a

visual aid to the DM for interactive inconsistency resolution. More-

over, we have discussed the criteria matrix from the school exam-

ple, however, the same analysis can also be carried out for all the

PC matrices in a given multicriteria decision problem. For exam-

ple, we can generate the “spanning-tree” preference vectors from

the PC matrices comparing schools under each of the criteria. In

this case, we have 1296 preference vectors as criteria preference

vectors, and for each of these vectors, we can calculate scores for

each school using the PC matrices comparing schools. Generalizing

this to m options/alternatives and n criteria, we can calculate the

number of all possible preference vectors (i.e. overall preference

vectors for a given problem) for the m alternatives as below: 

Number of “spanning-trees” preference vectors for criteria PC

matrix = n n −2 

Number of PC matrices under the criteria = n 

Number of “spanning-trees” preference vectors for options PC

matrix = m 

m −2 

Number of “spanning-trees” preference vectors for single vector

from criteria PC matrix = (m 

m −2 ) n 

Total number of possible preference vectors = n n −2 m 

n ( m −2 ) 

In the school example, this expression means that the total

number of possible preference vectors is 944,784. Considering this

expression, one may argue that the number of preference vectors

grows exponentially and the problem may become intractable very

quickly. Nonetheless, we propose to use stochastic analysis in such

cases when generating the complete set of preference vectors is

impractical. We consider this an interesting new area in preference

elicitation which enables the DMs to visualize a huge number of

possible preference vectors, all of which directly emerge from the

DM’s given set of comparative judgements. 

Appendix A. Table of Notation 

Symbol Description 

n number of elements evaluated using pairwise comparison 

judgements 

a i j ratio judgement comparing ith element to jth element 

A symmetrically reciprocal matrix constructed from the given set 

of a i j 

w preference vector (or preference weight vector) 

w i preference score (or preference weight) of ith element 

η total number of spanning trees possible for a given A (where 

η = n n −2 ) 

τ a spanning tree 

E τ set of edges [ i → j ] in a spanning tree τ (a subset of edges 

from a fully-connected graph) 

e i j(τ ) a boolean variable which is 1 when the edge [ i → j ] ∈ E τ , 

otherwise 0 

A τ a sufficient subset of ( n − 1 ) of the n (n −1) 
2 

elements in the 

lowers triangle of A 
ˆ A τ a consistent PC matrix constructed from the subset A τ

ˆ a i j(τ ) an entry in the consistent matrix ˆ A τ
ˆ w estimated preference vector (or estimated preference weight 

vector) 

ˆ u estimated normalized preference vector in an ideal-mode 

ˆ u i estimated normalized score (or weight) for ith element of ˆ u 

ˆ w τ estimated ˆ w from the spanning tree τ
ˆ u τ estimated ˆ u from the spanning tree τ
ˆ u i (τ ) i th elements of ˆ u τ
t

ppendix B 

roof of Proposition 1. Since ˆ A τ is a PC matrix it can be used to

erive a ˆ w τ , and since ˆ A τ is consistent by construction, ˆ w τ can be

erived from any column of ˆ A τ , and choosing column 1 means that

ˆ 
 τ is in ideal-mode ˆ u τ since column 1 is 

[
1 , ̂  a 21(τ ) , ..., ̂  a n 1(τ ) 

]T 

i.e. ˆ u τ = 

(
ˆ u i (τ ) 

)
where ˆ u i (τ ) = ˆ a i 1(τ ) , and so ˆ u = 

(
ˆ u i 
)

where 

ˆ 
 i = 

( 

η∏ 

τ=1 

ˆ u i (τ ) 

) 

1 
η

= 

( 

η∏ 

τ=1 

ˆ a i 1(τ ) 

) 

1 
η

And from Section 2.1 with j = 1 each ˆ a i 1(τ ) is either 

• set directly as a i 1 (if a i 1 ∈ A τ ), or 
• derived indirectly as a transitive product of a subset of a ij ,

say a ik 1 a k 1 k 2 . . . a k s 1 , where 
{

a ik 1 , a k 1 k 2 , . . . , a k s 1 
}

⊆ A τ (if a i 1 / ∈
A τ ). �

roof of Proposition 2. By the fundamentals of the “spanning

ree” approach (see Section 2.1 ), each ˆ a i j(τ ) in 

ˆ A τ is set directly as

 ij if a i j ∈ A τ . But also a i j ∈ A τ ⇐⇒ [ i → j] ∈ E τ i.e. the number

f ˆ A τ where ˆ a i 1(τ ) is set directly as a ij is the number of spanning

rees which contain the edge [ i → j ]. 

Let 

 i j ( τ ) = 

{
1 if [ i → j] ∈ E τ
0 otherwise 

(11)

then summing e ij ( τ ) over all spanning trees, 
∑ η

τ=1 
e i j ( τ ) must be

he number of spanning trees which contains the edge [ i → j ], and

o summing 
∑ η

τ=1 
e i j ( τ ) over all edges means that 

∑ 

i> j 

∑ η
τ=1 

e i j ( τ ) 

s the total number of occurrences of all edges [ i → j ] over all

panning trees (counting multiple occurrences of the same [ i →
 ] separately). 

But reversing the order of summation gives 

 

i> j 

η∑ 

τ=1 

e i j ( τ ) = 

η∑ 

τ=1 

∑ 

i> j 

e i j ( τ ) 

= 

η∑ 

τ=1 

( n − 1 ) since 
∑ 

i> j 

e i j ( τ ) is the number of edges

in tree τ which by definition is (n − 1) 

= η( n − 1 ) 

= ( n − 1 ) n 

n −2 (12)

Also since by symmetry 
∑ η

τ e i j ( τ ) = C for some constant C for

ach and every edge [ i → j ] (since each edge occurs in the same

umber of trees). 

Then 

 

i> j 

η∑ 

τ=1 

e i j ( τ ) = 

∑ 

i> j 

C 

= 

n ( n − 1 ) 

2 

C (since there are 

n ( n − 1 ) 

2 

unique edges in total) (13)

Equating (12) and (13) , we have 

n (n − 1) 

2 

C = (n − 1) n 

n −2 

C = 

2(n − 1) n 

n −2 

n (n − 1) 

C = 2 n 

n −3 

Therefore, there are 2 n n −3 trees in which [ i → j] ∈ E τ and so

here are 2 n n −3 A τ where a i j ∈ A τ and so there are 2 n n −3 ˆ A τ
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here ˆ a i j ( τ ) is set directly as a ij . And since there are n n −2 trees

n total, there are n n −2 A τ in total and so n n −2 ˆ A τ in total and

o there are n n −2 − 2 n n −3 = (n − 2) n n −3 ˆ A τ where ˆ a i 1(τ ) is derived

ndirectly. �

roof of Corollary to Propositions 1 and 2. By Proposition 2 with

j = 1 , then w.l.o.g. gathering all 2 n n −3 direct ˆ a i 1 ( τ ) together and

abelling the (n − 2) n n −3 trees in which ˆ a i 1 ( τ ) is derived indirectly

s τ = 1 , 2 , ..., (n − 2) n n −3 . Then 

ˆ 
 i = 

[ 

( a i 1 ) 
2 n n −3 

( 

(n −2) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

) ] 

1 
η

= 

[ 
( a i 1 ) 

2 n n −3 
] 1 

n n −2 

[ ( 

(n −2) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

) ] 

1 
η

= ( a i 1 ) 
2 
n 

[ ( 

(n −2) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) 

) ] 

1 
η

�

roof of Proposition 3. By definition each indirect ˆ a i 1(τ ) is derived

rom a product of a subset of a i j ⊆ A τ . 

So either 

a) ˆ a i 1(τ ) is of “length 2” i.e. 

ˆ 
 i 1(τ ) = a ik a k 1 (14) 

or some k ∈ {2, ..., n } and k � = i and the proof is complete. (Note

 � = i , 1 since if k = i or 1, then ˆ a i 1(τ ) = a i 1 and so ˆ a i 1(τ ) is direct

ut by definition ˆ a i 1(τ ) is indirect). 

OR 

b) ˆ a i 1(τ ) is of “length > 2” i.e. 

ˆ 
 i 1(τ ) = a ik 1 a k 1 k 2 a k 2 k 3 ...a k s −1 k s a k s 1 (15)

or some k 1 ... k s ∈ {2, ..., n }, k q � = i ∀ q , s ≥ 2 and k q � = k p ∀ p � = q . 

But a ik 1 a k 1 k 2 a k 2 k 3 ...a k s −1 k s 
a k s 1 corresponds to the path i → k 1 →

 2 → ... → k s −1 → k s → 1 within a spanning tree τ connecting i to

. And by reversing this path in τ (i.e. forming i → k s → k s −1 →
.. → k 2 → k 1 → 1 ) but keeping all other paths in τ unchanged,

e can create another spanning tree τ ′ where ˆ a i 1(τ ′ ) is also of

length > 2” and is of the form a ik s a k s k s −1 
...a k 3 k 2 a k 2 k 1 a k 1 1 so that

airing τ with τ ′ means that: 

ˆ 
 i 1(τ ) × ˆ a i 1(τ ′ ) = 

(
a ik 1 a k 1 k 2 a k 2 k 3 ...a k s −1 k s a k s 1 

)(
a ik s a k s k s −1 

...a k 3 k 2 a k 2 k 1 a k 1 1

And rearranging this expression by pairing like terms together

ives: 

ˆ 
 i 1(τ ) × ˆ a i 1(τ ′ ) = 

(
a ik 1 a k s 1 

)[(
a k 1 k 2 a k 2 k 1 

)(
a k 2 k 3 a k 3 k 2 

)
... 

(
a k s −1 k s a k s k s −1 

)]
(
a ik s a k 1 1 

)
which by reciprocity: 

= 

(
a ik 1 a k s 1 

)[(
a k 1 k 2 

1 

a k 1 k 2 

)(
a k 2 k 3 

1 

a k 2 k 3 

)
... (

a k s −1 k s 

1 

a k s −1 k s 

)](
a ik s a k 1 1 

)
(16) 

= a ik 1 a k s 1 × 1 × ... × 1 × a ik s a k 1 th 1 

= 

(
a ik 1 a k 1 1 

)
×

(
a ik s a k s 1 

)
(17) 

Therefore, each ˆ a i 1(τ ) estimated through a path of length

reater than 2 can be paired with another ˆ a i 1(τ ′ ) estimated through

nother path of length greater than 2, and more interestingly, the

roduct pair of the form ˆ a i 1(τ ) × ˆ a i 1(τ ′ ) can be reduced to a prod-

ct pair of the form 

(
a ik a k 1 

)
×

(
a ik s a k s 1 

)
. That is, taking (14) and
1 1 
17) together, the product of the terms of the form ˆ a i 1(τ ) can be re-

uced to a product of the terms of the form a ik a k 1 with the num-

er of terms in the product 
∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) preserved, so that 

n −2) n n −3 ∏ 

τ=1 

ˆ a i 1(τ ) = 

n −2 ∏ 

q =1 

(
a ik q a k q 1 

)s q 

here s q is the total number of occurrences of a ik q a k q 1 in all the

rees in which ˆ a i 1(τ ) is derived indirectly and where 
∑ n −2 

q =1 s q =
(n − 2) n n −3 . �

roof of Proposition 4. Let 

τ = a spanning tree connecting node i to node 1 indirectly by

 path of length 2, 

T k = { τ | τ connects node i to node 1via a path i → k → 1 for some k

 {2, ..., n } where k � = i } 

n k = number of τ in T k 
Then if k 1 and k ′ 

1 
∈ {2, ..., n } and k 1 � = k ′ 

1 
and k 1 , k 

′ 
1 

� = i and if

∈ T k 1 , then τ connects node i to node 1 indirectly via a path i →
 1 → 1 and as τ is a spanning tree, k ′ 1 must be connected within

. 

But by reversing the roles of k 1 and k ′ 
1 

in τ (keeping all else

nchanged) we can create a spanning tree τ ′ in which node i is

onnected to node 1 indirectly via a path i → k ′ 1 → 1 , and so τ ′ ∈
 k ′ 

1 
. 

That is, if k 1 , k 
′ 
1 

∈ { 2 , ..., n } and k 1 � = k ′ 
1 

and k 1 , k 
′ 
1 

� = i , then for

ach τ ∈ T k 1 ∃ a τ ′ ∈ T k ′ 
1 
, and so n k 1 � n k ′ 

1 
. 

But using the same argument in reverse, n k ′ 
1 
� n k 1 and so n k 1 =

 k ′ 
1 
∀ k 1 , k 

′ 
1 

∈ { 2 , ..., n } , k 1 � = k ′ 
1 
, k 1 , k 

′ 
1 

� = i i.e. 

n k = a constant ∀ k ∈ {2, ..., n } where k � = i . �

roof of Corollary to Proposition 4. Each indirect ˆ a i 1(τ ) in the

roduct 
∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) of length 2 is of the form ˆ a i 1(τ ) = a ik a k 1 

or some k ∈ {2, ..., n }, k � = i , and corresponds to a path of length

 (i.e. i → k → 1) within the spanning tree τ . And so the corollary

ollows immediately from Proposition 4 . �

roof of Proposition 5. Let τ × ˜ τ denote a pair of spanning trees

onnecting node i to node 1 by a path of length > 2 where the

air of trees are identical apart from the path connecting node i to

ode 1 in one tree being the reverse of the path connecting node

 to node 1 in the other tree. 

Let T k 1 k s = { τ × ˜ τ where node i is connected to node 1 by the

ath i → k 1 → k 2 → ... → k s → 1 in one tree (say τ ) but by

he path i → k s → k s −1 → ... → k 1 → 1 in the other tree (say ˜ τ ), for

ome { k 1 , k s } ⊆{2, ..., n }, k 1 , k s � = i , k 1 � = k s .} 

n k 1 k s = number of pairs τ × ˜ τ in T k 1 k s . 
Then if { k 1 , k s } ⊆{2, ..., n }, k 1 , k s � = i , k 1 � = k s and if { k ′ 

1 
, k ′ s } ⊆

 2 , ..., n } , k ′ 1 , k ′ s � = i, k ′ 1 � = k ′ s and { k 1 , k s } � = { k ′ 1 , k ′ s } . 
Then if τ × ˜ τ ∈ T k 1 k s , then by reversing the roles of k 1 & k s and

 

′ 
1 
& k ′ s respectively in τ × ˜ τ , we can create another spanning tree

air τ ′ × ˜ τ ′ ∈ T k ′ 
1 

k ′ s . 
That is, if { k 1 , k s } ⊆{2, ..., n } k 1 , k s � = ik 1 � = k s and if

 k ′ 1 , k ′ s } ⊆ { 2 , ..., n } k ′ 1 , k ′ s � = ik ′ 1 � = k ′ s and { k 1 , k s } � = { k ′ 1 , k ′ s } and if τ ×
˜ ∈ T k 1 k s ∃ τ ′ × ˜ τ ′ ∈ T k ′ 

1 
k ′ s so that n k 1 k s � n k ′ 

1 
k ′ s . 

But using the same argument in reverse, we have n k ′ 
1 

k ′ s � n k 1 k s ,

nd so 

 k 1 k s = n k ′ 
1 
k ′ s 

∀ { k 1 , k s } ⊆ { 2 , ..., n } , k 1 , k s � = i , k 1 � = k s 

{ k ′ 1 , k ′ s } ⊆ { 2 , ..., n } , k ′ 1 , k ′ s � = i , k ′ 1 � = k ′ s 
{ k 1 , k s } � = { k ′ 1 , k ′ s } 

.e. n k k s = a constant ∀ { k 1 , k s } ⊆{2, ..., n } k 1 , k s � = ik 1 � = k s . �

1 
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Proof of Corollary to Propotion 5.. Each indirect ˆ a i 1(τ ) in the

product 
∏ (n −2) n n −3 

τ=1 
ˆ a i 1(τ ) of length > 2 can be paired with a part-

ner ˆ a i 1( ̃ τ ) so that ˆ a i 1(τ ) × ˆ a i 1( ̃ τ ) reduces to a product of the form

(a ik 1 a k 1 1 ) × (a ik s a k s 1 ) for some { k 1 , k s } ⊆{2, ..., n } k 1 , k s � = ik 1 � = k s ,

which corresponds to a pair of paths of length > 2 in a pair of

spanning trees τ ′ × ˜ τ ′ , and so the corollary follows immediately

from Proposition 5 . �
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