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Abstract: In this paper, a comparison is presented between Bessel beam launchers at millimeter
waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave
(CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for
the generation of electromagnetic short pulses because they maintain their performances over a
larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber
dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two
planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture
distribution, are designed at millimeter waves with a center operating frequency of f̄ = 60 GHz
and analyzed in the bandwidth 50 − 70 GHz by using an in-house developed numerical code to
solve Maxwell’s equations based on the method of moments. It is shown that a monochromatic
Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth.
Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter
waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher
with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently gener-
ated in front of the launcher.
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ric optics; (350.7420) Waves; (350.5500) Propagation.
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1. Introduction

In recent years, localized waves [1, 2] have gained increasing interest among researchers, be-
cause of their remarkable property of being non-diffractive, i.e. their transverse field profile
theoretically does not spread out up to a certain distance called depth of field (DOF) or non-
diffractive range [3]. From the theoretical viewpoint, they are monochromatic solutions of
Helmholtz equation and, among them, Bessel beams can be undoubtedly considered ones of
the most renowned, since their early introduction by Durnin [4].

Several attempts have been made to practically realize Bessel beams launchers, both at op-
tical [5, 6] and at radio [7–9] frequencies. Polychromatic solutions to Helmholtz equation can
be obtained as a continuous superposition of monochromatic solutions on a certain frequency
bandwidth. They have also been considered for the generation of localized pulses [10–20], i.e.
efficiently spatially confined electromagnetic (EM) pulses. Such pulses can also produce optical
vortices and a non-null orbital angular momentum (OAM), when an azimuthal phase variation
of the aperture field is introduced [21, 22]. At optical frequencies, common Bessel beam gener-
ators used to produce broadband pulses are axicons and binary phase gratings, which generate
superluminal or subluminal wave-packets, respectively [23, 24].

In this paper, we propose a comparative broadband analysis of two different approaches to
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generate EM pulses at millimeter waves by using a Radial Line Slot Array (RLSA); namely, by
synthesizing either a cylindrical inward traveling wave (CITW) [9,25,26] or a cylindrical stand-
ing wave (CSW) [27] aperture distribution, whose respective mathematical description is an
Hankel or a Bessel function, respectively. It is worth noting that the proposed EM pulse launch-
ers do not generate vortices and OAM at millimeter waves, since the overall phase progression
of the synthesized field distribution is constant on the radiating aperture.

Since for RLSA antennas the impedance bandwidth (i.e., the frequency range in which the
device can efficiently accepts the input power from the feeder, normally a coaxial cable at
microwaves/millimeter waves) is usually very large, the band limitation of the device is then
mainly caused by the aperture distribution deterioration out of the central design frequency. For
a Bessel beam launcher, unlike standard antennas, the gain is not a useful parameter to char-
acterize performances and bandwidth, since it is normally well-defined for applications in the
Fraunhofer (or far-field) region [28]. On the other hand, the spatial confinement of the generated
EM pulses, both in the longitudinal and transverse directions with respect to the axis of propaga-
tion, is connected to the launcher dispersion characteristic and, therefore, it will be investigated
in detail. It has been shown in [29] that the bandwidth of the feeding pulse plays a key-role in the
longitudinal confinement of the pulse, whereas Bessel beam beamwidth at the central frequency
dictates the transverse confinement of the pulse. To make a balanced comparison, both CITW
and CSW launchers are analyzed when fed by a Gaussian pulse, and the spatial dispersion of
generated EM pulses is examined, revealing a subluminal weakly-dispersive propagation up to
the DOF.

The proposed comparison clarifies strong points and intrinsic limitations of both RLSA CSW
and CITW launchers for the efficient generation of EM pulses at millimeter waves.

2. Analysis of broadband response of RLSA Bessel beam launchers

In this Section, an approximate model is derived for the estimation of RLSA Bessel beam
launchers dispersion properties (i.e., the wavenumber versus frequency diagram), either in the
case of CITW or CSW aperture distributions. In the following, the standard cylindrical refer-
ence system (ρ, φ, z) is considered, with the origin lying at the center of the radiating aperture
corresponding to the plane z = 0. The launchers are made by conveniently etching several slot
pairs on the top plate of a radial parallel plate waveguide (PPW), so as to synthesize the desired
CSW or CITW magnetic current distribution, by using a holographic criterion [30]. Accord-
ing to Bethe theory [31], each slot can be modeled as an equivalent magnetic dipole moment,
whose strength is proportional to the incident magnetic field Hinc of the feeding wave (which
propagates inside the PPW) at the slot position, namely

M = α ·Hinc , (1)

where α is the dyadic slot polarizability, that is dominantly directed along the slot direction ûs

for a single slot (α ≈ αûs ûs), whereas it is given by α ≈ α(e jπ/4û1û1 + e− jπ/4û2û2), with

û1,2 = (φ̂∓ ρ̂)/
√

2, for a right/left handed circular polarized slot pair (RH/LHCP) [30]. Without
loss of generality, here we will focus on the RHCP case. Moreover, we suppose the PPW to be
fed by the fundamental TM00 Transverse Magnetic mode. Hence, the magnetic field incident on
each slot (on the PPW side) is [32]

Hinc (ρ, φ) = AH (2)
1 (kd ρ)φ̂, (2)

where k0 = 2π f /c and kd = k0
√
ε r are the wavenumbers in free-space and in the dielectric

filling the PPW, respectively, H (m)
n (·) is the m-th kind Hankel function of n-th order, and A

is an arbitrary amplitude constant. By asymptotically evaluating Eq. (2) for large arguments
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(kd ρ >> 1) [33], one finds the cylindrical wave expression

Hinc (ρ, φ) ≈ j A

√
2 j

kdπ
e− jkd ρ

√
ρ
φ̂ (3)

and then the RLSA slot pair dipole moment can be estimated as

M(ρ, φ) ≈ αA

√
2 j

kdπ
e− j (kd ρ−φ)

√
ρ

ûRH , (4)

where ûRH = (x̂ − jŷ)/
√

2 denotes the RHCP unit vector. The above formula is used to design
the desired aperture distribution. Indeed, the magnetic dipole moment phase is selected by the
slot pair positions (ρ, φ), whereas its amplitude is modulated by the slot length, which in turn
modulates the slot polarizability α [30].

In the next subsections, the previous results will be specialized for the cases of CSW and
CITW magnetic current distributions.

(a) (b)

Fig. 1. Design of Bessel beam launchers implementing (a) CSW and (b) CITW aperture
distributions.

2.1. Launcher based on a cylindrical standing wave aperture distribution

As presented in [27], a RLSA Bessel beam launcher based on a CSW can be designed by
synthesizing a magnetic dipole moment distribution at the center operating frequency f = f̄
(hereinafter a bar over a quantity denotes that it is evaluated at the design frequency f̄ )

M(ρ, φ) = 2M0 J0

(
k̄ρ ρ
)

ûRH , (5)

in which k̄ρ = k̄0 sin θ̄ is the imposed radial wavenumber and θ̄ the corresponding axicon angle
at the design frequency, J0(·) the zeroth order Bessel function, and M0 is an arbitrary constant
amplitude. By equating the magnitudes of Eq. (5) and Eq. (4), one finds the shaping of the
polarizability α

α ≈
∣∣∣∣∣M0

A

∣∣∣∣∣
√

2π k̄d ρ
∣∣∣J0(k̄ρ ρ)

∣∣∣ ≈ 2
∣∣∣∣∣M0

A
cos
(
k̄ρ ρ − π4

)∣∣∣∣∣ , (6)
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which can be achieved by a suitable shaping of the slot lengths. To set Eq. (6) equal to Eq.
(4), also the phase has to be the same. Therefore, the positions of slot pairs have to be chosen
alternatively on the two spirals ρ = ρ0 + φ/k̄d and ρ = ρ0 + φ/k̄d + λ̄d/2 (being ρ0 an arbitrary
starting point close to the antenna center, and λ̄d = λ̄0/

√
ε r the wavelength in the dielectric

filling the PPW at the design frequency), to achieve the required π phase shift across the Bessel
function zeros, as shown in Fig. 1(a).

To analyze the broadband behavior of such a Bessel beam launcher based on a CSW aperture
distribution, let us vary the operating frequency f of an amount Δ f = f − f̄ . Since the slot po-
sitions are fixed by the design performed at f̄ , then the equivalent magnetic current distribution
becomes

M(ρ, φ) ≈ 2M0 J0(k̄ρ ρ)e
− jΔkd ρ ûRH , (7)

in which the wavenumber variation Δkd = kd − k̄d = 2πΔ f
√
ε r/c has been introduced. In-

deed, the frequency shift introduces a radial linear phasing on the aperture. By decompos-
ing the Bessel function in Eq. (7) as the sum of two Hankel functions, namely 2J0(k̄ρ ρ) =
H (1)

0 (k̄ρ ρ) + H (2)
0 (k̄ρ ρ), two wave contributions are highlighted. The first wave constituent is

an inward traveling wave with a radial wavenumber kρ = −k̄ρ +Δkd radiating a geometrical op-
tics (GO) field, inside a cone around the z-axis with tip coinciding with the launcher center [26],
which is a Bessel beam with transverse electric field

Et (ρ, φ, z) ≈ 2M0 J0

(
(k̄ρ − Δkd )ρ

)
e− j

√
k2

0−(k̄ρ−Δkd )2
z ûRH . (8)

Such a contribution is no longer present if the frequency becomes greater than f ≥
f̄
(
1 + sin θ̄/

√
ε r
)
, since the radial wavenumber becomes positive, hence the inward Hankel

wave contribution becomes an outward one [25, 26]. On the other hand, the second wave con-
stituent is an outward traveling wave aperture distribution with a radial wavenumber kρ =
k̄ρ+Δkd , that contributes only to the diffracted field and does not radiate any leading GO contri-
bution. However, for frequencies below the design frequency f̄ such that f ≤ f̄

(
1 − sin θ̄/

√
ε r
)
,

this wave becomes an inward Hankel wave, and an additional GO field contribution arises inside
the cone θ < θ̄, hence the total transverse electric field is the superposition of two Bessel beams

Et (ρ, φ, z) ≈ 2M0

[
J0

(
(k̄ρ − Δkd )ρ

)
e− j

√
k2

0−(k̄ρ−Δkd )2
z
+

J0

(
(k̄ρ + Δkd )ρ

)
e− j

√
k2

0−(k̄ρ+Δkd )2
z
]
ûRH . (9)

In conclusion, a pure Bessel beam can be generated by using a standing cylindrical aperture
distribution, such as that depicted in Fig. 2(a), only in the frequency range

f̄
(
1 − sin θ̄/

√
ε r
)
≤ f ≤ f̄

(
1 + sin θ̄/

√
ε r
)
. (10)

2.2. Launcher based on an inward traveling wave aperture distribution

As outlined in [26], a proper slot arrangement shown in Fig. 1(b) allows for the synthesis of a
RLSA Bessel beam launcher based on a CITW distribution of the form

M(ρ, φ) = M0H (1)
0

(
k̄ρ ρ
)

ûRH , (11)

at the design frequency f̄ . Such an aperture distribution is achieved by choosing the slot lengths
by comparing Eq. (11) and Eq. (4), so that

α ≈
∣∣∣∣∣M0

A

∣∣∣∣∣
√

k̄d
k̄ρ
, (12)
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(a) (b)

Fig. 2. Synthesized co-polar component of the electric field for both (a) CSW and (b) CITW
launchers, evaluated on a plane at z = λ̄0 = 5 mm, at the central frequency f̄ = 60 GHz.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Transverse wavenumber spectrum for (a,b,c) CSW and (d,e,f) CITW launchers, at
f = 57 GHz, 60 GHz and 63 GHz, respectively. The visible limit is highlighted in each
plot (dashed red lines).
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and their position is on the spiral ρ = ρ0+φ/
(
k̄d + k̄ρ

)
. If a deviation from the central frequency

is imposed, the different phase progression on the aperture gives

M(ρ, φ) ≈ M0H (1)
0

(
k̄ρ ρ
)

e− jΔkd ρ ûRH , (13)

where, again, a linear phasing is induced on the aperture. By the same considerations as in the
previous subsection, when the frequency becomes greater than f̄

(
1 + sin θ̄/

√
ε r
)

the inward
traveling wave aperture distribution becomes outward, and, according to [26], no Bessel beam
can be generated inside the cone θ < θ̄. Thus, a Bessel beam in the same form of Eq. (8) is
generated by the CITW aperture distribution in the frequency range

f ≤ f̄
(
1 + sin θ̄/

√
ε r
)
. (14)

It is worth noting that such a frequency range has the same upper-bound of that in Eq. (10), but
does not have any lower-bound. Hence, CITW launchers exhibit better performances in terms
of operating bandwidth, and do not suffer of the occurrence of an additional spurious Bessel
beam at low frequency.

3. Design of CSW and CITW Bessel beam launchers

In this Section, we compare the broadband capabilities of two different practical Bessel beam
launchers in RLSA technology, obtained by enforcing a CSW and a CITW aperture distribution.
Both the launchers are designed at the central frequency f̄ = 60 GHz, by assuming an aperture
of radius ρa = 15.5λ̄ = 78.5 mm, and an axicon angle θ̄ = arcsin(k̄ρ/k̄) = 5◦, being λ̄ = 5 mm
the wavelength at the design frequency and k̄ρ = k̄ sin θ̄ ≈ 109 m−1 the radial wavenumber
imposed on the aperture. All slot pairs center are spaced ΔS = 0.7λ̄ = 3.5 mm each other along
the spiral. Both the launchers radiate a right-hand circular polarization (RHCP).

The radial PPW with relative permittivity of the filling dielectric εr = 2.2 − j (1.98 × 10−3),
and thickness h = 7.87 mm was designed to allow the propagation of only the fundamental
T M00 mode. The starting design has been calculated according to the simplified model de-
scribed in Section 2, then an in-house method of moments was used for the EM analysis [34,35]
and for the launcher optimization until its aperture field fits the desired one [30]. The synthe-
sized co-polar (RHCP) component of the electric field was evaluated for both the launchers on
an aperture plane at z = λ̄0 = 5 mm and reported in Fig. 2, exhibiting a substantial azimuthal
symmetry and following the desired Bessel or Hankel function shape, as expected from Eqs.
(5)–(11).

3.1. Transverse wavenumber spectral analysis

To derive the dispersion properties of the synthesized launchers, a spectral approach was fol-
lowed. As a first step, the equivalent magnetic current distributions was Fourier-transformed in
the transverse wavenumber plane kρ = kx x̂ + ky ŷ, namely

M̃(kρ ) =
�

R2
M(ρ, φ)e j (kx x+ky y )dkxdky ≈

Np∑
n=1

Mne jkρ ·ρn ρn , (15)

with Mn denoting magnetic dipole moment of the n-th slot pair at ρn = (ρn , φn ) predicted
by the MoM analysis. In Fig. 3, the co-polar component of the magnetic current distribution
spectrum |M̃(kρ ) · û∗

RH
| is shown in the kx–ky transverse wavenumber plane at 57, 60, 63 GHz

for CSW (a,b,c) and CITW (d,e,f) launchers, respectively. Since the aperture distributions are
both almost azimuthally invariant, also the spectra are practically φ-independent in the form
of spectral rings. In particular, because of the sampling in the radial direction due to the slot
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(a) (b)

(c) (d)

Fig. 4. (Background image) Co-polar traveling wave radial wavenumber (kρ ) spectrum
|M̃0 · û∗RH

| for varying frequency f ∈ [50, 70] GHz, predicted by post-processing the
MoM analysis for the (a) CSW and (b) CITW launchers. By collecting the background
image maxima, the radial wavenumber dispersion diagram of the radiating N = 0 mode,
obtained and compared against the approximate closed form model developed in Section
2 (black thin lines in (a) and (b)), is shown (red and blue thick lines). Dependence of the
axicon angle θ on frequency for (c) CSW and (d) CITW launchers. The solid/dotted line
style corresponds to the frequency range where the Bessel beam can/cannot be generated
by the various wave constituents.
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(a) (b)

(c) (d)

Fig. 5. Longitudinal wavenumber (kz ) dispersion diagram for varying frequency f ∈
[50, 70] GHz, calculated by post-processing the MoM analysis for the (a) CSW and (b)
CITW launchers (red and blue thick lines) and by using the theoretical model (black thin
lines). Dependence of the phase velocity (dashed red and blue lines) and of the group ve-
locity (solid/dotted red and blue lines) on frequency for (c) CSW and (d) CITW launchers,
as predicted by the MoM analysis. The solid/dotted line style corresponds to the frequency
range where the Bessel beam can/cannot be generated by the various wave constituents.
The approximate theoretical counterparts (black lines) are also reported for comparison.
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(a)

(b)

Fig. 6. Vertical ρz maps of co-polar component of the radiated electric field, by us-
ing the synthesized (a) CSW and (b) CITW aperture distributions, in the bandwidth
f ∈ [54, 66] GHz, respectively.
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arrangement on a spiral with a step ΔSB = 2π/k̄d for CSW and ΔSH = 2π/(k̄d + k̄ρ ) for CITW
launchers, according to Floquet (or Bloch) Theorem, an infinite number of rings arises in the
spectral domain. In addition, for the CSW launcher the slot amplitude modulation in Eq. (6)
splits the "carrier" into two lateral spectral lines shifted by ±k̄ρ . Therefore, the Floquet radial
wavenumbers are kB

ρ = kd+mk̄d± k̄ρ for CSW and kH
ρ = kd+m(k̄d+ k̄ρ ) for CITW launchers,

with m ∈ Z. Among all the spectral replicas, only those for which kB ,H
ρ ≤ k0 contribute to the

radiation (leaky waves), whereas the other are associated to surface waves, i.e., evanescent along
the longitudinal z-direction. In the cases of CSW and CITW spectra of the equivalent magnetic
current, only the m = −1 Floquet wave falls in the visible range (region inside red dashed lines
in Fig. 3) and then contribute to the radiation of the Bessel beam. Namely, for m = −1 one finds
kB
ρ = Δkρ ± k̄ρ and kH

ρ = Δkρ − k̄ρ , as discussed in Section 2.

Fig. 7. Vertical ρ−z field map showing the EM pulses generated at t = 0.5, 2, 3.5 ns by both
CSW (left) and CITW (right) launchers. The spatial confinement along both longitudinal
and transverse directions is clearly visible.

3.2. Radial wavenumber spectral analysis

A drawback in the kx -ky plane spectral representation is that outward and inward cylindrical
wave constituents generating the Bessel beam cannot be recognized, since they exhibit the same
spectral rings, as in Fig. 3. Then, in order to distinguish between them and calculate the radial
wavenumber dispersion, it is of interest to expand the magnetic current distribution of both CSW
and CITW launchers in terms of cylindrical traveling waves, namely

M̃N (kρ ) =
∫ 2π

0

∫ +∞

0
M(ρ, φ)H (1)

N
(kρ ρ)e

jNφ ρdρφ ≈
Np∑
n=1

MnH (1)
N

(kρ ρn )e jNφn ρn , (16)

being Np the number of slot pairs. By evaluating the previous expression for both the CSW
and CITW aperture distributions and for N = 0,±1, due to the practical azimuthal symme-
try achieved in these launchers, only the radial wavenumber associated to N = 0 significantly
contributes to the radiated field. It is worth noting that the radial wavenumber defined in Eq.
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(16) is connected to the transverse wavenumbers in Eq. (15) by kρ = ±
√

k2
x + k2

y , where kρ > 0
(kρ < 0) corresponds to outward (inward) waves. The co-polar component of the traveling wave
spectrum |M̃0(kρ ) · û∗

RH
| is shown in Fig. 4 for various frequencies in the overall bandwidth

f ∈ [50, 70] GHz, for (a) CSW and (b) CITW launcher. The dispersion diagram for both the
launchers was calculated by tracing the peaks of the traveling wave spectrum at any frequency
and it is also shown in Figs. 4(a)–(b) (red and blue lines). As it is apparent, the dispersion dia-
gram of the radiating mode N = 0 for the CSW launcher is composed by two wave constituents,
namely at 60 GHz an inward (kρ < 0, red line) and an outward (kρ > 0, blue line) cylindrical
waves, whereas the CITW launcher exhibits only one inward cylindrical wave constituent, as
expected [26]. The solid/dotted line style corresponds to the frequency range where the Bessel
beam can/cannot be generated by the various wave constituents. These numerically obtained
dispersion diagrams are compared to their approximate estimation given in Section 2, marked
with black lines in Figs. 4(a)–(b). The discrepancy between the closed form approximate model
for the radial wavenumber dispersion estimation and that obtained by the numerical simulation
is due to the fact that the former neglects the slot mutual coupling by using the simplified Bethe
model [31], whereas the latter accounts for it. Therefore, the MoM can predict the correct radial
wavenumber propagation of the feeding wave in the PPW when it is loaded by the slots, unlike
the approximate model, in which the feeding wave is assumed to travel with the unperturbed
wavenumber kd . The closed form model qualitatively describes the phenomenon but the slope
of the dispersion is slightly different. Moreover, in Figs. 4(c)–(d) the variation of axicon angle
θ = arcsin(kρ/k) is shown versus frequency in the considered bandwidth f ∈ [50, 70] GHz.

In Figs. 5(a)–(b), the longitudinal wavenumber dispersion with frequency is shown, both for
(a) CSW and (b) CITW launchers. The solid lines are associated to frequency ranges in which
the Bessel beam cannot be generated by various wave constituents. In addition, in Figs. 5(c)–
(d) the phase (dashed-dotted blue and red lines) and group velocities (solid blue and red lines),
normalized to the speed of light in free-space, are depicted versus frequency for (c) CSW and
(d) CITW launchers, respectively. As it is apparent, the phase velocity is superluminal in all the
bandwidth, whereas the group velocity is always subluminal in the frequency ranges in which
the Bessel beam can be generated (solid lines).

3.3. Monochromatic field maps

In order to analyze the generation of monochromatic Bessel beams in a broad band with respect
to the central frequency, the co-polar component of the radiated electric field, i.e., |E(r) · û∗

RH
|,

was calculated numerically for both CSW and CITW launchers, for various frequencies, and
shown in Fig. 6. By recalling Eqs. (10)–(14), it is apparent that CSW (CITW) launchers can radi-
ate a Bessel beam in the bandwidth f ∈

[
f̄ (1 − sin θ̄/

√
ε r ), f̄ (1 + sin θ̄/

√
ε r )
]
≈ [57, 63] GHz

( f ≤ f̄ (1+ sin θ̄/
√
ε r ) ≈ 63 GHz). Below the lower frequency f = 57 GHz, the designed CSW

launcher generates two interfering geometrical optics contributions, as can be noted in Fig. 4(a)
at f = 54 GHz, whereas in the same frequency range CITW still generates a Bessel beam, as
reported in Fig. 4(b) at f = 54 GHz. Hence, CITW in general exhibits a larger bandwidth with
respect to CSW launchers. On the other hand, above the upper frequency f = 63 GHz neither
CSW nor CITW launchers are able to radiate a Bessel beam and only diffraction contributes to
the radiated field (see Figs. 4(a)–(b), f = 66 GHz). It is worth noting that at the upper limit of
the bandwidth ( f = 63 GHz), the non-diffractive range goes to infinity, hence both launchers
behave as afocal systems, i.e. as standard antennas. The evaluation of the field maps in Fig. 6
with respect to frequency fits the dependence of the axicon angle θ on frequency described in
the dispersion diagram of Figs. 4(c)–(d).
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4. Time domain analysis of EM Gaussian pulses

A Gaussian frequency spectrum can be profitably used for the generation of EM pulses. Indeed,
the transfer function of common RF transmitters can be well-approximated by a band-pass Gaus-
sian filter. Moreover, the Fourier transform counterpart of a Gaussian function is still Gaussian,
thus simplifying calculations involving Fourier spectra. Hence, we consider an unit power feed-
ing Gaussian pulse carrying unitary power, whose analytical signal is

g+(t) =
e−

t2

2Σ2 e jω0 t

π1/4
√
Σ
, (17)

where Σ is the pulse standard deviation. Its Fourier spectrum is a Gaussian wave-packet

G(ω) = π1/4
√

2Σe−(ω−ω0)2 Σ2
2 , (18)

whose bandwidth is proportional to 1/Σ. The time-domain electric field generated when feeding
a launcher by such a pulse can be calculated by properly superposing monochromatic Bessel
beams as

e+(ρ, φ, z; t) =
1

2π

∫ +∞

−∞
G(ω)E(ρ, φ, z;ω)e jωt dω. (19)

4.1. Localized EM pulse maps

The proper superposition of all the monochromatic contributions to the radiated electric field
E(ρ, z;ω) over the entire considered bandwidth f ∈ [50, 70] GHz, weighted by a Gaussian
shape G(ω) of the form given in Eq. (18) with Σ = 1/(4π) ns (corresponding to a 50% pulse
duration of 187 ps and a 3 dB bandwidth of 3.32 GHz), allows for the generation of spatially
localized EM pulses [1, 2]. In Fig. 7, the complex envelope magnitude of the co-polar com-
ponent of the radiated electric field |e+(r) · û∗

RH
| is shown for CSW and CITW launchers at

three different time instants, namely at t = 0.5, 2, 3.5 ns. When the pulse propagates along the
longitudinal direction, it preserves its spatial confinement up to the non-diffractive range (i.e.,
zdo f = ρmax cot θ̄ ≈ 90 cm), whereas it starts spreading out beyond it. Therefore, EM pulses
can be generated by means of CSW or CITW launchers.

5. Conclusion

In this paper, the broadband capabilities of two RLSA Bessel beam launchers, namely gener-
ated by CSW and CITW aperture distributions, have been analyzed. The simplified theoretical
analysis of the EM field radiated by both the distributions have shown that CITW launchers
can generate monochromatic Bessel beams over a larger bandwidth with respect to CSW ones.
Moreover, two designs of CP Bessel beam launchers have been proposed by using an holo-
graphic approach, and an in-house MoM has been used for the analysis of the radiated EM field.
In order to analyze the response of the launchers in a broad frequency band, the wavenumber
dispersion has been estimated numerically. The last part of the paper have been focused on the
possibility of generating spatially confined EM pulses by continuously superposing monochro-
matic Bessel beams over a certain bandwidth. The obtained results pave the way to efficiently
design RLSA EM pulse launchers at microwaves/millimeter waves.

                                                                                              Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 19560 




