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examine its relation with various similar notions, including the weak Whyburn 
property. Our investigation will suggest several interesting questions.
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1. Introduction

In [16] J. Brazas and the second author have recently introduced and studied strongly pseudoradial spaces, 
which form a quite natural subclass of pseudoradial spaces. Roughly speaking, the difference between them 
is to replace in the latter transfinite converging sequences with compact ordinals. As a countable convergent 
sequence is always a topological copy of ω + 1, we immediately see that every sequential space is strongly 
pseudoradial. In [16] the major emphasis was made in the categorical structure, while here we will focus on 
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the topological properties. For instance, it turns out that strongly pseudoradial spaces have a nice behavior 
in products, see Theorems 4.4 and 4.10. We will also compare this notion with other similar ones, including 
the weak Whyburn property.

Several questions, not only related to strongly pseudoradial spaces, are formulated.

2. Preliminaries and basic definitions

All spaces here are assumed T2. For notations and undefined concepts we refer to [22] and [19].
A transfinite sequence 〈xα : α < κ〉 converges to a point x provided that for any neighborhood U of x

there exists some β < κ such that {xα : β < α < κ} ⊆ U .
Recall that a topological space X is pseudoradial if for every non-closed subset A ⊆ X there is a point 

x ∈ A \A and a (transfinite) sequence S ⊆ A converging to x.
The systematic investigation of the topological properties of these spaces was initiated by Arhangel’skĭı 

more than 40 years ago. Since then, several subclasses of pseudoradial spaces have been considered by many 
authors (see e.g. [14]). Some of them will be considered here and mentioned below.

Very recently the further notion of strongly pseudoradial space appeared in the literature [16]. However, 
this notion seems to have been considered already in 1970 by S. Mrówka under the name of Rw [25].

Definition 2.1. A topological space X is called strongly pseudoradial if for any non-closed subset A ⊆ X

there is a limit ordinal γ and a continuous map f : γ + 1 = γ ∪ {∞γ} → X such that f(γ) ⊆ A and 
f(∞γ) /∈ A (here we write γ + 1 = γ ∪ {∞γ} to avoid confusion). The ordinal γ + 1 is considered here as a 
topological space with the order topology.

In [16] the authors pointed out that, without any loss of generality, in the above definition the ordinal γ
can be assumed to be a regular cardinal and the function f injective.

Observe that in the usual definition of pseudoradial spaces, we actually consider on the ordinal κ + 1
the so called directed topology, where points β < κ are isolated while neighborhoods of ∞κ are the sets 
]β, κ] = ]β, ∞κ], β < κ. Obviously, in the uncountable case, this topology is strictly finer than the order 
topology.

By replacing in the definition of pseudoradial space sequence with thin sequence or essential sequence, 
we obtain the notion of almost radial space [2] and essentially pseudoradial space [13].

A sequence 〈xα〉α<κ converging to x is thin if for any β < κ we have that x /∈ {xα : α < β}.
A sequence 〈xα〉α<κ converging to x is essential [13] if it is injective and {xα : α < κ} = {xα : α < κ}

∪ {x}.
Of course, a countable convergent sequence is thin and, if injective, essential.
The radial character of a pseudoradial space X, denoted by χR(X), is the smallest cardinal κ such that 

the definition of pseudoradiality for X works by taking only transfinite sequences of length not exceeding κ.
Clearly, the pseudoradial spaces of countable radial character are precisely the sequential spaces.
Finally, the classes of spaces that are now known as Whyburn and weakly Whyburn were independently 

discovered several times under different names. Gordon T. Whyburn in 1955 introduced spaces accessible 
by closed sets that he called spaces having property H [40]. Later on, in the class of T1 spaces, Whyburn 
considered the accessibility spaces or spaces approximately accessible by closed sets [41]; for regular spaces, 
accessibility spaces coincide with spaces having property H. Siwiec and Mancuso in their paper [36] cite 
accessibility spaces and remember their characterization in terms of maps. In 1982 Okromeshko [30] gave 
a characterization of such spaces. In 1987 Dimov, Isler and Tironi [17] introduced the classes of gF-spaces
and gs-spaces (to be identified with the Whyburn and weakly Whyburn spaces respectively) and briefly 
described some of their properties. In 1993 Pultr and Tozzi [32] introduced spaces having the property 
of approximation by points (AP) and shortly after Simon [35] studied also spaces having the property of 
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weak approximation by points (WAP). Then, Bella [5] pointed out the nice relationship between WAP and 
pseudoradial spaces.

AP are the same as gF-spaces and are called now Whyburn spaces; WAP are the same as the gs-spaces 
and are called now weakly Whyburn spaces. Names for these classes of spaces continued to fluctuate until 
A.V. Arhangel’skĭı noticed and communicated to the authors of [33] that the concept of AP space was first 
introduced by Whyburn.

Definition 2.2. A topological space X is said to be Whyburn if for every non-closed subset A of X and every 
x ∈ A \A there is a subset B ⊆ A such that {x} = B \A.

A topological space X is said to be weakly Whyburn if for every non-closed subset A of X there is 
x ∈ A \A and a subset B ⊆ A such that {x} = B \A.

Whyburn spaces are a generalization of Fréchet–Urysohn spaces and weakly Whyburn spaces are a gen-
eralization of sequential spaces. Clearly every Whyburn space is weakly Whyburn. A space X is hereditarily 
weakly Whyburn if any subset Y ⊆ X is weakly Whyburn. Any Whyburn space is hereditarily weakly 
Whyburn, but it is not true that any hereditarily weakly Whyburn is Whyburn. A simple example is the 
space ω1 + 1 with the order topology (see [39,29]).

Remark 2.3. Taking into account the definition of radial space, one may be tempted to consider the analogous 
notion of strongly radial space, by requiring that for any set A ⊆ X and any point x ∈ A \ A there is a 
limit ordinal γ and a continuous function f : γ + 1 → X satisfying f(γ) ⊆ A and f(∞γ) = x. However, it 
turns out that such a definition is meaningless. Arguing as in Theorem 3.1, we see that a strongly radial 
space should be Whyburn. But every compact Whyburn space is actually Fréchet [15, Theorem 1.1]. This 
suffices to conclude that a space is strongly radial if and only if it is Fréchet.

3. Strongly pseudoradial spaces: general facts and relations with other notions

As already mentioned, a strongly pseudoradial space is basically a pseudoradial space in which the closure 
of a set is determined by using homeomorphic copies of compact ordinals. This gives several additional 
properties to such spaces.

Recall that a space X is a k-space provided that a set A ⊆ X is closed whenever A ∩K is closed for each 
compact set K.

Theorem 3.1. A strongly pseudoradial space is essentially pseudoradial, almost radial, weakly Whyburn and 
a k-space.

Proof. Let X be a space and A ⊆ X be a non-closed set. If X is strongly pseudoradial, then there is a 
regular cardinal κ and a continuous injective map f : κ ∪{∞κ} → X such that f(κ) ⊆ A and f(∞κ) ∈ A\A. 
As we are assuming that X is T2, we see that the set S = f(κ ∪{∞κ}) is a closed subset of X homeomorphic 
to κ +1 = κ ∪{∞κ} with the order topology. This immediately shows that S is both a thin and an essential 
sequence in X. Furthermore, the set S also witnesses that X is weakly Whyburn and a k-space. �

The one-point Lindelöfication of an uncountable discrete space D is almost radial, essentially pseudora-
dial, Whyburn, but not strongly pseudoradial. Indeed, let X = D∪{p} be such space. It suffices to observe 
that every compact set in X is finite and therefore Theorem 3.1 would imply that X is discrete.

A nicer example, which is also a topological group, is the space Cp(κ), where κ is a regular ω-inaccessible 
cardinal with the order topology. Recall that ω-inaccessible means that λω < κ for every λ < κ. Cp(κ) is 
not sequential, but it is almost radial [18] and weakly Whyburn [12]. However, Cp(κ) cannot be strongly 
pseudoradial because by Theorem 3.1 it should be a k-space and Pytkeev [34] has shown that if Cp(X) is 
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a k-space, then it is sequential. An argument used in [6] shows that under certain circumstances the above 
Cp(κ) can be even essentially pseudoradial.

For compact spaces the situation appears much more delicate.

Question 3.2. Find a compact essentially pseudoradial and almost radial space which is not strongly pseu-
doradial.

An important subclass of almost radial spaces is in the next definition.
A space X is semiradial if every non-κ-closed subset A contains a sequence S converging to a point 

outside A and satisfying |S| ≤ κ. As mentioned below, these spaces play an important role when dealing 
with the product operation (see Theorem 4.2).

In view of Theorem 3.1, one may wonder whether strongly pseudoradial spaces are also semiradial.
It turns out that this is false even within the class of compact spaces.
Recall that a tower is a well-ordered, by reverse almost inclusion, family of infinite subsets of ω with 

no infinite pseudo intersection. In other words, the family {Bα : α ∈ γ} of infinite subsets of ω is a tower 
provided that:

(i) if α < β, then |Bα \Bβ | = ω and |Bβ \Bα| < ω;
(ii) if A is an infinite subset of ω, then there exists some α such that |A \Bα| = ω. The smallest cardinality 

of a tower is denoted by t.

Example 3.3. A compact strongly pseudoradial space which is not semiradial.

Construction: Let {Aα : α ∈ t} be a family of subsets of ω such that {ω \ Aα : α ∈ t} is a tower. 
Furthermore put At = ω. Define a topology on the set X = ω ∪ {xα : α ≤ t} by declaring each point of ω
isolated and taking as a local base at xα the sets {xγ : β < γ ≤ α} ∪ (Aα \ (Aβ ∪ F )), where F is a finite 
subset of ω and β < α. It is easy to see that the space X is compact and Hausdorff.

We check first that X is not semiradial. This happens because the set X \ {xt} is not ω-closed, but no 
countable sequence in it converges to xt. Indeed, let S ⊂ X \ {xt} be a countable set. If S ⊂ X \ ω, then it 
cannot converge to xt because X \ω is a topological copy of t +1 and t has uncountable cofinality. If S ⊂ ω, 
then by property (ii) there exists some α ∈ t such that |S ∩ Aα| = ω and we see that the set S ∩ Aα is a 
sequence converging to xα. So, again S cannot converge to xt.

Now, let us prove that X is strongly pseudoradial. Take a non-closed set A and let γ be the smallest 
ordinal such that xγ ∈ A \A.

Case 1: xγ ∈ A \ ω. Since X \ ω is homeomorphic to the set t + 1 equipped with the order topology, we 
may fix a minimal cofinal set C ⊆ A ∩ {xα : α < γ}. The order type of C is a cardinal κ and it is easy to 
see that the isomorphism f : κ → C induces a continuous injection f : κ ∪ {∞κ} → C ∪ {xγ} and obviously 
f(κ) = C converges to xγ . Thus, in this case we have found the desired “strong sequence” converging to xγ.

Case 2: xγ /∈ A \ ω. Then there exists some β < γ such that xα /∈ A for all β < α < γ. By the minimality 
of γ, we see that the set {xγ} ∪ (A ∩ (Aγ \ Aβ)) is closed in X and hence compact. Moreover, this set is 
countable and has xγ as the only non-isolated point. Therefore, A ∩ (Aγ \ Aβ) is a sequence converging 
to xγ . This suffices, since ordinary sequences are “strong sequences”. Thus X is strongly pseudoradial. �

As we observed in the introduction, all sequential spaces are strongly pseudoradial, but this is the only 
case when we can easily determine if a space has this property. The passage from ω + 1 to the successor 
of an uncountable cardinal appears much more difficult. However, a remarkable consequence of the proper 
forcing axiom (PFA) describes a possibility to do it for κ = ω1 (see also [27], Theorem 5.14).



168 A. Bella et al. / Topology and its Applications 220 (2017) 164–172
Theorem 3.4. [3] PFA implies that in every countably compact T3 space of character at most ω1 the closure 
of a subset A can be obtained by first adding all limits of convergent sequences and then adding to the 
resulting set Â all points x for which there is a copy W of ω1 in Â such that W ∪ {x} is homeomorphic to 
ω1 + 1.

Corollary 3.5. If PFA holds, then every countably compact T3 space of character at most ω1 is strongly 
pseudoradial.

In view of Theorem 3.4, it may be possible to obtain the answer to the following special case of Ques-
tion 3.2.

Question 3.6. PFA. Let X be a compact essentially radial and almost radial space of radial character ω1. 
Is X strongly pseudoradial?

4. Products

A central and old problem is whether the class of compact pseudoradial spaces is finitely productive. 
This problem is still open in ZFC. In this direction, the best known facts are:

Theorem 4.1 (Juhász–Szentmiklossy). [24, c ≤ ω2] The product of countably many compact pseudoradial 
spaces is pseudoradial.

Theorem 4.2 (Bella–Gerlits). [11] The product of a compact pseudoradial space and a compact semiradial 
space is pseudoradial.

Theorem 4.3 (Bella–Dow–Tironi). [10, c ≤ p+] The product of two compact pseudoradial spaces is pseudo-
radial provided that one of them has radial character not exceeding ω1.

The notion of strongly pseudoradiality enables us to add one more non-trivial item to the previous list, 
as well as other results concerning the product operation.

Theorem 4.4. If X is a compact pseudoradial space and Y a strongly pseudoradial space, then X × Y is 
pseudoradial.

Proof. Denote by πY : X × Y → Y the projection. Let A be a non-closed subset of X × Y and fix 
〈x, y〉 ∈ A \A. If 〈x, y〉 ∈ A ∩ (X × {y}), then, since X ×{y} ≡ X is pseudoradial, there exists a transfinite 
sequence in A ∩ (X × {y}) ⊆ A which converges to some point 〈x′, y〉 /∈ A. If 〈x, y〉 /∈ A ∩ (X × {y}), then 
there exists a closed neighborhood V of x such that (V × {y}) ∩ A = ∅. Replacing A with A ∩ (V × Y ), 
we can assume that y /∈ πY [A]. Since y ∈ πY [A], it follows that πY [A] is not closed. Now, being Y strongly 
pseudoradial, there exists a cardinal κ and a continuous function f : κ + 1 = κ ∪ {∞κ} → Y such that 
f(κ) ⊆ πY [A] and f(∞κ) /∈ πY [A]. Let Z = f(κ + 1) and φ : X × (κ + 1) → X × Z be the function 
defined by φ(x, α) = 〈x, f(α)〉 for every α ≤ κ + 1. By Theorem 4.2 the space X × (κ + 1) is pseudoradial. 
Furthermore, the set B = A ∩ (X ×Z) is not closed and, being φ closed and surjective, even φ−1(B) is not 
closed. Therefore, there exists a transfinite sequence S ⊆ φ−1(B) converging to some point p /∈ φ−1(B). 
Now, the set φ(S) ⊆ B ⊆ A is a sequence converging to φ(p) /∈ B. But B = A ∩ (X × Z) and consequently 
φ(p) /∈ A. This completes the proof. �

We wish to emphasize that Theorem 4.4 requires compactness in the first factor only. This cannot be done 
in Theorem 4.2: The product of the unit interval [0, 1] (a very nice compact pseudoradial space) with the 
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one-point Lindelöfication of a discrete space of size ℵ1 (which is obviously semiradial) is not pseudoradial. 
Linked to the previous theorem is the following:

Question 4.5. Is the product of a compact almost radial space with a strongly pseudoradial space almost 
radial?

Indeed, we cannot mimic the proof of Theorem 4.4. To do it, we need to have a positive answer to the 
following:

Question 4.6. Is it true that a continuous image of a compact almost radial space is still almost radial?

Notice that, as already observed in [17], an open (hence quotient) image of an almost radial space may 
fail to be almost radial.

A non-trivial result in [16] is:

Lemma 4.7. [16, Lemma 6.5] The product of two compact ordinals is strongly pseudoradial.

Here we will show that a much more general result holds (Theorem 4.10 below). Let X be a space. A set 
A ⊆ X is SPR-closed if for every infinite cardinal κ and every continuous function f : κ +1 → X, f(κ) ⊆ A

implies f(κ + 1) ⊆ A. Of course, a space is strongly pseudoradial whenever every SPR-closed set is closed.

Lemma 4.8. Suppose X is strongly pseudoradial, suppose f : X → Y is continuous, and A ⊆ Y is SPR-
closed. Then f−1(A) is closed in X.

Proof. Let B = f−1(A). Suppose κ is an infinite cardinal, g : κ +1 → X a continuous function and g(κ) ⊆ B. 
Since A is SPR-closed and f ◦ g(κ) ⊆ A, we have f ◦ g(κ + 1) ⊆ A. This means g(κ + 1) ⊆ B and so B is 
SPR-closed. Since X is strongly pseudoradial, B is actually closed. �
Lemma 4.9. If X is a compact ordinal and Y a strongly pseudoradial space, then X × Y is strongly pseudo-
radial.

Proof. Suppose Z ⊆ X×Y is SPR-closed. Suppose 〈x, y〉 /∈ Z. Since X is T3, there is an open U � x so that 
Z ∩ (U × {y}) = ∅. Let B = {y ∈ Y : (U × y) ∩Z �= ∅}. Suppose κ is an infinite cardinal and f : κ + 1 → Y

is a continuous function satisfying f(κ) ⊆ B. By Lemma 4.7 id × f : U × (κ + 1) → X × Y is a continuous 
function defined on a strongly pseudoradial space. Thus by Lemma 4.8 Z ′ = (id × f)−1(Z) is closed. Let 
C ⊂ κ +1 denote the image of Z ′ under the (closed) projection U× (κ +1) → κ +1. As C is closed, we must 
have C = κ + 1. Therefore, f(κ + 1) ⊆ B and so B is SPR-closed. Since Y is strongly pseudoradial, B is 
actually closed in Y . Note 〈x, y〉 ∈ U × (Y \B), and U × (Y \B) is open and disjoint from Z, and hence Z
is closed in X × Y . �
Theorem 4.10. If X is compact strongly pseudoradial and Y is strongly pseudoradial, then X×Y is strongly 
pseudoradial.

Proof. It is enough to argue as in the proof of Theorem 4.4, by using Lemma 4.9 and the fact that strong 
pseudoradiality is preserved by quotient images. �
Corollary 4.11. The class of compact strongly pseudoradial spaces is finitely productive.

Another partial positive result can be obtained by weakening the compactness hypothesis in Theo-
rem 4.10, as follows:
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Theorem 4.12. If X is a countably compact T3 strongly pseudoradial space and Y a sequential space, then 
X × Y is strongly pseudoradial.

Proof. Denote by πY : X×Y → Y the projection. Let A be a non-closed subset of X×Y and fix 〈x, y〉 ∈ A\A. 
Arguing as at the beginning of the proof of Theorem 4.4, we can assume that y /∈ πY [A]. Since y ∈ πY [A], 
it follows that πY [A] is not closed. Now, being Y sequential, there exists a countable set C ⊆ A such that 
πY [C] is a sequence converging to some point y′ /∈ πY [A]. Since X is clearly sequentially compact, even 
X × (πY [C] ∪ {y′}) is sequentially compact. Therefore, C contains a convergent subsequence S. The limit 
point of S is outside A and we are done. �

In Theorems 4.10 and 4.12 the compactness assumption in the first factor cannot be omitted: Exam-
ple 3.3.29 in [22] provides two T3 sequential spaces whose product is not a k-space, therefore by Theorem 3.1
such a product cannot be strongly pseudoradial.

5. Miscellanea

First of all, we mention some more examples.

Example 5.1. There are examples of spaces that are zero-dimensional, separable, pseudoradial, weakly Why-
burn, but not almost radial (and hence not strongly pseudoradial). Such a space was constructed by Juhász 
and Weiss [23]. (See also [37] for a Hausdorff example.)

Proof. The space is Z = X ∪ {∞} where X is a locally compact, locally countable, countably tight, 
zero-dimensional Hausdorff space, whose closed sets have cardinality either ≤ ℵ0 or the continuum. Also Z
has countable tightness. A neighborhood base of the point ∞ consist of all sets of the form {∞} ∪ (X \A), 
where A is a closed countable set in X. No sequence can converge to the point ∞. In fact its range 
B = {xn : n ∈ ω} is a closed discrete set and {∞} ∪ (X \ B) is a neighborhood of ∞ disjoint with B. 
However the space is weakly Whyburn. Given any non-closed set A, either there is x ∈ (A \ A) ∩ X, and 
a countable sequence with range in A converging to x, or the only point in A \ A is ∞ and so B = A

shows the space is weakly Whyburn. A well ordering of A in type c, also shows that the space is essentially 
pseudoradial (see [13]). As Z is a space of countable tightness that is not sequential, it is not almost radial. 
So it is not even strongly pseudoradial. �

Similar considerations (see [13]) can be made on the one-point compactifications of Ostaszewski’s space, 
constructed using ♦ [31]. The advantage here is to have a compact example with all the properties of the 
previous one.

We finish with some more remarks and questions on weakly Whyburn spaces. Let us recall the following:

Proposition 5.2. [5] Any compact weakly Whyburn space is pseudoradial.

The above result cannot be reversed. Indeed, Dow [20] managed to construct, under ♦, a compact 
pseudoradial space which is not weakly Whyburn.

However, it is still unclear the relation between almost radial and weakly Whyburn spaces. An easy 
inequality, true for every almost radial space X is |X| ≤ d(X)t(X) [6]. Here d(X) and t(X) denote density 
and tightness of X. More recently, Alas et al. [1] were able to prove that the same inequality holds for 
weakly Whyburn spaces. Incidentally, the latter result can be used to obtain another compact pseudoradial 
not weakly Whyburn space (this time consistent with MA +¬ CH), as a by-product of a recent result of 
Dow [21]: there is a model with a compact separable space of countable tightness and cardinality bigger 
than c = ω2. By the result in [1], this space is not weakly Whyburn. In addition, in this space each infinite 
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compact subspace has a point of first countability and so it is sequentially compact, hence pseudoradial 
because c = ω2 and a Theorem in [24]. The example also shows that the inequality |X| ≤ d(X)t(X) may fail 
for a compact pseudoradial space!

Certainly, Dow’s example is not almost radial and one may then wonder whether there is a compact 
almost radial space which is not weakly Whyburn. Perhaps, such a space does not exist, but the interesting 
point here is that we do not know the answer even to the following very natural question. Surprisingly, it 
was not considered so far.

Question 5.3. Is there an almost radial not weakly Whyburn space?

Both examples of Dow are compact spaces. With no compactness, one may expect to obtain such a 
counterexample quite easily in ZFC, but nothing exists at moment in the literature.

Question 5.4. Is there in ZFC a pseudoradial not weakly Whyburn space?

Still in connection with Proposition 5.2, it is worth mentioning that compactness is essential there. 
Spadaro has recently constructed a T3 countably compact weakly Whyburn space which is not pseudora-
dial [38].

Notice that a semiradial space is always weakly Whyburn [5]. In [5] it was also shown that the product of 
a compact weakly Whyburn space and a compact semiradial space is weakly Whyburn and consequently the 
product of finitely many compact semiradial spaces is weakly Whyburn. Furthermore, in [7] it is established 
that the product of countably many compact semiradial spaces is almost radial. We strongly believe the 
next question should have a positive answer.

Question 5.5. Is the product of countably many compact semiradial spaces weakly Whyburn?

Using the second result of [5] mentioned above and mimicking the proof of Theorem 4.4, we obtain the 
following:

Theorem 5.6. The product of a compact weakly Whyburn space with a strongly pseudoradial space is weakly 
Whyburn.

The behavior of the weak Whyburn property in product is more intriguing than the pseudoradial case. 
For instance, we do not have a result analogous to Theorem 4.1.

Question 5.7. Let X and Y be weakly Whyburn (compact) spaces and assume that X × Y is pseudoradial. 
Is it true that X × Y is weakly Whyburn?

The Tychonoff cube 2ω1 has two nice characterizations: 2ω1 is pseudoradial if and only if s > ω1 [26, 
Theorem 3] and 2ω1 is semiradial if and only if p > ω1 [8, Theorem 1]. In addition, by Corollary 3.5, if PFA 
holds, then 2ω1 is even strongly pseudoradial.

Under p > ω1, 2ω1 is indeed a compact separable semiradial not sequential space. Another example of 
this kind is constructed in [27] under the assumption d = ω1. What remains open is the following:

Question 5.8 (ZFC). Is there a compact separable semiradial not sequential space?

A more general (and perhaps easier) version of this question asks for a compact semiradial non-
R-monolithic space. In an attempt to find a positive solution, Nyikos in [28] constructed a space of this kind 
by means of a nice application of PCF theory. Unfortunately, this example requires the axiom �ℵω

, so the 
ZFC case remains still open.
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A pseudoradial space X is R-monolithic provided that χR(A) ≤ |A| holds for every A ⊆ X. Notice 
that, a separable R-monolithic space is sequential. This explains why R-monolithicity serves to generalize 
Question 5.8. The reader may consult [4] and [9] for some further results related to these spaces.
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