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A COMMON EXTENSION OF ARHANGEL’SKII’S

THEOREM AND THE HAJNAL-JUHÁSZ INEQUALITY

ANGELO BELLA AND SANTI SPADARO

Abstract. We present a bound for the weak Lindelöf number
of the Gδ-modification of a Hausdorff space which implies various
known cardinal inequalities, including the following two fundamen-
tal results in the theory of cardinal invariants in topology: |X | ≤
2L(X)χ(X) (Arhangel’skĭı) and |X | ≤ 2c(X)χ(X) (Hajnal-Juhász).
This solves a question that goes back to Bell, Ginsburg and Woods
[6] and is mentioned in Hodel’s survey on Arhangel’skĭı’s Theorem
[15]. In contrast to previous attempts we do not need any separa-
tion axiom beyond T2.

1. Introduction

Two of the milestones in the theory of cardinal invariants in topology
are the following inequalities:

Theorem 1. (Arhangel’skĭı, 1969) [2] If X is a T2 space, then |X| ≤
2L(X)χ(X).

Theorem 2. (Hajnal-Juhász, 1967) [13] If X is a T2 space, then |X| ≤
2c(X)χ(X).

Here χ(X) denotes the character of X , c(X) denotes the cellularity
of X , that is the supremum of the cardinalities of the pairwise disjoint
collection of non-empty open subsets of X and L(X) denotes the Lin-
delöf degree of X , that is the smallest cardinal κ such that every open
cover of X has a subcover of size at most κ.
The intrinsic difference between the cellularity and the Lindelöf de-

gree makes it non-trivial to find a common extension of the two previous
inequalities. The first attempt was done in 1978 by Bell, Ginsburg and
Woods [6], who used the notion of weak Lindelöf degree. The weak
Lindelöf degree of X (wL(X)) is defined as the least cardinal κ such
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that every open cover ofX has a ≤ κ-sized subcollection whose union is
dense in X . Clearly, wL(X) ≤ L(X) and we also have wL(X) ≤ c(X),
since every open cover without < κ-sized dense subcollections can be
refined to a κ-sized pairwise disjoint family of non-empty open sets by
an easy transfinite induction. Unfortunately, the Bell-Ginsburg-Woods
result needs a separation axiom which is much stronger than Hausdorff.

Theorem 3. [6] If X is a normal space, then |X| ≤ 2wL(X)χ(X).

It is still unknown whether this inequality is true for regular spaces,
but in [6] it was shown that it may fail for Hausdorff spaces. Indeed,
the authors constructed Hausdorff non-regular first-countable weakly
Lindelöf spaces of arbitrarily large cardinality.
Arhangel’skĭı [3] got closer to obtaining a common generalization of

these two fundamental results by introducing a relative version of the
weak Lindelöf degree, namely the cardinal invariant wLc(X), i.e. the
least cardinal κ such that for any closed set F and any family of open
sets U satisfying F ⊆

⋃
U there is a subcollection V ∈ [U ]≤κ such that

F ⊆
⋃

V.

Theorem 4. [3] If X is a regular space, then |X| ≤ 2wLc(X)χ(X).

O. Alas [1] showed that the previous inequality continues to hold
for Urysohn spaces, but it is still open whether it’s true for Hausdorff
spaces.
In [4] Arhangel’skii made another step ahead by introducing the

notion of strict quasi-Lindelöf degree, which allowed him to give a
common refinement of the countable case of his 1969 theorem and the
Hajnal-Juhász inequality. He defined a space X to be strict quasi-
Lindelöf if for every closed subset F of X , for every open cover U of
F and for every countable decomposition {Un : n < ω} of U there
are countable subfamilies Vn ⊂ Un, for every n < ω such that F ⊂⋃
{
⋃
Vn : n < ω}. It is easy to see that every Lindelöf space is strict

quasi-Lindelöf and every ccc space is strict-quasi Lindelöf. Arhangel’skii
proved that every strict quasi-Lindelöf first-countable space has cardi-
nality at most continuum.
However, Arhangel’skii’s approach cannot be extended to higher car-

dinals. Indeed, it’s not even clear whether |X| ≤ 2χ(X) is true for every
strict quasi-Lindelöf space X . This inspired us to introduce the follow-
ing cardinal invariants:

Definition 5.

• The piecewise weak Lindelöf degree of X (pwL(X)) is defined
as the minimum cardinal κ such that for every open cover U of



A COMMON EXTENSION 3

X and every decomposition {Ui : i ∈ I} of U , there are ≤ κ-

sized families Vi ⊂ Ui, for every i ∈ I such that X ⊂
⋃
{
⋃
Vi :

i ∈ I}.
• The piecewise weak Lindelöf degree for closed sets ofX (pwLc(X))
is defined as the minimum cardinal κ such that for every closed
set F ⊂ X, for every open family U covering F and for every
decomposition {Ui : i ∈ I} of U , there are ≤ κ-sized subfamilies

Vi ⊂ Ui such that F ⊂
⋃
{
⋃

Vi : i ∈ I}.

As a corollary to our main result, we will obtain the following bound,
which is the desired common extension of Arhangel’skii’s Theorem and
the Hajnal-Juhász inequality.

Theorem 6. For every Hausdorff space X, |X| ≤ 2pwLc(X)·χ(X).

For undefined notions we refer to [11]. Our notation regarding car-
dinal functions mostly follows [14]. To state our proofs in the most
elegant and compact way we use the language of elementary submod-
els, which is well presented in [10].

2. A cardinal bound for the Gδ-modification

The following proposition collects a few simple general facts about
the piecewise weak Lindelöf number which will be helpful in the proof
of the main theorem.

Proposition 7. For any space X we have:

(1) pwL(X) ≤ pwLc(X).
(2) pwLc(X) ≤ L(X).
(3) pwLc(X) ≤ c(X).
(4) If X is T3 then wLc(X) ≤ pwL(X).

Proof. The first two items are trivial. To prove the third item, let F
be a closed subset of X and V =

⋃
{Vi : i ∈ I} be an open collection

satisfying F ⊆
⋃
V. Suppose c(X) ≤ κ. For every i ∈ I let Ci be

a maximal collection of pairwise disjoint non-empty open subsets of
X such that for each C ∈ Ci there is some VC ∈ Vi with C ⊆ VC .
By letting Wi = {VC : C ∈ Ci}, the maximality of Ci implies that⋃
Vi ⊆

⋃
Wi and so F ⊆

⋃
{∪Wi : i ∈ I}. Since |Wi| ≤ |Ci| ≤ κ, we

have pwLc(X) ≤ κ.
To prove the fourth item assume X is a regular space and let κ be

a cardinal such that pwL(X) ≤ κ. Let F be a closed subset of X and
U be an open cover of F . If U covers X we’re done. Otherwise use
regularity to choose, for every p ∈ X \

⋃
U an open set Up such that

p ∈ Up and F ∩ U p = ∅. Note that U ∪ {Up : p ∈ X \ F} is an open
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cover of X , so by pwL(X) ≤ κ, there is a κ-sized subfamily V of U

such that X ⊂
⋃

V ∪
⋃
{Up : p ∈ X \ F}. Hence F ⊂

⋃
V and we are

done. �

Corollary 8. If X is a regular space then |X| ≤ 2pwL(X)·χ(X).

Proof. Combine Proposition 7, (4) and Arhangel’skii’s result that |X| ≤
2wLc(X)·χ(X) for every regular space X . �

We state our main theorem in terms of the Gκ-modification of a
space. Let κ be a cardinal number. By Xκ we denote the topology on
X generated by κ-sized intersections of open sets of X . We call Xκ, the
Gκ-modification of X ; in case κ = ω we speak of the Gδ-modification
of X and we often use the symbol Xδ instead. This construction has
been extensively studied in the literature; various authors have tried
to bound the cardinal functions of Xκ in terms of their values on X
(see, for example [8], [12], [16], [17], [18]) and results of this kind have
found applications to other topics in topology, like the estimation of
the cardinality of compact homogeneous spaces (see [5], [8], [9] and
[18]).
By Xc

κ we denote the topology on X generated by Gc
κ-sets, that is

those subsets G of X such that there is a family {Uα : α < κ} of open
sets with G =

⋂
{Uα : α < κ} =

⋂
{Uα : α < κ}. In general, the

topology of Xc
κ is coarser than the Gκ-modification of X , but if X is a

regular space then Xc
κ = Xκ.

Theorem 9. Let X be a Hausdorff space such that t(X) ·pwLc(X) ≤ κ
and X has a dense set of points of character ≤ κ. Then wL(Xc

κ) ≤ 2κ.

Proof. Let F be a cover of X by Gc
κ-sets. Let θ be a large enough

regular cardinal andM be a κ-closed elementary submodel ofH(θ) such
that |M | = 2κ and M contains everything we need (that is, X,F ∈ M ,
κ+ 1 ⊂ M etc...).
For every F ∈ F choose open sets {Uα : α < κ} such that F =⋂
{Uα : α < κ} =

⋂
{Uα : α < κ}.

Claim 1. F ∩M covers X ∩M .

Proof of Claim 1. Let x ∈ X ∩M . Since F is a cover of X we can find
a set F ∈ F such that x ∈ F . Moreover, using t(X) ≤ κ, we can find a
κ-sized subset S of X ∩M such that x ∈ S. Note that x ∈ Uα ∩ S, for
every α < κ. Moreover, by κ-closedness of M , the set Uα ∩ S belongs
toM . Set B =

⋂
{Uα ∩ S : α < κ}. Note that x ∈ B ⊂ F and B ∈ M .

Therefore H(θ) |= (∃G ∈ F)(x ∈ B ⊂ G) and all the free variables in
the previous formula belong to M . Therefore, by elementarity we also
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have that M |= (∃G ∈ F)(x ∈ B ⊂ G) and hence there exists a set
G ∈ F ∩M such that x ∈ G, which is what we wanted to prove.

△

Claim 2. F ∩M has dense union in X .

Proof of Claim 2. Suppose by contradiction thatX *
⋃
(F ∩M). Then

we can fix a point p ∈ X \
⋃
(F ∩M) such that χ(p,X) ≤ κ. Let

{Vα : α < κ} be a local base at p.
For every F ∈ F∩M , let {Uα(F ) : α < κ} ∈M be a sequence of open

sets such that F =
⋂
{Uα(F ) : α < κ} =

⋂
{Uα(F ) : α < κ}. Note

that {Uα(F ) : α < κ} ⊂ M . Let C = {Uα(F ) : F ∈ F ∩M,α < κ}.
Note that C is an open cover of X ∩M and C ⊂M .
For every x ∈ X ∩M , we can choose, using Claim 1, a set Fx ∈ F∩M

such that x ∈ Fx. Since p /∈ Fx, there is α < κ such that p /∈ Uα(Fx).
Hence we can find an ordinal βx < κ such that Vβx

∩Uα(Fx) = ∅. This
shows that U = {U ∈ C : (∃β < κ)(U ∩ Vβ = ∅)} is an open cover of
X ∩M . Let Uα = {U ∈ U : U ∩ Vα = ∅}. Then {Uα : α < κ} is a
decomposition of U and hence we can find a κ-sized family Vα ⊂ Uα

for every α < κ such that X ∩M ⊂
⋃
{
⋃
Vα : α < κ}. Note that

by κ-closedness of M the sequence {
⋃

Vα : α < κ} belongs to M and
hence the previous formula implies that:

M |= X ⊂
⋃

{
⋃

Vα : α < κ}

So, by elementarity:

H(θ) |= X ⊂
⋃

{
⋃

Vα : α < κ}

But that is a contradiction, because p /∈
⋃

Vα, for every α < κ.
△

Since |F∩M | ≤ 2κ, Claim 2 proves that wL(Xc
κ) ≤ 2κ, as we wanted.

�

As a first consequence, we derive the desired common extension of
Arhangel’skii’s Theorem and the Hajnal-Juhász inequality.
Recall that the closed pseudocharacter of the point x in X (ψc(x,X))

is defined as the minimum cardinal κ such that there is a κ-sized family
{Uα : α < κ} of open neighbourhoods of x with

⋂
{Uα : α < κ} = {x}.

The closed pseudocharacter of X (ψc(X)) is then defined as ψc(X) =
sup{ψc(x,X) : x ∈ X}.

Corollary 10. Let X be a Hausdorff space. Then |X| ≤ 2pwLc(X)·χ(X).
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Proof. It suffices to note that in a Hausdorff space ψc(X)·t(X) ≤ χ(X)
and hence if κ is a cardinal such that χ(X) ≤ κ then Xc

κ is a discrete
set. Thus wL(Xc

κ) ≤ 2κ if and only if |X| = |Xc
κ| ≤ 2κ. �

Remark. Corollary 10 is a strict improvement of both Arhangel’skii’s
Theorem and the Hajnal-Juhász inequality. Indeed, if S is the Sorgen-
frey line and A([0, 1]) the Aleksandroff duplicate of the unit interval,
then the space X = (S×S)⊕A([0, 1]) is first countable, pwLc(X) = ℵ0

and L(X) = c(X) = c.

Recall that a space is initially κ-compact if every open cover of car-
dinality ≤ κ has a finite subcover (for κ = ω we obtain the usual notion
of countable compactness). The following Lemma essentially says that
ifX is an initially κ-compact spaces such that wLc(X) ≤ κ, then it sat-
isfies the definition of pwLc(X) ≤ κ when restricted to decompositions
of cardinality at most κ.

Lemma 11. Let X be an initially κ-compact space such that wLc(X) ≤
κ and F be a closed subset of X. If U is an open cover of F and
{Uα : α < κ} is a κ-sized decomposition of U , then there are κ-sized

subfamilies Vα ⊂ Uα such that F ⊂
⋃
{
⋃
Vα : α < κ}

Proof. Let Uα =
⋃
Uα. Then {Uα : α < κ} is an open cover of F

of cardinality κ, so by initial κ-compactness there is a finite subset S
of κ such that F ⊂ {Uα : α ∈ S}. Let now W =

⋃
{Uα : α ∈ S}.

We then have F ⊂
⋃

W and hence by wLc(X) ≤ κ we can find a

κ-sized subfamily W ′ of W such that F ⊂
⋃
W ′. Set now Vα = {W ∈

W ′ : W ∈ Uα}. Then |Vα| ≤ κ and F ⊂
⋃
{
⋃
Vα : α < κ}, as we

wanted. �

Noticing that in the proof of Theorem 9 we only needed to apply the
definition of pwLc(X) ≤ κ to decompositions of cardinality κ, Theorem
9 and Lemma 11 imply the following corollaries.

Corollary 12. [8] Let X be an initially κ-compact space containing a
dense set of points of character ≤ κ and such that wLc(X) · t(X) ≤ κ.
Then wL(Xc

κ) ≤ 2κ.

Corollary 13. (Alas, [1]) Let X be an initially κ-compact space with a
dense set of points of character κ, such that wLc(X) · t(X) ·ψc(X) ≤ κ.
Then |X| ≤ 2κ.

3. Open Questions

Corollary 8 can be slightly improved by replacing regularity with the
Urysohn separation property (that is, every pair of distinct points can
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be separated by disjoint closed neighbourhoods). Indeed, in a similar
way as in the proof of Proposition 7 (4) it can be shown that if X is
Urysohn then wLθ(X) ≤ pwL(X), where wLθ(X) is the weak Lindelöf
number for θ-closed sets (see [7]). Moreover, |X| ≤ 2wLθ(X)·χ(X) for
every Urysohn space X . However it’s not clear whether regularity can
be weakened to the Hausdorff separation property. That motivates the
next question.

Question 3.1. Is the inequality |X| ≤ 2pwL(X)·χ(X) true for every Haus-
dorff space X?

Moreover, we were not able to find an example which distinguishes
countable piecewise weak Lindelöf number for closed sets from the strict
quasi-Lindelöf property.

Question 3.2. Is there a strict quasi-Lindelöf spaceX such that pwLc(X) >
ℵ0?

Finally, Arhangel’skii’s notion of a strict quasi-Lindelöf space sug-
gests a natural cardinal invariant. Define the strict quasi-Lindelöf num-
ber ofX (sqL(X)) to be the least cardinal number κ, such that for every
closed subset F of X , for every open cover U of F and for every κ-sized
decomposition {Uα : α < κ} of U there are κ-sized subfamilies Vα ⊂ Uα

such that X ⊂
⋃
{
⋃

Vα : α < κ}. Obviously sqL(X) ≤ pwLc(X). It’s
not at all clear from our argument whether the piecewise weak-Lindelöf
number for closed sets can be replaced with the strict quasi-Lindelöf
number in Corollary 10.

Question 3.3. Let X be a Hausdorff space. Is it true that |X| ≤
2sqL(X)·χ(X)?

Even the following special case of the above question seems to be
open.

Question 3.4. Let X be a strict quasi-Lindelöf space. Is it true that
|X| ≤ 2χ(X)?
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