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134 Ann Univ Ferrara (2017) 63:133–146

1 Introduction

Let X ⊂ PN
C := PN be a closed subvariety, that we always assume to be smooth, irre-

ducible, non-degenerate, of dimension n and codimension c. The expected dimension
of SX , the secant variety of X , is 2n+1. The difference between the expected and the
actual dimension is the number δ ! 0, called the secant defect. If δ > 0, X is said to
be secant defective; this is the same as being (possibly after an isomorphic projection)
of small codimension, in the sense that n ! c. At present we understand better only
some subclasses of secant defective manifolds: conic connected (CC for short) and
local quadratic entry locus (LQEL for short) ones. CC manifolds are defined by the
presence of a conic contained in X and passing through two given general points. An
important particular case of CCmanifolds are the LQEL ones, defined by the presence
of a quadric of dimension δ, contained in X and passing through two given general
points; they were introduced in [24] and further studied in [11].

An embedded Fano manifold is prime if its Picard group is generated by the hyper-
plane section class, H ∈ Pic(X). In this case, its index i is defined by the relation
−KX = i H in Pic(X), KX being the canonical class. The CC manifolds are Fano and
classified, but for the case they are prime [12].

In Sects. 3 and 4, we investigate the property of being CC or LQEL for a Fano
manifold of high index. For instance, we show that for Fano manifolds of index i with
δ ! 2 and SX = PN , “high index” implies “small codimension”, see Corollary 3 (i).
We characterize LQEL manifolds with δ ! 3 by the equality i = n+δ

2 , see Proposi-
tion 6. In Proposition 7 we obtain a classification result for Fano manifolds of high
index and small codimension, based on [24].

If X ⊂ PN is as before, it is called dual defective (DD for short) if its dual variety
X∗ ⊂ PN ∗ is not a hypersurface. The number k = N −1−dim(X∗) is the dual defect
of X . In Sect. 5 we give ample evidence for our belief that prime Fano DD manifolds
are LQEL, improving on [14]. In particular, we show that a DD manifold is LQEL if
(and only if) the relation δ = k + 2 holds, Proposition 9.

In the last section we make some remarks about the case of quadratic manifolds
(that includes all known examples of both LQEL andDDprime Fanomanifolds in their
natural embedding). We also mention the link with the famous Hartshorne Conjecture
on manifolds of small codimension, that was shown to hold in the quadratic case [13].

We thank the anonymous referee for her/his suggestions that improved both the
exposition and point (v) of our Proposition 10.

2 Preliminaries

We work over C and use the customary notation in algebraic geometry, as in [14];
in particular, P(E) is intended in Grothendieck’s sense. We denote by X ⊂ PN a
smooth, irreducible, non-degenerate embedded projective variety of dimension n and
codimension c. For a point x ∈ X , we write Tx X for the Zariski tangent space at x
and Tx X for its projective closure in PN . PX denotes the first jet bundle of OX (1). If
NX/PN is the normal bundle of X in PN , we have the standard exact sequence:
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Ann Univ Ferrara (2017) 63:133–146 135

0 → N∗
X/PN (1) → ON+1

X → PX → 0. (1)

Definition 1 X is Fano if −KX is ample. X ⊂ PN is called prime Fano if it is Fano
and Pic(X) = Z[H ], where H denotes the hyperplane section class; it is called Fano
of index i > 0 if −KX = i H .

Remark 1 Note that our definition of the index of an embedded Fano manifold is
different from the usual one, but is the same if X is prime.

Lemma 1 (i) Let X be a Fano manifold (of dimension n) and assume that −KX =
j D, for some ample divisor D. Then j " n + 1.

(ii) Let X ⊂ PN be a Fano manifold of index i ! n+3
2 . Then X is prime Fano.

Proof (i) follows from vanishing results, see [16].
(ii) A result by Wiśniewski [26] shows that Pic(X) is cyclic. By (i), H cannot be

divisible, so X is prime.

Prime Fano manifolds of high index, other than complete intersections, are quite
special.

Definition 2 X ⊂ PN is covered by lines if for any point x ∈ X , there is a line l ⊂ X
such that x ∈ l.

The following fundamental fact, coming from [19], shows that Fano manifolds of
high index are covered by lines.

Lemma 2 If X ⊂ PN is Fano of index i and i ! n+2
2 , then X is covered by lines.

If X ⊂ PN is covered by lines and x ∈ X is a general point, we denote by
Lx ⊂ P(T∗

x X) the Hilbert scheme of lines contained in X and passing through x . Lx
is smooth and we let a := dim(Lx ). If X ⊂ PN is Fano of index i , we have i = a+ 2
and Lx is equidimensional.

Definition 3 The secant variety of X ⊂ PN , denoted by SX , is the closure of the locus
of its secant lines. We have that dim(SX) " 2n+1 and δ := 2n+1−dim(SX) is the
secant defect of X . X is secant defective if δ > 0. The tangent variety of X , denoted
by T X , is T X = ⋃

x∈X Tx X . Let us also recall that, if p ∈ SX is a general point, the
entry locus of X with respect to p, denoted by Σp(X), is the intersection of X with
the cone of secants to X passing through p. The secant defect of X is dim(Σp(X)),
for p ∈ SX a general point.

Lemma 3 Let X ⊂ PN be prime Fano of index i ! n+2
2 and let x ∈ X be a general

point. Then one of the following holds:

(i) SLx = Pn−1, or
(ii) NLx/Pn−1(−1) is not ample.
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136 Ann Univ Ferrara (2017) 63:133–146

Proof If X ⊂ PN wehave that δ ! n−c+1 and equality holds if and only if SX = PN .
Apply this to Lx ⊂ Pn−1 (note that Lx ⊂ Pn−1 is non-degenerate by [9, Thm. 2.5]).
Now, assume that (i) does not hold. It follows that δ(Lx ) > a − (n − 1 − a) + 1 !
0. By Terracini’s Lemma, see for instance [25, Thm. 1.4.1], there is a hyperplane
in Pn−1 such that its tangency locus contains the general entry locus Σp(Lx ). As
dim(Σp(Lx )) = δ(Lx ) > 0, (ii) follows.

Definition 4 ([24]) X ⊂ PN is a local quadratic entry locus variety, abbreviated
LQEL, if, given two general points x, x ′ ∈ X , there is a quadric of dimension δ > 0
contained in X and containing the points x, x ′.

Note that any quadric Q ⊂ X passing through the general points x, x ′ ∈ X is
part of the entry locus of X with respect to a general point p of the line ⟨x, x ′⟩.
So the dimension of Q is at most the secant defect of X . Thus, LQEL varieties are
characterized by the fact that the general entry locus is a (finite) union of quadrics.
LQEL varieties are the simplest secant defective manifolds; they were introduced in
[24] and further studied in [11] and [12].

Definition 5 X ⊂ PN is conic connected, abbreviated CC, if, given two general points
x, x ′ ∈ X , there is a conic C ⊂ X such that x, x ′ ∈ C . X is connected by degenerate
conics if C is a pair of incident lines.

Obviously, LQEL manifolds are CC, and CC manifolds are secant defective. CC
manifolds were studied in [12], where a complete classification was obtained, except
for the case of prime Fano manifolds. In particular, the same applies for LQEL mani-
folds.

Definition 6 X ⊂ PN is dual defective, of dual defect k, if dim(X∗) = N − 1 − k,
where X∗ ⊂ PN ∗ is the dual of X and k > 0.

In [3] the classification of DD manifolds was reduced to that of prime Fano ones.
Let X be a Fano manifold of dimension n with −KX = i H , i > 0, for some

ample divisor H ; let E be a spanned vector bundle on X , of rank r . Let Y := P(E),
let M := OY (1) and assume that Mn+r−1 = 0. Let ϕ : Y → W be the Stein
factorization of the map associated to |M | and let F be its general fiber. Finally,
assume that det(E) = j H .

Proposition 1 Under these assumptions, F is Fano if and only if j < i . If this is true
and Pic(X) is cyclic, then Y is also Fano and ϕ is its second Mori contraction.

Proof We have−KY = rM−π∗(KX +det(E)), where π : Y → X is the projection.
Restricting to F gives: −KF = −(KX + det(E))|F = (i − j)HF . The rest is clear,
since Pic(Y ) = Z⊕Z and the cone of curves of Y is generated by two classes: one of
a curve contracted by π and one of a curve contracted by ϕ.

Corollary 1 Let X ⊂ PN be Fano of index i .

(i) Assume δ ! 2 and let E = PX . Then F is Fano if and only if i ! n+2
2 . In

particular i ! n+2
2 implies i " n+δ+1

2 with equality holding if and only if
F ≃ Pδ−1.
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(ii) If δ ! 2 and X is prime, then ϕ : P(PX ) → W is a Mori contraction if and only
if i ! n+2

2 .
(iii) Assume that k > 0 and let E := NX/PN (−1). Then ϕ : P(E) → W is a Mori

contraction, i = n+k+2
2 and X is prime.

Proof (i) From (1) we have the natural map ϕ′ : P(PX ) → T X ⊂ PN , whose Stein
factorization is ϕ : P(PX ) → W . Since δ > 0, we have dim(T X) = 2n+1− δ,
see [27, Thm. 1.4]. Therefore dim(F) = δ − 1. Reason as in the proof of
Proposition 1 and observe that in our case j = n+1− i and i− j = 2i−(n+1).
If F is Fano, then 2i − (n+1) = i − j " dim(F)+1 = δ with equality holding
if and only if F ≃ Pδ−1, see [16]. Part (ii) is now clear.

(iii) The dual of the exact sequence (1) gives the map defining X∗, the dual of X , ϕ′ :
P(NX/PN (−1)) → X∗ ⊂ PN ∗; its Stein factorization is ϕ : P(NX/PN (−1)) →
W , W being the normalization of X∗. Reason as above, note that F is a linear
space of dimension k and that j = n + 1− i . Since we have i = n+k+2

2 , we get
i ! n+3

2 and X is prime by Lemma 1 (ii).

Remark 2 (i) For prime Fano manifolds of index i , the same condition i ! n+2
2 , as

in Corollary 1 (i), ensures that Lx ⊂ Pn−1 is (non-empty and) non-degenerate,
see [9, Thm. 2.5].

(ii) Corollary 1 (iii) proves the Landman Parity Theorem for Fano manifolds: if
k > 0, n and k have the same parity. A variant of this argument proves the
general case, when X is only assumed to be dual defective, see [14, Prop. 3.1].

3 Fano manifolds and CC manifolds

If X ⊂ PN is CC, then X is Fano and classified unless it is prime of index i ; if it is
prime of index i , then δ > 0 and i ! n+1

2 , see [12] and [11, Prop. 3.2].
Is it true that, conversely, if X ⊂ PN is a prime Fano manifold of index i , such that

i ! n+1
2 and δ > 0, then X is CC?

The question is motivated by the following result of Bonavero–Höring, [4], which
shows that the answer is affirmative in the “standard” case:

Proposition 2 ([4]) Let X ⊂ PN be a complete intersection. Assume that X is Fano
of index i ! n+1

2 . Then X is CC.

Lemma 4 Let X ⊂ PN be a complete intersection. Assume that X is Fano of index
i ! n+r

2 , for some r > 0. Then δ ! r .

Proof Let (d1, . . . , dc) be the type of X . We have i = n + 1− ∑c
j=1(d j − 1), which

gives 2c " 2
∑c

j=1(d j −1) " n−r+2. Finally, we get δ ! n−c+1 ! r+c−1 ! r .

Remark 3 (i) The above lemma shows that for a Fano complete intersection of index
i , the condition i ! n+1

2 implies that δ > 0.
(ii) The Lagrangian Grassmannian LG(2, 5) ⊂ P13 is a prime Fano manifold of

dimension 6 and index 4 (so we have i = n+2
2 ), but it has δ = 0, see the tables

in [15].
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138 Ann Univ Ferrara (2017) 63:133–146

At present the answer to the above question is not known and the only (very) partial
results require stronger assumptions and seek for a stronger conclusion, namely that
X be connected by degenerate conics. In particular, we need to assume that δ ! 2.

Lemma 5 (i) If X ⊂ PN is connected by degenerate conics, then δ ! 2;
(ii) assume that X is Fano of index i and CC; then i ! n+2

2 if and only if X is
connected by degenerate conics.

Proof (i) Fix two general points x, x ′ ∈ X . By assumption, there exists a degenerate
conicCx,x ′ = l∪l ′ ⊂ X with x ∈ l and x ′ ∈ l ′. Since x and x ′ are general points,
Nl/X and Nl ′/X are semiample and Cx,x ′ may be deformed inside X , by keeping
the point x fixed, to a smooth conic, say C ′

x , see [17, II.7.6.2]. Deformations of
Cx,x ′ keeping x fixed fill up X , so the same is true for the deformations of C ′

x .
Therefore, through the general points x, x ′′ ∈ X there is a smooth conic C ′

x,x ′′ .
By hypothesis, there is also a degenerate conic C ′′

x,x ′′ through these points. The
union C ′

x,x ′′ ∪C ′′
x,x ′′ is part of the entry locus Σp with respect to a general point

p of the line ⟨x, x ′′⟩. But Σp is smooth at the points x, x ′′ and this shows that
δ = dim(Σp) ! 2.

(ii) This follows from [11, Prop. 3.2].

Proposition 3 ([10])Let X ⊂ PN beFano of index i , with i ! n+3
2 . Then the following

are equivalent:

(i) SLx = Pn−1 for a general point x ∈ X;
(ii) X is connected by degenerate conics.

In the sequel we only need that (i) implies (ii), so we include a very simple proof
of this result, based on the Terracini Lemma.

Proof (i) implies (ii). We remark first that Lemma 1 implies that X is prime Fano;
moreover, by Lemma 2 X is covered by lines, so (i) makes sense. The condition
i ! n+3

2 is equivalent to a ! n−1
2 ; therefore Lx ⊂ Pn−1 is smooth, irreducible and

non-degenerate, for x ∈ X a general point, see [9]. Let l ⊂ X be a general line and let
x, x ′ ∈ l be general points. Let [l ′] ∈ Lx ′ be a general line and let e ∈ l ′ be a general
point. Denote by C(x) the locus of lines through x ∈ X ; it is a cone of dimension
a + 1.

By the Terracini Lemma, the condition SLx = Pn−1 is equivalent to

dim(TxC(x ′) ∩ TeC(x ′)) = 2a + 2 − n. (2)

Denote by E the locus of points lying on lines meeting C(x). X is connected by
degenerate conics exactly when E = X ; equivalently, dim(E) ! n.

If π : Y → L is the family of lines covering X and ψ : Y → X is the projection,
let V := π−1(π(ψ−1(C(x)))). Note that dim(V ) = 2a + 2. dim(E) ! n is the same
as asking that, for some e ∈ V , the fiber Ve of the map ψ |V : V → E satisfies
dim(Ve) " 2a + 2 − n. But dim(Ve) = dimx ′(C(x) ∩ C(e)).
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Therefore, keeping the above notation, to prove that X is connected by degenerate
conics, we have to show that

dimx ′(C(x) ∩ C(e)) " 2a + 2 − n. (3)

Let us recall from [14, Prop. 2.2] that, if x, x ′ are general points of a general line
l ⊂ X , we have

TxC(x ′) =
⋂

y∈l
Ty X = Tx ′C(x). (4)

Now, using (2) and (4), we can write

dimx ′(C(x) ∩ C(e)) " dim(Tx ′C(x) ∩ Tx ′C(e))

= dim(TxC(x ′) ∩ TeC(x ′)) = 2a + 2 − n

and (3) is proved.

Note that, since X is smooth, the inequality dimx ′(C(x)∩C(e)) ! 2a+2−n also
holds; therefore, the cones C(x) and C(e) intersect transversally at x ′.

Corollary 2 ([10], see also [12]) Let X ⊂ PN be Fano of index i and assume that
i > 2n

3 . Then X is connected by degenerate conics.

Remark 3 (ii) shows that the bound i > 2n
3 is optimal.

Proposition 3 implies Proposition 2 in case i ! n+2
2 :

Proposition 4 Let X ⊂ PN be a complete intersection and assume X is Fano, of
index i . The following are equivalent:

(i) i ! n+2
2 ;

(ii) X is connected by degenerate conics.

Proof (i) implies (ii):
The result is clear for n " 2, so wemay assume n ! 3 from now on. It follows from

(i) that, for x ∈ X a general point, Lx ⊂ Pn−1 is a smooth, non-degenerate, complete
intersection of positive dimension a = i − 2. In particular, it is connected and hence
irreducible. Moreover, since it is a complete intersection, it follows that SLx = Pn−1,
see Lemma 3. Then (ii) follows by the proof of Proposition 3.

(ii) implies (i) follows from Lemma 5.

Proposition 5 Let X ⊂ PN be Fano of index i and suppose δ ! 2. Assume that
i > n+1

2 + δ
4 . Then X is connected by degenerate conics.

Proof Note that Lemma 1 implies that X is prime Fano. Let Y = P(PX ) and let
ϕ : Y → W be as in the proof of Corollary 1. By Corollary 1 (i), the general fiber
F of ϕ is Fano and i(F) = 2i − n − 1 > dim(F)+1

2 = δ
2 . This implies that F is

covered by lines, see Lemma 2. But F passes through the general point of Y ; so Y
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140 Ann Univ Ferrara (2017) 63:133–146

is covered by a family of lines, projecting onto lines of X and contracted by the map
ϕ′ : Y → T X . We claim that this implies SLx = Pn−1. By Proposition 3, it follows
that X is conic-connected (by degenerate conics).

Fix a point y ∈ Y and let x = π(y). Assume that a line l ⊂ Y, y ∈ l is contracted
to the general point u ∈ T X . It follows that all (projective) tangent spaces to X at
points of π(l) pass through the point u. But, for s ∈ l a general point, the intersection⋂

t∈l Tt X is the projective tangent space to the cone of lines through s, at a general
point of l, see (4). As the point u ∈ Tx X is general, this means that TLx = Pn−1, so
we have a fortiori that SLx = Pn−1.

Corollary 3 Let X ⊂ PN be Fano of index i with δ ! 2. Then we have:

(i) i " n+δ
2 ; in particular, if i ! n+r

2 for some r > 0, then δ ! r (cf. Lemma 4). If
SX = PN , this becomes c " n − r + 1.

(ii) The general fiber of the map ϕ : P(PX ) → W is not linear.

Proof (i) Suppose that i > n+δ
2 ; since δ ! 2, we get i > n+1

2 + δ
4 . By Proposition 5,

X is conic-connected. It follows that i " n+δ
2 , by [11, Prop. 3.2].

(ii) It follows from the previous inequality and part (i) of Corollary 1.

4 Fano manifolds and LQEL manifolds

Proposition 6 Assume that X ⊂ PN is Fano of index i and δ ! 3. The following
conditions are equivalent:

(i) X is LQEL;
(ii) i = n+δ

2 ;
(iii) the general fiber of the map ϕ : P(PX ) → W is isomorphic to the quadric Qδ−1;
(iv) if x ∈ X is a general point, we have SLx = Pn−1 and δ(X) " δ(Lx )+ 2.

Proof Since δ ! 3, X is prime Fano, see [2]. (i) implies (ii) and (i) implies (iv) follow
from [24]. If F is a general fiber of ϕ, the equivalence of (ii) and (iii) comes from the
formula in Proposition 1: i(F) = 2i(X)−n−1, and the fact that Qr is characterized by
having its index equal to r , see [16]. (ii) implies (i) comes from Proposition 5 and [11,
Prop. 3.2]. Finally, from (iv) we infer δ(X) " δ(Lx )+2 = a− (n−1−a)+1+2 =
2a + 4 − n = 2i − n, so (ii) holds by using also Corollary 3.

The next result shows that Fano manifolds of high index and small codimension
are very special.

Proposition 7 Let X ⊂ PN be Fano of index i . Assume that i ! n − c−1
2 and

n ! 2c − 2. Then X is an LQEL manifold and one of the following holds (up to an
automorphism of PN ):

(i) c = 1, n ! 1 and X is Qn ⊂ Pn+1;
(ii) n = 2c and X is one of:G(1, 4) ⊂ P9 or S10 ⊂ P15, in their natural embeddings;
(iii) n = 2c− 1 and X is one of:G(1, 4)∩ H ⊂ P8 or S10 ∩ H ⊂ P14, where H, H ′

are general hyperplanes in PN ;
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(iv) n = 2c − 2 and X is one of: G(1, 4) ∩ H ∩ H ′ ⊂ P7, S10 ∩ H ∩ H ′ ⊂ P13, or
one of the following Severi varieties:

P2 × P2 ⊂ P7, projection of the Segre embedding into P8,

G(1, 5) ⊂ P13, projection of the Plücker embedding into P14 and

E6 ⊂ P25, projection of the natural embedding into P26.

Proof Since n ! 2c − 2, it follows from Zak’s Linear Normality Theorem, see [27],
that we have SX = PN . Assume first that c ! 4; we get δ = n − c + 1 ! c − 1 ! 3.
The hypothesis i ! n − c−1

2 reads i ! n+δ
2 and from Corollary 3 and Proposition 6 it

follows that X is an LQEL manifold. Now the classification follows from the results
in Sect. 3 of [24]; due to [18], the last case of [24, Cor. 3.2] is ruled out.

Assume next that c " 3. For c = 1 we get case (i) by [16]. The case c = 2 is
impossible. Finally, suppose that c = 3. We infer that X is a del Pezzo manifold, see
[8] for their classification. From the condition c = 3 we deduce n ! 4 and we get
the GrassmannianG(1, 4) ⊂ P9 and its linear sections that are mentioned in the cases
(ii), (iii) and (iv).

Proposition 8 Let X ⊂ PN be an LQEL manifold and assume that δ ! 3. Let Q be
a general fiber of ϕ : P(PX ) → W. Then we have:

(i) NQ/X is spanned;
(ii) PX |Q is spanned, uniform, with splitting type (0, . . . , 0, 1, . . . , 1) and degree

n − 1 − a on any line contained in the quadric Q.

Proof (i) The standard diagram

0 0

TY/X |Q TY/X |Q

0 TQ TY |Q NQ/Y 0

0 TQ TX |Q NQ/X 0

0 0

shows that NQ/X is a quotient of the trivial vector bundle NQ/Y , where Y = P(PX ),
see Corollary 1 (i).
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142 Ann Univ Ferrara (2017) 63:133–146

(ii) If l ⊂ Q is a line, from the standard exact sequence

0 Nl/Q Nl/X NQ/X |l 0

it follows that Nl/X is spanned. Therefore its splitting type is (0, . . . , 0, 1, . . . , 1) and
the conclusion about PX |l follows from [14, Prop. 2.2].

5 Fano manifolds and DD manifolds

In this sectionwe collect a number of facts that support our belief that anyDDmanifold
which is Fano of index i is LQEL.

Remark 4 (i) If X ⊂ PN is DD, it follows from Zak’s Theorem on Tangencies,
[27], that we have k " c − 1.

(ii) If X ⊂ PN is LQEL and X ̸= Qn , we have δ " c + 1, see [14, Prop. 4.2].

Proposition 9 Let X ⊂ PN be Fano. Assume that X is DD. Then X is LQEL if and
only if δ = k + 2.

Proof Since X is DD, we have i = n+k+2
2 ; since X is LQEL, we have i = n+δ

2 . So,
δ = k + 2. Conversely, if k = δ − 2, it follows that i = n+δ

2 and X is LQEL by
Proposition 6.

Proposition 10 Let X ⊂ PN be a DD manifold which is Fano of index i . Then we
have:

(i) If δ ! 2, then δ ! k + 2; if δ = 3, then X is LQEL;
(ii) assume that k ! 2. Then one of the following holds:
(a) δ ! k + 2, or
(b) n " 2c − 1 and for x ∈ X general, Lx ⊂ Pn−1 is prime Fano and covered by

lines;
(iii) cf. [11] if k > n−6

3 , then X is CC and δ ! k + 2;
(iv) [14] we have that k " n+2

3 and equality holds exactly when X is S10 ⊂ P15;
(v) if k ! min{ n−4

2 , n+2
3 }, then X is LQEL;

(vi) cf. [5] if k = c−1 and n " max{2c+2, 3c−5}, then X is one ofG(1, 4) ⊂ P9

or S10 ⊂ P15;
(vii) cf. [21] if k = c − 2 and n " 2c, then X ⊂ PN is a hyperplane section of one

of the two varieties in (vi).

Assume now that X is LQEL and X ̸= Qn; then we have:
(viii) If δ = c + 1, then X ⊂ PN is one of the two varieties in (vi);
(ix) cf. [7] δ " n+8

3 and equality holds exactly when X is one of S10 ⊂ P15,
E6 ⊂ P26, or its isomorphic projection to P25.

Proof By Corollary 1 (iii), X is prime.

(i) The first part follows from Corollary 3 (i), given that i = n+k+2
2 . If δ = 3, we

get 3 = δ ! k + 2, so that k = 1 = δ − 2 and Proposition 9 applies.
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(ii) Assume first that n ! 2c. It follows that δ ! n − c + 1 ! 2. Therefore
δ ! k + 2, by (i). Assume from now on that n " 2c − 1. As we have i ! n+3

2 ,
we know that Lx ⊂ Pn−1 is smooth, non-degenerate and irreducible, see [9]. If
SLx = Pn−1, by Proposition 3 X is connected by degenerate conics, so δ ! 2,
see Lemma 5 (i). So we again get that δ ! k + 2 by (i). Now we may assume
that SLx ̸= Pn−1 and hence δ(Lx ) > a − (n − 1 − a) + 1 = k ! 2. By
the Barth-Larsen Theorem, [2], we get that Pic(Lx ) is cyclic, generated by the
hyperplane section class. On the other hand, we have n − 2c+ 2 " 1 " k and
it follows from [14, Prop. 3.2] that all lines in X are contact lines. ThereforeLx
is covered by lines. As its Picard group is cyclic, generated by the hyperplane
section, it is prime Fano, of some index j .

(iii) Since we have 2i = n + k + 2, the condition k > n−6
3 is equivalent to i > 2n

3 .
So X is connected by degenerate conics by Corollary 2. From Lemma 5, we
have δ ! 2, so (i) applies.

(iv) See [14, Cor. 3.5].
(v) Using (iv) and [6], we are left with the cases n " 15 and n = 2k + 4 or

n = 2k+3.When n " 10 wemay use the classification in [3], together with [8]
and [20]. The only remaining case is n = 12, k = 4, i = 9. By Zak’s Theorem
on Tangencies we have k " c−1, so that c ! 5. Therefore, 4 = k ! n−2c+2,
so that all lines on X are contact, see [14, Prop. 3.2]. Let x ∈ X be a general
point and X ′ := Lx ⊂ P11. We have dim(X ′) = i −2 = 7 and codim(X ′) = 4,
so X ′ ⊂ P11 is prime Fano and covered by linear spaces of dimension three.
Let x ′ ∈ X ′ be a general point and let X ′′ := Lx ′ ⊂ P6. If dim(X ′′) ! 3, we
have i(X ′) = dim(X ′′) + 2 ! 3 + 2 = 5. So, X ′ would be a del Pezzo or
Mukai prime Fano manifold, which is excluded by their classification, see [8]
and [20]. Since X ′ is covered by linear spaces of dimension three, we are left
with the case where dim(X ′′) = 2. The following argument has been suggested
by the referee. We let L ⊂ X ′ be a linear space (of dimension three) passing
through the general point x ′ ∈ X ′ and we let x ′ ∈ l ⊂ L be a line. From the
standard exact sequence

0 Nl/L Nl/X ′ NL/X ′ |l 0

it follows that NL/X ′ |l is nef and its degree is zero, so it is trivial. Applying [23,
Thm. 3.2.1], we get that NL/X ′ is trivial. Now we may quote [22, Prop. 6.4] to
exclude this last possibility.

(vi) If n " 3c−5, we get k ! n+2
3 and (iv) applies. If n " 2c+2, we have k ! n−4

2
and it follows from (v) that X is LQEL. But an LQEL manifold satisfies the
condition δ = k + 2 = c + 1. From Lemma 6 below, the condition δ = c + 1
is equivalent to n = 2c. The result follows now from [24, Cor. 3.1].

(vii) As above, it follows from (iv) and (v) that X is LQEL. Therefore we have
δ = k + 2 = c, so c = δ ! n − c + 1 and n " 2c − 1. This gives δ = c > n

2
and the result again follows from [24, Cor. 3.1].

(viii) From Lemma 6 below, δ = c+ 1 is equivalent to n = 2c, so the result follows
from [24, Cor. 3.1].
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(ix) We may assume that δ ! 5. We know that X ′ := Lx ⊂ Pn−1 is also an LQEL,
having dimension a = n+δ−4

2 and secant defect δ′ = δ − 2, see [24, Thm. 2.8].
The bound δ " n+8

3 follows quickly from this, see [14, Cor. 4.4]. If equality
holds, we get that δ′ > a

2 and from [24, Cor. 3.1] we deduce that X ′ is one of
G(1, 4) ⊂ P9 or S10 ⊂ P15. Using [18], we get the three cases announced in
(ix).

Lemma 6 Let X ⊂ PN be smooth, non-degenerate. The following conditions are
equivalent:

(i) n " 2c;
(ii) δ " c + 1.

Moreover, equality holds in (i) if and only if it holds in (ii).

Proof (ii) implies (i): We have c + 1 ! δ ! n − c + 1, so n " 2c.
(i) implies (ii): If SX = PN , we have δ = n − c+ 1 and (ii) is clear. Otherwise, by

Zak’s Linear Normality Theorem, see [27], we have δ " n
2 , so δ " c.

The other assertion of the lemma is proved in a similar way.

Proposition 11 Assume that X is Fano and DD. Let Pk ∼= L ⊂ X be the contact
locus of a general hyperplane. Then we have:

(i) NL/X is spanned;
(ii) PX |L is spanned, uniform, with splitting type (0, . . . , 0, 1, . . . , 1) and degree

n − 1 − a on any line contained in L.

Proof We proceed as in the proof of Proposition 8. Let Y := P(NX/PN (−1)) and
note that L is the general fiber of the morphism ϕ : P(NX/PN (−1)) → W , see
Corollary 1 (iii). Therefore the normal bundle NL/Y is trivial and a diagram similar to
the one from the proof of Proposition 8 shows that NL/X is spanned. Now, if l ⊂ L is
a line, the exact sequence:

0 Nl/L Nl/X NL/X |l 0

gives that Nl/X is spanned and the conclusions follow from [14, Prop. 2.2].

6 Remarks on the quadratic case and the Hartshorne Conjecture

Definition 7 X ⊂ PN is quadratic if it is scheme-theoretically an intersection of
quadrics.

Remark 5 (i) All known examples of linearly normal LQEL or DD prime Fano
manifolds are quadratic.

(ii) All known examples of prime Fano manifolds of high index, in their natural
linearly normal embedding, are either complete intersections or quadratic.

(iii) Quadratic manifolds of small codimension (n ! c+ 1) are quite restricted: they
are Fano, covered by lines and Lx ⊂ Pn−1 is also quadratic, see [13].
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(iv) If X ⊂ PN is quadratic and covered by lines, the splitting-type of NX/PN (−1)|l
is (0, . . . , 0, 1, . . . , 1) if l is a general line. We recall from [14, Prop. 3.2] that,
if X is DD and k ! n − 2c + 2, this property still holds.

Let us also recall the famous Hartshorne Conjecture, HC for short:
If n ! 2c + 1, X is a complete intersection.

We consider it very plausible for (prime) Fano manifolds. The HC holds in the follow-
ing special cases: for Fano manifolds in codimension two [1], for quadratic manifolds
[13], for LQEL manifolds and for Lx ⊂ Pn−1 if X is DD, see [14].

Both LQEL and DD Fano manifolds have high index and we expect the HC to
be easier to prove in this case. An example is Proposition 7, where “high index”
means i ! n − c−1

2 . This inequality excludes all complete intersections, but for the
hyperquadrics. We close this note with another partial result of the same flavor, where
only complete intersections should be present.

Proposition 12 Let X ⊂ PN be Fano of index i ! N+2
2 . Then the following hold:

(i) X is prime and covered by lines;
(ii) X is connected by degenerate conics;
(iii) SX = PN ;
(iv) n ! 2c + 1.

Proof (i) The fact that X is prime follows from Lemma 1; Lemma 2 shows that X
is covered by lines.

(ii) If x, x ′ ∈ X are general points, let C(x),C(x ′) be the cones of lines passing
through the respective points and contained in X ; they have dimension a + 1.
Since we have i = a + 2, it follows that 2a + 2 ! N , so the cones C(x) and
C(x ′) must intersect.

(iii) and (iv) From (ii) and Lemma 5 it follows that δ ! 2. Now, Corollary 3 yields
that δ ! c+ 2. By Lemma 6 we get that n ! 2c+ 1 and the conclusion follows
from Zak’s Linear Normality Theorem.

Properties (i), (ii) and (iii) are necessary conditions for X to be a complete inter-
section and, by (iv), the HC predicts this is indeed the case. Note that the inequality
i ! N+2

2 is optimal, as the examples G(1, 4) ⊂ P9 and S10 ⊂ P15 show.
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