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1. Introduction

The decision making process for safety interventions is complex,
involving a number of actors (experts, public, politicians, etc.) and is-
sues (environment, economy, mobility) competing for the scarce
available resources. The risk of making poor decisions and the cost of
making better decisions can be reduced by the use of reliable studies on
how effective different safety measures are (OECD, 2012). In this fra-
mework, Road Agencies set specific quantitative safety targets and
adopt related road safety strategies towards these targets, within the
established priorities and the available resources. In particular, benefit-
cost analyses are carried out in a more or less systematic way to max-
imize results within the limited funds that are available at a time of
economic crisis.

Benefit-Cost analysis (BCA) aims at comparing the benefits and costs
of different policy alternatives, measured in monetary units. Measures
for which benefits are greater than costs are called cost-effective, and
ranked according to their benefit-cost ratio.

The BCA requires basically 3 different estimates:

1. an estimate of the safety problem, i.e. crash number and severity
basing on crash history and/or Safety Performance Function.

2. An estimate of the effectiveness, i.e. Crash Modification Factors
(CMFs) of road safety measures identified for solving the safety
problem.

3. An estimate of the life cycle cost of each measure.

The most important uncertainties involved in developing such as-
sessment process concern the adoption of appropriate values for the
safety effects of road safety measures.

Scientific accuracy is difficult to obtain in the field of CMFs, not only
because several assumptions are necessary in the process but also be-
cause it is very difficult to separate the safety effect of a measure from
the effect of several other microscopic or macroscopic measures and
phenomena (including statistical randomness) occurring at the same
place. Two main issues affect the reliability of CMFs: accuracy and
transferability. The former factor pertains to the data quality, the small
sample size, the bias and confounding factors not eliminated. The latter
factor has to do with the fact that the CMF estimates come from studies

conducted in differing circumstances which were not directly correlated
to the CMF value by the way of a function. Hauer et al. (2012) described
how important is the site-to-site variability inasmuch, along with the
uncertainties inherent in the estimation, the site-to-site variability is
able to considerably increase the value of the variance. Moreover, it is
necessary to assess whether the studies can be generalized in time and
space (external validity of research), e.g. from one country to another or
from one decade to another, showing the consistency in time and space
of studies that have evaluated the effects of road safety measures
(Shadish et al., 2002).

A framework for interpreting road safety evaluation studies in the-
oretical terms has been proposed by Elvik, 2004. This framework is a
conceptual scheme that can be used to develop arguments for or against
the general validity of road safety studies. Cumulative meta-analysis is
well suited for assessing external validity based on the range of re-
plications (Elvik et al., 2009), but the applicability of the technique is
likely to be limited and it can be applied to assess external validity
when a large number of studies have been reported during a long period
of time.

To make progress towards reducing the uncertainty about CMFs a
two-pronged strategy has to be followed. First, the CMF estimates used
to produce the probability distributions have to be consistent. Second,
the dependence of the CMFs on the relevant circumstances has to be
established by the way of a function (OECD, 2012).

Any future improvement in knowledge of the effectiveness of safety
measures, i.e. development of quality Crash Modification Functions,
will likely have tangible effects on the way safety decisions are made.
On the other hand, the development of new reliable CMFs is costly and
time consuming. A typical project to develop a reliable CMF related to
roadway features in the United States, for example, is estimated to cost
about $US 200,000. Therefore, to find a way for using correctly the
current available CMFs is important in the short term as well the de-
velopment of new CMFs in the medium term.

In this context, it is necessary to account for the heterogeneity of
study findings by considering that CMF is not a constant but it is instead
a random variable. Thinking of a CMF as a random variable allows us to
correctly frame the question of accuracy and transferability of existing
CMFs.

Whether the decisions we make are right or wrong depends on the
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size of the standard deviation of the probability distribution of the CMF.
The smaller the standard deviation, the larger the probability that de-
cisions we make are correct.

The Highway Safety Manual (HSM) in Part A, Appendix C (HSM,
2010) treats the variance in CMF giving a procedure to evaluate the
probability of failure (i.e. what the chance is that implementing the
treatment is the wrong decision). The standard error of CMF is used to
define a confidence interval that indicates the range of values that
contain the true treatment effect with a given level of confidence. The
interval limits CMFα may be easily calculated, with approximation,
using the formula that assumes a normal distribution of CMF as sug-
gested in HSM using Eq. (1):

= ± ×CMF E( ) Z ( ) (1)

where

• θ is the random variable associated to the probability density
function of the CMF;

• E(θ) is the expected (mean) value of the CMF;
• σ(Θ)is the standard error of the CMF;
• Zα is the standardized normal variable with probability 1-α (e.g.

Zα = 1.96 for α = 5%);
• 1-α is the confidence level (e.g. α = 5%).

Basing on this approach, it would be reasonable, in the decision
making process, to give less consideration to treatments for which the
associated CMF has a confidence interval that includes 1.0 that means
there is a probability that crashes will remain unchanged or experience
a slight increase (i.e. CMF > 1). Furthermore, it may be prudent in
some situations to give greater consideration to treatments with smaller
confidence intervals because of the greater level of certainty in the
results. This procedure is simple to be used and able to take into ac-
count the expected value of CMF and its variance as well. However, as
will be showed in the following, it is not able to catch the whole
variability of the phenomenon which involves also the uncertainty in
the estimation of crashes and, as a consequence, the variability in the
estimation of both benefits and benefit-cost ratio. Therefore, also the
estimation of the future number of crashes plays a fundamental role in
BCA.

The best tool for predicting the mean number of crashes and ca-
sualties in the years ahead from the implementation of the treatment is
the Safety Performance Function (SPF). SPF is a regression equation
that related the predicted number of crashes to significant covariates
(e.g. AADT, length, cross section, alignment geometry, etc). SPFs
modeling, variance and transferability concerns (Borsos et al., 2016)
are of the same nature and relevance of CMF (D’Agostino, 2014). Ca-
libration of SPFs using local data and appropriate covariates or even
surrogate measure (Cafiso et al., 2016, 2018a), improves the precision
of the estimation, but the variability in the predicted number of crashes
persists and it is a further causes of randomness to be considered in the
BCA. In the present paper both the variance of the CMFs and SPFs is
taken into account in a reliability based assessment of safety benefits to
catch this variability and to point out as a more rigorous probabilistic
approach can lead to different conclusions about the decision to im-
plement or do not implement a treatment. First, the methodology fra-
mework is described. The analyzed methodologies include the use of
Monte Carlo simulation and the estimation of the B/C mean and var-
iance as moments of random variables. A case study is presented to
compare the results with the HSM approach and conclusions are drawn
out at the end of the paper.

2. Methodology

Given the benefits in terms of crash reduction and the cost of the
treatment the B/C ratio can be defined as follow:

= =B
C

µ a
c

Expected Benefits
Expected Cost

· ·(1 )
(2)

where:

• μ = number of target crashes expected without the treatment
(considered as a random variable);

• θ = crash modification factors of the treatments to be applied
(considered as a random variable);

• a = monetary value of the target crash (considered as a constant);
and

• c = cost of the treatment implementation (considered as a con-
stant).

To carry out a BCA using a stochastic approach, Eq. (2) necessities
to be evaluated considering both θ and μ as random variables and
performing a reliability assessment of the B/C ratio.

By definition, reliability is unity minus failure probability. As a re-
sult, central to reliability analysis is the determination of the failure
probability. Given the probability density function B/C(z; xi), where z is
the random variable, xi represents the set of design parameters (a, c, μ,
θ), the probability that the failure event F occurs is denoted by P(F|z).
The failure probability can be calculated by the following integral
(Mordechai, 2011; Shooman, 1968):

=P F z B C z x dz( | ) 1 / ( ; )
F

(3)

where

• B/C(z; x) is the probability density function of B/C;
• F represents the failure event: B/C(z; x) < F.

When the joint distribution B/C(z; x) of the random variables μ and
θ is unknown the numerical solution for this integral is infeasible

In the present research work, B/C(z; x) is a continuous random
variable in the ± ∞ sample space (i.e. can assume also negative values)
and its distribution is a priori unknown. In other terms the solution is
unfeasible in a closed form inasmuch the jointly distribution B/C(z; x) is
unknown. Despite, the distribution form is unknown, the moments of
B/C can be determined in terms of moments of the basic random
variables rather easily, especially if the variables are independent and
only the first two moments, mean E[B/C] and variance σ2 [B/C], are of
interest:

=E B C a
c

E µ E[ / ] · [ ]·(1 [ ]) (4)

= + +B C a
c

E µ E µ µ[ / ] ·[(1 [ ]) · [ ] [ ] · [ ] [ ]· [ ]]2 2 2 2 2 2 2
(5)

where

• E[μ], σ2[μ] are the mean and variance of μ (number of target crashes
on the unit);

• E[θ], σ2[θ] are the mean and variance of θ (CMF or combination of
CMFs).

E[θ], σ2[θ] are known values if the CMF is estimated with a proper
reliable methodology (e.g. Empirical Bayes Before/After, full bayes B/
A).

E[µ] and σ2[μ] can be determined from the over the sites crash
frequency distribution. It is assumed to follow a Negative Binomial
distribution with mean and standard deviation derived from the SPF
calibration.

In other terms let Eq. (6) be the general form of an SPF and k the
over-dispersion parameter

=E µ e L AADT e[ ] · · · [number of Crash/year]
x·

i
i i

0 (6)
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Where:

• E[μ]: predicted crash annual frequency;
• L: length of road segment;
• AADT: average annual daily traffic [veh/day]; and
• α, α0 and βi: regression terms.

Then σ2[μ] assumes the following form

= +µ E µ E µ k( ) ( ) ( ) ·2 2 (7)

With an approximation, E[B/C] and σ[B/C] can be used to calculate
the confidence limits assuming the Normal distribution for B/C

= ± ×B/C E(B/C) Z (B/C) (8)

where

• θ is the random variable associated to the probability density
function of the CMF;

• E(B/C) is the expected (mean) value of the B/C ratio;
• σ(B/C) is the standard error of the B/C ratio;
• Zα is the standardized normal variable with probability 1−α.

If the joint distribution of B/C is assumed unknown, the Monte Carlo
simulations (MC) can be implemented for the purpose of reliability
analyses. The basic idea of MC is very simple and relies on repeated
random sampling to obtain numerical results.

For example, it is possible to define the failure probability of the B/
C < F (e.g. F = 3 means B/C < 3 is the failure event) by the following
Eq. (9):

< <P F B C z x F N B C µ a c F P( | / ( ; ) ) 1/ 1( / ( ; , , ) )
i

i i
F
MC( ) ( )

(9)

where:

• N is the total number of MC simulation independent samples;
• 1(.) is unity if the statement is true and is zero otherwise;
• θ(i) and μ(i) are the i-th sample of θ and μ, drawn randomly from the

distributions of θ and μ respectively (i = 1, …, N);
• a, c are crash cost and treatment cost, respectively, and
• PF

MC is the estimator of P(F|B/C(z; x) < F).

This estimator is unbiased, i.e. the expected value of PF
MC is exactly

P(F|B/C(z; x)) with c.o.v. (coefficient of variation) = {[1- P(F|B/C(z;
x))/N/ P(F|B/C(z; x))}0.5 (Mordechai, 2011). Note that the c.o.v. does
not depend on the number of design parameters and does not depend on
the complexity of the problem, either. This is the key advantage for MC
method, especially for engineering problems where nonlinearity and
uncertainty dimension is usually high. The only criticism for MC is that
it is inefficient for problems with very small failure probabilities or with
very high reliabilities. However, this limitation has been gradually re-
moved by the recent advancements in the Monte Carlo based reliability
methods and in the possibility to produce easily very large random
samples using computerized tools (e.g. SAS, Statgraphics, etc).

The percent error involved with the estimated probability P(F|B/C)
has been found to be (Shooman, 1968)

=% e 200· ((1 P(F|B/C))/(N·P(F|B/C)) (10)

where:

• P(F|B/C) is the failure probability;
• N is the total number of MC independent samples.

This rule can be used to find the sample size (N) required for rea-
lizing a specific accuracy in the estimated probability of failure

In the present case the size of the sample (N) was fixed at 100,000.
These assures that there is a 95% chance that the estimated probability

of failure has an error less than ± 1.5%.
In the following case study, results obtained using a MC simulation

are assumed as the more accurate reliability estimation and will be
compared with the others obtained applying the simplified hypothesis
of normal distribution for B/C and the HSM procedure, to check the
level of approximation and the consistency of the results in the decision
making process. These comparisons are made for practical application
of the methodology. Indeed, using HSM approach or assuming a Normal
distribution for B/C it is possible to compute easily the reliability of B/C
for different percentile or Eqs. (1) and (8) using e.g. excel sheets.

3. Monte Carlo simulation and case study

For showing a practical example of how the procedure can be ap-
plied and what kind of results can be achieved in a reliability based
assessment of benefit cost ratio, the methodology was applied to a case
study of retrofitting safety barriers in motorways. The data used for this
investigation pertain to an Italian rural motorway (double carriageway,
access control), the A18 Messina-Catania, which is approximately
76 km long. The cross section is made up of 4 through-traffic lanes
(3.75 m wide), 2 in each direction, divided by a median with barriers
and an emergency/shoulder right lane (3.0 m wide). The motorway was
built in the late 1970 and, a part of normal maintenance of pavement,
markings and signs, renewal works were carried out only on a limited
extension of the highway, especial for retrofitting the safety barriers to
the new EU standards (Cafiso et al., 2017a,b). Retrofitting old guard-
rails with new ones complying with present EU standards is a key policy
for infrastructure safety of Italian motorway agencies. Consequently,
the main safety problem to be addressed refers to the ran-off road (RoR)
crashes in sharp curves.

The BCA was carried out taking into account a treatment on a curve
of 500 m radius. This is the minimum bending radius of 11 curves in the
motorway sections with old barriers. Table 1 shown a summary sta-
tistics of AADT and curve length (L) in those sites.

In the following the calibration of SPFs is reported as well as all the
information about CMFs.

3.1. Probability density function of the number of crashes

The widespread form of regression model with random effects that
is considered is the Poisson-Gamma model. The model can be described
as follows:

Y Poisson( )i,t i i,t (11)

where:

• Yi,t are the observed number of crashes at site i in year t,
• λi,t are the predicted number of crashes at site i in year t,
• εi is a multiplicative random effect at site i.

For the Poisson-Gamma model, εi is gamma distributed with the
mean having a value of 1 and variance equal to k the over-dispersion
parameter. When E(ε) = 1 and Var(ε) = k, the Poisson-Gamma function
becomes NB distribution (Lord, 2006; Cameron and Trivedi, 1998;
Hauer, 1997). In the following the SPF calibration methodology is re-
ported as well as the dataset used for the elaboration.

Table 1
Summary statistics of AADT, Length and observed crashes for the sites in the
case study.

Sites to treat (11 sections)

Max Min Average

AADT (Veh/day) 9290 22,410 15,503
L (m) 110 810 414
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In the selection of the sample for modeling the SPF, to avoid pro-
blem related to different roadside condition, only sections of the mo-
torway without retrofitting works were included. The analysis period
for model calibration is of the 12 years from 2001 until 2012, during
which 441 severe (fatal plus injury) crashes occurred (ISTAT, 2012).
Moreover, considering the target crashes of CMFs, the SPF was cali-
brated on ran-off road crashes only (Cafiso et al., 2018b).

Many studies (Higle and Witkowski, 1988; Miaou and Lord, 2003;
Heydecker and Wu, 2001), suggest that the dispersion parameter is not
constant for a given data set but actually varies from site to site de-
pending on the length of a roadway segment (Hauer, 2001). The more
appropriate varying form (i.e. HSM, 2010) is such that the dispersion
parameter for road segments is inversely proportional to segment
length (k = a·L−1) (Cafiso et al., 2017c). For this study, following
Cafiso and Silvestro (2010), the equation form for the calibration of the
variable dispersion parameter was more flexible including one more
regression parameter (b):

=k a·Lb (12)

The results of the model calibration are shown in Table 2 for the model
form:

= y e L AADT e· · · · [number of Crash/year]i t i
CCR

,
·0 (13)

where:

• λi,t: predicted mean annual (fatal plus injury) RoR crash frequency
at site i;

• L: length of road segment [m];
• AADT: average annual daily traffic [veh/day];
• α, α0 and β: regression terms;
• CCR: Curvature Change Rate [gon/m] (200 gon = π rad);
• yi: the time trend coefficient in the year i.

The goodness of fit of the model was investigated using the plot of
cumulative residuals (CURE) (Hauer and Banfo, 1997). The CURE plot
showed reasonable good fits of the model to the data with values never
exceeding the ± 2σ bounds (Fig. 1).

From Table 2 and Eq. (13), considering as expected value the pre-
dicted crashes in 2012, for a single segment with an average length of
414 m, an average value of AADT of 15,500 veh/day and a radius of
500 m the average number of RoR crashes in the last year of analysis
(2012) is:

= =e L AADT e0.76· · · · 0.087CCR
2012

16.105 0.786 2.486· (14)

3.2. Probability density function of crash modification factor

The CMF for retrofitting of motorway barriers with new ones
meeting the EU standard was investigated by Cafiso et al. (2017) using

data from the same infrastructure (Table 3). The description of the
Empirical Bayes B/A procedure used for the estimation of CMFs and
standard deviation is not of interest for the present paper. Therefore, it
is not reported here and the interested readers may refer to the re-
ference for more details.

The value of CMF and standard deviation taken into account in the
following elaboration were those related to the ran-off road crashes. A
Gamma distribution is assumed for the CMF (Hauer, 1997).

3.3. Cost of crashes and treatment

The service life of the treatment represents how long such treatment
will continue to deliver safety outcomes without maintenance needs.
The entire analysis period was 20 years, which is equal to the service
life of the barriers treatment as reported in Table 5. For that reason,
both the Present net Value (PV) of costs for crashes and for im-
plementation of the treatment were actualized at the year of con-
struction with the following Eq. (15) and results are reported in Table 4:
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Fig. 1. CURE Plots with ± 2σ for the ran-off-road crashes.

Table 2
Value of regression parameters, (Standard error) and [p-value] for the SPF
calibrated.

Ran-off road crashes

Intercept (α0) −16.1053 (2.444) [ < .0001]
AADT (α) 0.7862 (0.254) [0.002]
CCR (β) 2.486 (0.0236) [ < .0001]

Years (yi) 2000 1.33
2001 0.85
2002 1.15
2003 1.58
2004 1.35
2006 1.47
2007 1.07
2008 0.95
2009 1.03
2010 1.29
2011 0.85
2012 0.76

k (Over-dispersion parameter) 6.1·L−0,85

Table 3
Mean CMFs E(θ) and standard deviation σ [θ] used in the analysis for retro-
fitting with barriers meeting the EU standard.

Total Ran off road Non-Ran off road

CMF 0.71 0.28 0.98
Stdev 0.09 0.07 0.152
95% interval 0.52 0.79 0.16 0.41 0.68 1.28

Table 4
Present Value (PV) and cost (k€ = Thousand Euro) at the first year after the
implementation.

Barrier

Cost [k€/km] (k$/km) 180 €
(243 $)

Serv. life 20
Total PV (20th year) [k€/km] (k$/km) 180 €

(243 $)

Crashes

Cost [€/Crash] € 250,000.00 ($ 337,500.00)
Average PV [€/Crash]* € 198,500.00 ($ 267,950.00)

* The average value in 20 years was assumed because it is not possible to
predict the year of the crash occurrence.

S. Cafiso and C. D'Agostino Case Studies on Transport Policy 8 (2020) 188–196

191



=
+=

PV C
r(1 )i

N
i

i
0 (15)

where,

• PV is the present net value of costs in the service life;
• Ci is the costs of crashes or treatments at year i, i = 1,…,20;
• r is the discount rate, assumed equal to 3%.

3.4. Monte Carlo simulation approach

With aims to take into account the variability in the estimation of
the number of crashes and CMF in the sites to be treated as well as to
have a reference population of B/C, a MC simulation approach was
used. Starting from the results of the average number of crashes pre-
dicted by the SPF reported in Table 2, a Monte Carlo simulation was

0 3 6 9 12 15
Crash

0

10

20

30

40

pe
rc

en
ta

ge

(a) 

(b) 

(c) 

0 0.1 0.2 0.3 0.4 0.5 0.6
CMF

0

5

10

15

20

25

30

pe
rc

en
tag

e

0 4 8 12 16 20 24
BC

0

5

10

15

20

25

30

pe
rc

en
ta

ge

Fig. 2. Frequency histograms of MC sample for Crash number (a), CMF (b) and B/C (c).
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performed to derive a random sample of the predicted number of cra-
shes in the service life period of the treatment. With the same metho-
dology, it was possible to generate random samples of θ as well, and
from Eq. (2) the random sample of B/C following the steps reported
below (Cafiso and D’Agostino, 2016, 2015):

1. The mean λi,t and variance Vari of the crash counts for similar sites
is derived from Eqs. (7), (12) and (13) for a given value of L, AADT
and CCR;

2. a random value of εi is generated from the gamma distribution with
E(ε) = 1 and Var(ε) = k;

3. 20 random values of crashes Yi,t are generated from the Poisson
distribution, from Eq. (11) to calculate the number of crash count in
the analysis period;

4. a random value of θ is generated following a gamma distribution θ
with E(θ) = 0.28 and Var(θ) = 0.0049; and

5. a random values of B/Ci is calculated by combining all the previous
results in step 3 and 4 using Eq. (2).

The steps reported above were repeated several times (100,000 in
the case study) in a way to have a simulated population suitable for
predicting as close as possible the failure probability of B/C < F. Fig. 2
shows the frequency histograms of the samples generated in the MC
simulation. As expected, both crash and θ (CMF) variables follow the
assumed Poisson and Gamma distribution, respectively. B/C frequency
distribution shows skewness and shape which clearly deviate from the
Normal distribution. In the present case study, this was confirmed with
99% confidence since the smallest P-value amongst several tests of
normality resulted less than 0.01 (i.e. Chi-square, Shapiro-Wilk,
Skewness Z-score, Kurtosis Z-score).

3.5. Results and discussion

Table 5 shows mean and variance of the random samples generated
in MC simulations for the CMF and B/C ratio. For the same variables,
the mean and variance calculated as linear combination of uncorrelated
random variables are reported in Table 5, too. Data in Table 5, show
good fitting of the output parameters mean and variance of B/C be-
tween the MC simulation and the moments calculated using Eqs. (4)
and (5). This result confirms the correct application of the numerical
simulation.

For comparison the mean and 80th confidence limit of expected
benefits and B/C ratios were carried out applying different statistics:

• (Normal) assuming a normal distribution for B/C with mean and
standard deviation calculated as combination of uncorrelated
random variables (Table 5);

• (MCS) Monte Carlo Simulation, and
• (HSM) using confidence intervals of CMF as suggested in the HSM.

Fig. 3 shows the mean value of B/C and the 80th (lower) and 20th
(upper) two-tailed confidence limits obtained with the three different
approaches (Normal, MC, HSM).

Results reported in Fig. 3 point out as both Normal and HSM hy-
pothesis gave the same estimation of the mean value of B/C ratios
calculated in the MC simulations, but they are unsuccessful in the es-
timation of the confidence intervals due to the different estimation of
the variance and hypothesis of probabilistic distribution of B/C. Spe-
cifically, calculating the CMF’s confidence intervals, as suggested by
HSM, fails to catch the larger variability of B/C missing to consider the
crash prediction as a random variable with as consequence an under-
estimation in the upper percentile. Assuming a normal distribution for
B/C improves the estimation of the confidence limits, but with a ten-
dency to overestimate always the lower limit and also underestimate
the upper limit, due to the skewness and shape of the actual distribution
of B/C which deviate from normality (Fig. 3).

In the decision making process, it is usual to fix a minimum critical
value of B/C ratio (e.g. B/C≥3) to take the decision of implement or not
implement the treatment. Applying the reliability-based approach it is
possible to calculate the probability of failure of such assumption using the
MC simulation, the Normal distribution and the HSM approach. With the
hypothesis of Normality for B/C the probability of failure is calculated
with Eq. (3) and in the MC simulation with Eq. (9). Adopting the HSM
approach, the probability of failure is calculated iteratively, as the per-
centile of the CMF that gives the assumed B/C ratio.

Fig. 4 shows the results of the probability of failure assuming the
threshold value of 3.0 (i.e. failure if B/C less than 3).

Again, different methodologies lead to different results. The HSM
approach, again produces the largest deviation from the correct value
provided by the MC simulation. Even if with improvements in the

Table 5
Summary statistics of CMFs, B/C ratio and Benefits.

B/C

Deterministic 3.33
Normal Distribution Mean 3.33

Variance 6.60
MC Sample Mean 3.31

Variance 6.63

Benefit [k€]

Deterministic 248.16
HSM Mean 248.16

80th percentile 229.3
MCS Mean 246.97

80th percentile 91.4
Normal Mean 248.16

80th percentile 87.06

*80th percentile refers to one tailed lower limit.
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Fig. 3. Mean value of B/C function and the 80th confidence interval for Normal distribution, Monte Carlo simulation (MC), HSM and deterministic approach.
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estimation, the shape and skewness of the B/C distribution cause bias in
the results assuming normality for B/C.

The reliability analysis can be used to evaluate the safety perfor-
mance of the selected treatment using as criteria the B/C ratio per-
centile (Fig. 3) and the highest chances to achieve a minimum critical
B/C value (Fig. 4). Moreover, the reliability analysis makes possible to
compare two different treatments in terms of chance that the B/C ratio
of the former is higher than the latter.

For example, in the presented case study, improving curve deli-
neation with chevron signs may be introduced as alternative treatment
to the more expansive safety barrier retrofitting.

The CMF for installation of chevron on curve in motorway has been
estimated in 0.73 with a standard error of 0.11 (Montella, 2009). This
treatment is characterized by higher CMF and standard error, but also
by reduced installation and maintenance costs (Table 6).

Applying the procedure previously described, the B/C ratios were
calculated and results are reported in Fig. 5. In Fig. 5 also the prob-
ability of B/CBarrier > B/Cchevron is shown. This probability was cal-
culated with the count of the events B/CBarrier > B/Cchevron in the MC
samples and by comparison of the two distribution curves in the Normal
hypothesis (a similar test cannot be performed in the HSM framework).

Also in this instance, MC simulation delivers different results when
compared to the Normal distribution and HSM approaches. The ten-
dency of the approximated methods to over or underestimate the B/C
percentiles is confirmed also in this example. Installing new barriers get
lower B/C ratio than the delineation treatment when evaluated with the

Deterministic, HSM and Normal methods.
Instead the MC simulation highlighted a slight higher 80th per-

centile of the B/Cbarrier ratio, but a limited chance (6%) to achieve a
better B/C than curve delineation. This result is consistent from a re-
liability point of view because the greater mean value of B/Cchevron is
compensated by the higher standard deviation in the estimation of the
80th percentile (left side of the distribution curve).

When the two distributions are compared for estimating the prob-
ability of B/CBarrier > B/Cchevron, the overall curves are considered and
the probability to draw values greater than the mean (right side of the
curve) is higher in the B/Cchevron distribution. The different shape and
skewness of the two distribution is evident in Fig. 6 where the cumu-
lative frequency histograms of the MC samples are reported.

Therefore, from a reliability point of view we can assess that
chevron delineation has a lower B/C ratio than installing new barriers
as worst estimation (80th percentiles comparison), but in multiple
treatments we can expect 94% of chances to have an higher B/C with
new chevron delineation than installing new safety barriers. This
probability is under estimated equal to 74% by the Normal method,
while the HSM approach is not suitable to determine this parameter.

4. Conclusions

Due to the variance of CMFs and crash frequency the safety benefits
of treatments are uncertain. To deal with the uncertainty inherent in the
decision making process, a reliability assessment of Benefit Cost ratio
must be performed introducing a stochastic approach. In this frame-
work, the failure probability plays a fundamental role, being itself a fair
indicator of the reliability of the decision-making process. Particularly a
failure probability that B/C is lower than a target value can give an idea
of the chance to take the right decision. If different alternatives have to
be compared, only the reliability analysis is able to provide an esti-
mation of the probability to achieve the highest B/C ratio between the
two treatments.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
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Normal MC HSM

Fig. 4. Failure probability of B/C < 3 with different approach.

Table 6
CMF and cost for installation of Chevron on curves.

CMF Service Life Cost [k€/km] (k
$/km)

Total PV (20th year) [k€/km]
(k$/km)

E[θ] 0.73 10 years 15 € 26 €
σ [θ] 0.11 (20 $) (35 $)

MC
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26%
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Fig. 5. Comparison of B/C of alternative treatments.
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The proposed methodology applies the Monte Carlo (MC) simulation as
the most suitable tool to calculate reliability, as the joint distribution
function of the B/C random variable is unknown. For practical application,
the confidence interval of B/C can be determined rather easily assuming
Normality for the joint distribution or applying the HSM approach, as well.
However, the shape and skewness of the actual distribution of B/C cause
bias in the results assuming normality for B/C. Despite, the results show that
the Normality hypothesis for B/C was not statistically significant, it leads to
better results than those provided by using the confidence intervals of CMF
to estimate the B/C ratio as suggested in the HSM. MC is relatively easily to
carry out with the modern computer programs, but for practical application
the hypothesis of normality for B/C can simplify the reliability assessment
improving results when compared to the HSM approach.

The case study was effective to show power and issues of the re-
liability analysis carried out by using different approaches. Moreover,
the specific case study of installing new safety barriers with high con-
struction costs is relevant for Motorway Agencies facing the problem to
select the treatments able to achieve the best safety benefits with lim-
ited budget. In the comparison between the installation of new safety
barriers and the delineation of curves with chevron the former in 94%
of application will provide higher B/C ratios. Of course the highest
benefits are expected with the installation of new barriers even if with
higher construction costs.

Despite the theoretical procedure is detailed presented to make
possible the use in any circumstance when mean and variance of CMF
and Crash frequency are known, results coming from the case study
cannot be generalized depending on the characteristics of the prob-
abilistic distributions of CMF and crash frequency. Another issue in the
transferability of results is related to the use of monetary valuation of
safety benefits. Some international comparisons show that official es-
timates of the value of a statistical life vary by a factor of almost 60
between the countries with the highest and lowest estimates.
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