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This article is part of the theme issue ‘Advanced materials modelling via fractional calculus:
challenges and perspectives’.

1. Introduction
Most properties of non-Newtonian (NN) fluids overlap with that of viscoelastic materials, such
as polymers, lung tissue, gel-like substances, rubber, etc. [1,2]. Specific properties as memory,
creep and shear stress do not follow classical Newton’s Law of Viscosity and has been proven
to be well characterized by combinations of power-law and exponential functions [3,4]. These
are non-rational expressions of combined nonlinear effects in material creep and strain which
have been well characterized by the nonlinear Mittag–Leffler function [5–7]. In particular, they
represent a generalization from integer-order differential equations to fractional-order differential
equations. Such generalized order equations are mathematical tools emerging from fractional
calculus and successfully introduced in engineering, medical and many other applications
areas [3,8,9].

The great potential of fractional-order impedance models (FOIMs) for capturing natural
properties of materials in a variety of disciplines has been long recognized and established
experimentally [10–13]. Applications in medicine and biology are most prevalent as these
dynamical systems feature core properties such as multi-scale dynamics, diffusion, viscoelasticity
and relaxation [8,14–16]. The same properties are often used to model dynamics in the areas of
geology, manufacturing, food industry and chemical products. The list of their applicability is
vast and summarized in several excellent surveys [3]. The prevalence of these properties is much
increased in NN fluids and soft materials. As such, one can identify classes of NN fluids in each
of the above-mentioned application areas.

Fractional-order systems have been recently applied in modelling NN fluid. In [17], the authors
propose a fraction seepage model of a NN fluid. The non-local characteristic of the fluid has
been modelled in the case of a porous media. In the paper, the authors make an attempt to
relate the fractional order of the model with the fractal dimension of media tortuosity. A further
application can be found in [18], where the authors in the case of a steady pipe flow, describe, via
fractional derivative models, the flow of NN fluid driven by spatially non-local velocity. A more
specific fractional system, the extension of the fractional-order Maxwell model, has been applied
in [19] to incorporate a relaxation process with NN viscosity behaviour. The main contribution
of the fractional-order systems approach has been noted in the capability of factional calculus
to describe the effect of non-localities as well the memory effect. Furthermore, the integer-order
exponents of the integro-differential equations can be used as further optimization parameters in
measurement fitting.

A more common approach in modelling and simulating NN behaviour is based on the
numerical calculus via computational fluid dynamics (CFD). In this case, dedicated software such
as Ansys Fluent, Open Foam, SIMSCALE, SimFlow, to mention just a few, are used. In this case,
effective applications can be found in different areas. In [20], Newtonian and NN blood viscosity
models have been considered in simulating the flow in atherosclerotic coronary arteries; in [21]
the authors, in order to realize a continuous way of measuring and monitoring drilling fluid
properties, simulate a NN fluid that is best described by a Yield-power-law (YPL) rheological
model. Numerical methods and time complex time-domain models using power law models
and fractional derivatives have been proposed in [22–24], providing excellent simulation analysis
tools. The memory property of such fluids was also captured with variations of the fractional
order in time [22]. Such in-depth theoretical analysis is a solid basis and motivation for using the
FOIMs.

The term FOIM was coined some decades ago in an application of modelling respiratory
tissue properties such as tissue compliance as a function of anatomical and structural changes
in respiratory disorders [15]. It has since then used in many applications, such as tissue
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modelling, drug diffusion and blood viscosity [5]. The high versatility of FOIMs stands in their
combination of general-order integrators and differentiators. The fractional orders are usually
limited between physical values capturing properties defined by classical (Newtonian) theory of
fluids or materials.

The representation of FOIMs in the frequency domain greatly simplifies their applicability to
experimental data. The collection of data is time based, but suitably transformed into equivalent
complex or polar coordinates. Dynamic response methods are applied to obtain the material
reaction to an input signal suitably designed. Although there are time-based models defined for
capturing material properties, these require a high computational complexity and a careful choice
of time-based definitions [25].

A great advantage of FOIMs expressed in Laplace and their equivalent frequency-domain
forms is their capability to capture in a compact form complex nonlinear properties and have
these identified in a real-time context. This was previously shown in modelling memory effects
in blood [5] and in designing a closed-loop control of suspended objects in a blood-like varying
context of viscoelastic fluid properties [26]. Beyond the specific application, this paper proposes
to use a mathematical framework of FOIMs to capture and link the model parameter structure
to the existence of specific properties in NN fluids. The novelty of this approach consists in the
justification of using FOIMs, as well as the systematic analysis of the FOIM structure versus fluid
properties. Novel is also the experimental protocol designed and applied to a series of fluid
classes (oil, sugar, detergent and liquid soap). An additional original element of this research
consists in the presentation and validation of several variations of FOIMs on the dataset. Finally,
the set of recommendations concerning the future use of FOIMs in capturing material properties
is also novel.

The paper is organized as follows. The next section introduces the properties of NN fluids and
provides the necessary motivation for using FOIMs. The third section provides an overview of
the various FOIM structures and identification algorithms. The fourth section summarizes the
results, followed by the fifth section with discussion and recommendations. The main outcome of
this work is summarized in the conclusion.

2. Non-Newtonian fluids classification
In this section, we familiarize the reader with the minimal textbook background in properties of
NN fluids and soft materials [1,2]. This information also provides the necessary motivation for
using FOIMs in characterizing such material properties.

Consider the infinitesimal volume fluid element made by the overlapping of infinitesimal
thickness layer. If a very thin layer of Newtonian fluid is contained within two plates, as in
figure 1, it is possible to observe the linearity of the fluid’s velocity profile as a consequence of
a shearing stress F applied to the moving plate [2]. In this linear context, the external force is
balanced by an internal frictional force in the fluid arising from its viscosity. In other words, the
fluid is subjected to a uniform strain rate γ̇ : the governing equation that relates the shear stress
τyx, pressure-like, and the shear rate ˙γyx, or strain rate, is

τyx = −η ˙γyx, (2.1)

also known as Newton’s Law of Fluids. The subscript yx is used to underline the direction of the
stress and strain in the fluid. The minus sign on the right-hand side of this relation suggests that
the shear stress is a resisting force. Looking at (2.1) the similarity with Hook’s Law for a solid
can be noticed, with the difference that we are referring all to the share rate ˙γyx. Moreover, the
relation is linear and the constant coefficient η is called viscosity of the fluid. This value is well
determined for a great variety of Newtonian fluids, although it may vary with temperature and
pressure of the fluids, hence changing the overall physical properties of the fluid. All gases, as
well as most common liquids like water, oils, hydrocarbon and also metals, in liquid form, are
examples of Newtonian fluids.
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Figure 1. Schematic of unidirectional shearing flow.
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Figure 2. Classification tree of non-Newtonian fluids.

By contrast, a fluid is called NN when it does not respect Newton’s Law. This means that the
relation between shear stress and shear rate is no longer linear, i.e. the viscosity varies in time,
dependent on conditions such as

— flow conditions, e.g. flow geometry,
— shear stress applied to the fluid,
— shear rate developed within the fluid,
— time of shearing stress applied,
— kinematic history of the sample, etc.

A classification of NN fluids in different categories can be made based on the main origin of
viscosity changes, as given in figure 2. Note however that this classification is quite arbitrary,
because most real materials often display a combination of two or more properties. Nevertheless,
in most cases, it is possible to identify the dominating NN feature and to use it as the basis for
subsequent process engineering calculations.

(a) Time-independent properties
Fluids whose flow properties are independent of the duration of shearing may be described as

τyx = f ( ˙γyx) or vice-versa ˙γyx = f −1(τyx). (2.2)
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Figure 3. Qualitative representation of the apparent viscosity behaviour for a shear-thinning fluid.

This equation implies that the rate of shear, at any point within the sheared fluid, is determined
solely by the current value of the shear stress at that point, or vice versa. Depending upon the form
of (2.2), these fluids may be further subdivided into three different types:

(i) shear-thinning or pseudoplastic,
(ii) viscoplastics, including Bingham plastics,

(iii) shear-thickening or dilatant.

(i) Pseudoplastic or shear-thinning fluids

A great part of commonly known fluids belong to this family: nail polish, whipped cream,
ketchup, molasses, syrups, paper pulp in water, latex paint, ice, some silicone oils, sand in water
and some silicone coatings. These kinds of fluids have an apparent viscosity, i.e. the ratio between
shear stress and rate, which decreases with the increment of the shear rate. Most pseudoplastic
fluids are piecewise linear and the following limit variables can be introduced:

lim
˙γyx→0

τyx

˙γyx
= η0 zero shear viscosity (2.3a)

and

lim
˙γyx→∞

τyx

˙γyx
= η∞ infinite shear viscosity. (2.3b)

In figure 3, we observe that the central region of the curve is piecewise linear. Taking into
account that the plot is in logarithmic scale, this behaviour can be well modelled as a power-law
relation

τyx = m( ˙γyx)n, (2.4)

or by using the (2.1) in (2.4) and resolving with respect to the viscosity one obtains

η = m(| ˙γyx|)n−1, (2.5)

which is also known as the Ostwald–De Waele model for pseudoplastic fluid [27]. The two model
parameters n and m are called, respectively, the power-law index and the fluid consistency
coefficient. For a Newtonian fluid n = 1, while for a pseudoplastic substance n < 1. The lower
the value of the power-law index, the greater is the degree of shear-thinning. Admittedly,
(2.5) provides the simplest description of shear-thinning behaviour, but it also has a number
of limitations. Another model is based on the assumption that the shear-thinning behaviour
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is caused by the formation and breakdown of ‘structural linkages or units’, also observed in
polymers and lung tissue [4]. For one-dimensional steady shearing, we have

η − η∞
η0 − η∞

= 1
1 + (λ ˙γyx)2/3 , (2.6)

where η0 and η∞, respectively, are the zero and infinite shear viscosities while λ is a constant
with units of time. This formula was reported to satisfactorily fit the shear stress-shear rate data
for a wide variety of pseudoplastic systems. Moreover, this model is the clear evidence of how
the theory of fractional-order systems can be more suitable to reproduce this kind of behaviour,
rather than integer-order approximation.

(ii) Visco-plastic fluids

This class of materials is characterized by the existence of a minimal yield stress τ0 that must be
exceeded before deformation (or flow) occurs. One can explain this behaviour by postulating that
the substance at rest consists of a three-dimensional structure of sufficient rigidity or strength to
resist any external stress less than τ0. For stress levels greater than τ0, the structure loosens, and
the material behaves as a viscous fluid. A fluid with a linear flow curve for |τyx| > τ0 is called a
Bingham plastic fluid and is characterized by a constant value of plastic viscosity [9].

Among the many mathematical equations to model this kind of flow behaviour, the simplest
and perhaps the most widely used can be written as

τyx = τB
0 + η ˙γyx if τyx > τB

0

and ˙γyx = 0 if τyx ≤ τB
0 ,

⎫⎬
⎭ (2.7)

where τB
0 is the Bingham yield stress and ηB is the plastic viscosity. Another model for visco-plastic

fluids is known as the Herschel–Bulkley model [28], written for a simple shear flow as

τyx = τH
0 + m ( ˙γyx)n if τyx > τH

0

and ˙γyx = 0 if τyx ≤ τH
0 .

⎫⎬
⎭ (2.8)

This formula can be seen as a generalization of the simple Bingham model (2.7), in which the
linear shear rate dependence has been replaced by a power-law behaviour. This model is broadly
used to model blood viscosity [5] and muddy clay modelling applications [29].

(iii) Dilatant or shear-thickening fluids

These materials, also known as dilatant materials, are similar to shear-thinning materials in that
they show no yield stress, but their apparent viscosity increases with increasing shear rate. This
type of behaviour is encountered in concentrated suspensions of solids, and can be qualitatively
explained as follows. When a suspension is at rest, the gap between one particle and another
is the minimum and the liquid present is just sufficient to fill the void spaces. At low shear
rates, the liquid lubricates the motion of one particle past another, and the resulting stresses are
consequently low. At high shear rates, on the other hand, the dense packing of solids breaks
down and the material expands or dilates slightly causing an increase in the gap, and thus the
amount of liquid available is no longer sufficient to lubricate the solid motion of one particle past
another and the resulting solid–solid friction causes the stresses to increase rapidly, which, in turn,
causes an increase in the apparent viscosity. In the past decades, experimental data suggest that
the apparent viscosity–shear rate curves often result in a linear behaviour on log-log coordinates
over a limited shear rate range of interest, and thus the power-law model (2.5) may be used with
n > 1 in this case.

The entire behaviour of typical shear-thickening fluids, as given in figure 4, gives evidence of
three distinct zones. Two of them, for very low and very high shear rate, respectively, are regions
in which the fluid shows shear-thinning characteristics, i.e. the viscosity decreases with increasing
shear rates. However, for mid-range shear rate, the liquid behaves like shear-thickening, resulting
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Figure 4. Qualitative viscosity curve for a shear-thickening fluid.

in increasing viscosity with shear rate. This region is linear in the log-log plot, as mentioned
earlier. The model has been revised taking into account the three different regions:

η =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ηc + η0 − ηc

1 + [
KI(γ̇ 2/(γ̇ − γ̇c))

]nI
for γ̇ ≤ γ̇c

ηmax + ηc − ηmax

1 + [KII((γ̇ − γ̇c)/(γ̇ − γ̇max))γ̇ ]nII
for γ̇c < γ̇ ≤ γ̇max

ηmax

1 + [KIII(γ̇ − γ̇max)]nIII
for γ̇ > γ̇max.

(2.9)

It must be noted that the three branches of (2.9) have a functional form based on that of the
Cross model: the similarity can be found if (2.6) is rearranged by solving it with respect to η.
Hence, the parameters appearing in (2.9) have the same dimensions and interpretation: KI, KII,
KIII possess time dimension and are responsible for the transitions between the plateaus and
the power-law, while the dimensionless exponents ni are related to the slopes of the power-law
regimes. Additionally, it is sufficient to calculate the right and left limit of the three branches to
see that the function is continuous.

(b) Time-dependent properties
For many industrial materials, as well as some common food materials, the viscosity depends
on both shear rate and shear time. The most common example is honey: when it is sheared at
a constant rate of shear, following a period of rest, its apparent viscosity gradually decreases
as its internal ‘structure’ breaks down progressively. As the number of ‘structural linkages’
available for breaking down decreases, also the rate of variation drops towards zero. On the other
hand, the rate at which the linkages can reform increases, and eventually a state of dynamic
equilibrium is reached when the rates of build-up and breakdown linkages are equal. This type
of fluid behaviour may be further divided into two categories: thixotropic and rheopectic or
anti-thixotropic.

(i) Thixotropic fluids

A material is said to exhibit thixotropy if its apparent viscosity (or shear stress) decreases with
time when sheared at a constant rate of shear. If the flow curve is measured in a single experiment
in which the shear rate is steadily increased at a constant rate from zero to a maximum value, and
then decreased at the same rate to zero again, a hysteresis loop, as shown schematically in figure 5,
is obtained. The height, the shape and the enclosed area of the loop depend on the kinematic
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Figure 5. Qualitative shear stress-shear rate behaviour for thixotropic and rheopectic materials.

parameters such as duration and rate of shearing, past deformation history of the material
sample, etc.

In practice, thixotropic substances show very similar properties to the shear-thinning fluids
with the difference that the former do not show constant viscosity if a fixed value shear rate is
kept for a while.

Common examples are yogurt, peanut butter, honey, aqueous iron oxide gels, gelatin gels,
carbon black suspension in molten tyre rubber, some drilling muds, many paints, many colloidal
suspensions.

(ii) Rheopectic fluids

The relatively few systems for which the apparent viscosity increases with the duration of
shearing are said to display rheopexy, or negative thixotropy. Again hysteresis effects are
observed in the flow curve in figure 5, but in this case it is inverted compared to that for a
thixotropic material. By analogy with thixotropy, rheopexy is associated with a gradual build-
up of ‘structure’ as the fluid is sheared, though it is not certain whether an equilibrium will ever
be reached. Thus, in a rheopectic material, the structure builds up by shear and it breaks down
when the material is at rest. For this reason, it can be associated with the shear-thickening, or
dilatant fluids.

Some examples of rheopectic fluids are synovial fluid, printer ink, gypsum paste.
To conclude, we have observed that the material properties can change as a function

of various dynamic conditions, requiring several individual model structures. Power-law,
exponential and combinations thereof are commonly shown to be dynamics which naturally
require generalized models such as fractional-order models. Although time-domain fractional-
order model representation exists, the remainder of this paper will deal with FOIMs represented
in Laplace domain for frequency-domain identification.

3. Material and methods

(a) Experimental set-up and measurement protocol
The device depicted in figure 6 performs electrochemical impedance spectroscopy in fluid
samples. The method behind is the classical transfer function analyser algorithm. The reference
signal is applied by means of a potentiostat and then through the frequency response analyser
the actual measurement of the impedance can be performed. The Modulab XM is a highly
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Figure 6. ModuLab XM measurement device with afferent instrumentation for experimental testing of various NN fluid
impedance characteristics. The GUI data are a polar plot, with real and imaginary parts as a function of excited frequencies.
(Online version in colour.)

versatile electrochemical test system that measures the characteristics of a wide range of materials
including organic/inorganic, specialized corrosion, electroplating and energy cells. Reference
grade system components (potentiostat/galvanostat, frequency response analyser and optional
high voltage amplifier) are combined in a single unit, avoiding the need for stacking and wiring
separate units. The device communicates via an Ethernet link to an external PC, running XM-
STUDIO ECS software for control and monitoring purposes. The testing signal covers a range of
frequencies from μHz to MHz.

The software XM-STUDIO ECS provides the data logging in a graphical form as a polar plot,
and in an Excel file as numerical values for further processing. The measurement options are
listed below:

— DC level: 0 mV
— RMS amplitude: 300 mV
— starting frequency: 1 MHz
— ending frequency: 5 Hz
— integration period time: 0.3 s
— integration period cycles: 1
— sweep type: logarithmic
— points per decade: 25

(b) Fractional-order impedance model
A commonly used FOIM for (biological) material characterization is the model given by

Z(s) = R + Lsα + 1
Csβ

, (3.1)

as a function of the Laplace variable s, containing a scaling factor R and two fractional-order terms
which denote low- and high-frequency dependency whose gains L and C are constants denoting
gain in the slope of the constant phase intervals related to the fractional-order values (for details
on derivation see for example [3,4,14]). This is a compact model, consisting of the minimal term to
characterize variations in frequency response of combined increasing and decreasing monotonic



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190284

................................................................

values. This model has been shown to be the natural solution of materials with mechanical
properties modelled by combinations of Maxwell, Kelvin and Voigt elements [4,30]. This implies
also that the model structure and parameters may be suitable for detecting various degrees of
viscoelasticity.

Looking at the model in (3.1) and considering the fact that the parameter α always has a
negative value, then it is possible to make some calculation to rearrange the model as

Z(s) = Rsα+β + Lsβ + Dsα

sα+β
, −2 < α, β < 2, (3.2)

with D = 1/C. Therefore, it is possible to note that for some materials the appropriate model
may have a pole in the origin and two other fractional-order derivative. However, doing an
electrical comparison, this impedance could correspond to a circuit which has one resistor and
two fractional-order capacitors, also known as constant phase elements. Such a model is broadly
used for dielectric materials and neural network transmission pathways [31].

The complete FOIM will take the form of (3.1) in frequency domain as

Z(jω) = R + L(jω)α + D
(jω)β

, −2 < α, β < 2, (3.3)

which is a five-parameter model. When optimization is involved, it may be useful to verify the
equivalent real and imaginary parts of this model

R {
Z(jω)

} = R + Lωα cos
(απ

2

)
+ D

ωβ
cos

(
βπ

2

)
(3.4a)

and

I {
Z(jω)

} = −
[

Lωα sin
(απ

2

)
+ D

ωβ
sin

(
βπ

2

)]
, (3.4b)

where one can see the real part is no longer constant with frequency as in the classical integer-
order formulation, but it varies as a function of frequency.

In the remainder of this paper, the full model has been used to characterize the impedance
data, assuming the variations in the parameter values will depend on the degree of viscoelasticity
in the test sample.

(c) Identification methods
(i) Nonlinear least-squares algorithm

The available nonlinear least-squares minimization algorithm from Matlab has been used to fit
the FOIM to the test sample data. The initial values are randomly selected at the beginning of the
optimization from the intervals of feasible region.

The function lsqnonlin was used for the following options:

— 1000 different calls;
— 500 maximum number of iteration per call;
— 1 × 10−9 as goal for the cost function minimum;
— 10 recurrent iterations to further optimize the solution.

(ii) Genetic algorithm

The genetic algorithm (GA) is a biologically inspired optimization algorithm [32]. It is a stochastic
global search method that tries to mimic the process of natural biological evolution. This
algorithm operates on a population of potential solutions applying the principle of survival of
the fittest, ideally to produce increasingly better approximations towards an optimal solution. At
each generation, a new set of approximations is created by the process of selecting individuals
according to their level of fitness in the problem domain and breeding them together using
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Figure 7. Flowchart of typical implementation of the genetic algorithm.

operators borrowed from natural genetics. This process leads to the evolution of populations of
individuals that are better suited to their environment than the individuals that they were created
from, just as in a natural adaptation mechanism.

Figure 7 illustrates the flowchart of the GA, emphasizing the main steps. At the very beginning,
the domain for each parameter to be found must be set properly. It is straightforward to
understand that the larger the domain the more difficulties that the optimization process can
have, especially if the problem is strongly nonlinear. Each of this range is then ‘discretized’
through a binary conversion, according to the specified number of bits. The binary elements of
each range are called chromosomes. The binary number is called the genotype while the relative
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decimal, real number, represents the phenotype. Then, the first population is created by random
selecting chromosomes and the size depends on the number of individuals, that is an option to
set properly. The key role of the optimization process is played by the objective function: it can be
seen as the cost function to be minimized and is the one which actually represents the problem to
solve. Each chromosome is therefore converted to get the phenotype, and it is evaluated through
the objective function: the value of the function for the given set of parameters is called fitness
value. This allows one to asses the goodness of the chromosome determining its probability to be
selected. In this version of the algorithm, the roulette wheel selection method is used: it means that
the chromosomes selected to become the parents of the next generation individuals are chosen
with a probability proportional to their fitness value. Note that the objective function has to be
minimized such that the better the chromosome is, the lower the objective function value is: for
this reason, the fitness value is usually its inverse.

After the selection, the chromosomes mate in couples and the son will have part of the
genotype from both parents: this kind of process is called crossover. It represents the biological
ability to evolve through generations inheriting good genes. Another process that can occur is
called mutation and consists in the random change of only one-bit state in the genotype. This
can be seen as a perturbation given to the solution, useful to escape from local minimums and
converge towards the global minimum, if one exists. Each pair generates two sons and the
probability that crossover and mutation happens are Pc and Pm established in the program,
with Pm � Pc. Once the new population is generated, the process restart and continue until
the stopping criteria is met, usually regarding a lower bound for the objective function and a
maximum number of generation. An additional strategy purposes that the size of the offspring
should not remain the same, and though another optional parameter is introduced called
generation gap, representing the ratio between the new population and the old one. In this case,
the GA is said to follow an elitist strategy.

The function ga has been implemented in Matlab with the following options:

— 10 independent calls of the algorithm;
— 1000 individuals per generation;
— 300 maximum number of generations;
— 90% of generation gap;
— 5 parameter to optimize, i.e. number of chromosomes;
— 10 bit to discretize the domain;
— limited range; and
— 1 × 10−9 as limit value for the cost function minimum.

(iii) Particle swarm optimization

The particle swarm optimization (PSO) concept was introduced in 1995, by simulating social
behaviour of observed in animals or insects, e.g. bird flocking, fish schooling; afterwards the
algorithm was simplified and it was observed to be performing optimization [33]. PSO is an
evolutionary computation technique that optimizes a problem by iteratively trying to improve
a candidate solution with regard to a given measure of quality.

It is inspired by the behaviours of swarms based on their movement and intelligence, which are
seeking the most fertile feeding location. A swarm is a seemingly badly planned and disordered
collection of moving individuals that tend to gather closely while each individual moves with
random changes in direction. It uses a collection of particles that are part of a swarm moving
around in the search space for finding the best solution to an optimization problem. The concept
consists of changing the velocity (or accelerating) of each particle toward its pbest and the gbest
position at each time step.

Each particle adjusts its own trajectory in an n-dimensional space, according to its own
trajectory experience and the experience of other particles in the swarm. Each particle keeps track
of the best position in the problem space, which it has reached so far. This value is called pbest.
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Figure 8. Flowchart of typical implementation of PSO algorithm.

Another best value called gbest is achieved by any particle associated with the best value found
among all the particles.

In the PSO algorithm, with flowchart given in figure 8, each particle moves around in the
n-dimensional space with a velocity (or accelerating) that is updated by pbest and the gbest position
of the particle at each time step. The current position and the velocity of each particle are modified
by the distance between its current position and pbest, and the distance between its current
position and gbest as given in the following. At each step n, by using the individual best position
pbest and global best position gbest, a new velocity for the ith particle can be modelled according
to the following equation:

Vi(n) = χ [Vi(n − 1) + ϕ1r1(pbesti − Pi(n − 1))

+ ϕ2r2(gbest − Pi(n − 1))], (3.5)

where each particle represents a potential solution and it has a position represented by the
position vector Pi, with r1 and r2 denoting random numbers between 0 and 1; ϕ1 and ϕ2 being
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positive constant learning rates and χ is called the constriction factor defined as

χ = 2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ

∣∣∣ and ϕ = ϕ1 + ϕ2, ϕ > 4. (3.6)

Based on the updated velocity, each particle changes its position according to the following:

Pi(n) = Pi(n − 1) + Vi(n). (3.7)

The position is confined within the range of [pmin, pmax]. Changing position enables the ith particle
to search around its local best position, pbest, and global best position, gbest.

PSO is an extremely simple algorithm that seems to be effective for optimizing a wide range
of cost functions. The adjustment toward pbest and gbest by the optimizer is conceptually similar
to the crossover operation used by genetic algorithms.

The PSO algorithm used in various optimization problems has certain advantages:

— it does not involve selection operation or mutation calculation, i.e. the search can be
carried out by repeatedly varying particle’s speed;

— particles fly only to good areas, as learning from group’s experiences;
— it is based on artificial intelligence enabling broad application areas;
— it has a low computational cost.

Some of the disadvantages of the method may be listed as

— complexity increases exponential with the dimension of the optimization space;
— it is vulnerable to partial optimism, which leads to a sub-optimal regulation of its search

speed and direction;
— with the lack of dimensionality this method cannot be used for problems of non-

coordinate system, such as the solution to the energy field and the moving rules of the
particles in the energy field.

To conclude, due to the flexibility and versatility of this algorithm, it can be used to overcome
complex nonlinear optimization tasks like non-convex problems, being a good compromise
between computational time and accuracy.

The function particleswarm has been implemented in Matlab with the following options:

— 10 independent calls of the algorithm;
— 1000 particles in the swarm;
— 500 maximum number of generations;
— 50 maximum stall iterations, to explore neighbourhood of a solution;
— 5 parameter to optimize;
— limited range; and
— 1 × 10−9 as limit value for the cost function minimum.

(iv) Optimization in feasible region

Irrespective of the optimization algorithm applied to nonlinear cost functions, there is no
guarantee for convergence to the global minimum. The cost function defined for GA, PSO and
the nonlinear least squares algorithm has been defined by using the so-called normalized mean
square error, provided by the built-in Matlab function calNMSE. Its mathematical form is

NMSE = ‖Zm(jω) − Ze(jω)‖2

‖Zm‖2 , (3.8)

where Zm is the measured impedance and Ze the estimated impedance. The optimization
algorithms use vector format and for this reason is useful to make another normalization by
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Table 1. Upper and lower bounds for class NN1 (honey and glucose) and class NN2 (hand soap and shampoo) test samples.

class R L D α β

NN1 min 0 −1010 108 −2 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max 102 −108 1010 0 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NN2 min 0 −105 103 −2 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max 102 −103 105 0 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dividing the NMSE of (3.8) for the length of the impedance vector itself. This definition allows
one to choose the cost function J as follows:

J = wr · NMSER + wi · NMSEI, (3.9)

which is the weighted sum of the normalized mean square error for the real and the imaginary
part of the impedance. The weight values wr = 1 and wi = 2 could be chosen differently. However,
the problem is highly nonlinear in the five parameters and we propose to find the proper domain
with nested loops, trying to optimize the cost function per decade of frequency. Monte Carlo
analysis provided the empirical values for the upper and lower bounds in test sample groups
(table 1).

4. Results
There are three identification methods applied to the experimental data in complex form. The
comparison in terms of fitting performance did not deliver statistical meaningful differences.
However, the CPU time evaluated for the total time of identification (including iterations) was

— genetic algorithms at 0.72 ± 0.26 s;
— PSO at 0.19 ± 0.13 s; and
— nonlinear least squares at 0.13 ± 0.05 s.

The identification was performed on a Dell OptiPlex 7060 desktop Intel Core I7 8th Gen, Win10
and Matlab R2017a version. Depending on the application, these times can be put into the context
of continuous evaluation of context properties, in this case estimating the time-varying model
parameters which may change over time. Given the ease of implementation and computational
burden, the nonlinear least-squares algorithms seems to be the most practical.

The model from (3.1) has been used to fit the experimental data. The results of the identification
algorithms for class NN1 fluids are given in figures 9 and 10. It can be observed that the data are
very well fitted by the model over many frequency decades.

The results of the identification algorithms for class NN2 fluids are given in figures 11 and 12.
Also in this case, the data are very well fitted by the model over many frequency decades.

No significant difference between the optimization algorithms was observed within the
obtained results. This is an indication that the same (global) minimum was reached by all three
algorithms. The model values are summarized in table 2.

For reasons of ease of implementation, the nonlinear least-squares optimization method was
used to fit the data presented hereafter. Another set of shear-thickening and shear-thinning NN
fluids was tested to see whether the model parameter values was sensitive to variations in
temperature, i.e. engine oil. The results are given in table 3. A non-monotonic evolution of the
parameter values can be observed, which is expected from the shear-variations from figure 3.

A set of NN fluids whose consistency is significantly different was tested to see whether the
model parameter values was sufficiently able to distinguish among them. There are three test
samples of food oils with results given in table 4. The results suggest the scaling factor R is
proportional to the increase in consistency.
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Figure 11. Hand soap: comparison between optimization algorithms. (Online version in colour.)

Another set of NN fluids whose consistency varies was tested. The results for household fluids
are given in table 5. Again, the results suggest the scaling factor R is proportional to the increase
in consistency, a property of shear-thinning NN fluids.

An interesting set of NN fluid was that of thixotropic fluids, which resembles biological
tissue. This was achieved by standard gelatin–water proportions, as given in increasing density
in table 6. As expected from our prior expertise in lung tissue, the parameters D and β were
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Table 2. Identified model parameter values and normalized error.

R L D α β NMSE

glucose GA 0 −5.35 × 109 3.91 × 109 −0.96 0.91 4.32 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PSO 0 −7.19 × 109 5.84 × 109 −0.95 0.92 4.46 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSQ 0 −7.19 × 109 5.84 × 109 −0.95 0.92 4.28 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

honey GA 0 −2.04 × 109 3.61 × 108 −1.10 0.82 4.53 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PSO 0 −3.26 × 109 2.09 × 109 −0.97 0.90 4.03 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSQ 0 −5.05 × 109 5.05 × 109 −0.84 0.84 1.24 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hand soap GA 33.2 −1.67 × 104 1.48 × 105 −0.89 0.89 2.22 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PSO 32.5 −1.01 × 104 1.37 × 105 −0.89 0.89 2.16 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSQ 32.8 −1.30 × 104 2.66 × 105 −0.89 0.89 2.22 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shampoo GA 18.5 −1.00 × 104 3.92 × 104 −2.00 0.84 6.46 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PSO 18.0 −1.00 × 104 3.47 × 104 −2.00 0.82 5.67 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSQ 18.3 −1.03 × 104 5.25 × 104 −0.85 0.85 6.67 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Identified model parameter values in engine oil as a function of temperature.

temperature R × 103 L × 109 D × 109 α β

22◦C 1.602 −2.124 7.099 −1.340 1.070
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27◦C 1.073 −3.041 6.584 −1.005 1.004
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46◦C 1.792 −1.955 7.008 −1.320 1.066
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63◦C 1.347 −2.152 8.099 −1.304 1.084
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Identified model parameter values in various food oils.

oil type R × 103 L × 109 D × 109 α β

avocado 1.103 −5.146 7.271 −1.095 1.037
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

corn 4.543 3.422 2.934 −1.583 0.995
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

olive 6.691 −5.230 3.003 −1.576 0.997
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 5. Identified model parameter values in household fluids.

type R × 103 L × 105 D × 104 α β

soft detergent 2.671 −0.510 0.521 −0.818 0.827
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hand soap 2.322 −0.507 0.516 −0.601 0.637
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shampoo 3.514 −0.564 0.504 −0.628 0.651
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

standard detergent 4.415 −0.508 0.500 −0.755 0.787
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6. Identified model parameter values in mimicked biotissue consistency.

type R × 103 L × 109 D × 109 α β

gelatin1 3.415 −0.510 0.604 −0.131 0.380
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gelatin2 3.221 −0.486 0.501 −0.142 0.493
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gelatin3 2.915 −0.681 0.320 −0.158 0.560
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gelatin4 2.704 −0.690 0.310 −0.163 0.602
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

most correlated to the change in viscoelastic properties of the sample. The compliance property,
determined by this parameter as explained in [15], is consistently identified to decrease as the
sample becomes more stiff.

5. Discussion
The FOIM discussed in this paper was successfully employed in a prior study to fit the impedance
of water–glucose solutions [34]. In this study, the parameters have quite small values, in the order
of unity for constants, while α and β are in the order of 10−3 and 10−4, respectively. This is an
indication that the solutions have properties closer to Newtonian fluids.

The FOIM and a simplified variant was used to identify honey and glucose properties in [35].
The simplified FOIM was in the form R + D/sβ as the values of the α parameter were always
negative. This observation is similar to the findings in this study as reported in table 2. Our
findings are along the same lines as those in [36], where a FOIM variant was linked also to
materials with viscoelastic properties.

For all sample tests, it seems that parameters R and D are most correlated to changes in
viscosity. This is not at all surprising, as in [4,15], it was physically shown that a ladder network of
RC-cells leads to appearance of fractional-order terms in this form in the limit impedance value,
and that its value depends directly on the compliance represented by these cells. The application
on lung tissue property modelling and identification from real data validated this theory.

In our study, the specific property of a NN fluid to demand fractional derivative order Lsα

was not found. We conclude that other types of fluids with properties exhibiting increasing high-
frequency dependence will require this term.

The relevance of this work is substantial in its fundamental nature as identification for control
in NN fluid dynamic environment has quite a large number of cross-disciplinary applications.

For instance, some applications of modelling NN fluids are

— prediction of glacier movement (mixture of ice+water) [37]
— prediction of blood properties as a result of medication and or arterial disease

progress [5]
— evolution and dynamics of ground (muddy) water transportation systems [38].
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Some applications of (model based) control are

— positioning particles in electro-magnetic actuated fluids (e.g. in liquid steel manufacturing
in the continuous casting process) [39]

— guiding nano-sensors for detection of structural changes in blood arterial walls [3,8,40]
— navigating via servocontrol the unmanned underwater vehicles in water+ice mixtures to

investigate climate change variations and/or geological changes [41].

A limitation of this study is that the proposed model, despite its versatility, was not perfectly
able to fit the data on large range of frequencies. Some NN fluids, such as engine oils depend
on temperature in a non-monotonic progression, and some frequency intervals are better fit than
others. Such non-local elastic properties are visible in materials under mechanical and momentum
stress [42]. This observation may suggest that other models could be used in those particular
frequency intervals. Although several variants of FOIM exist, the choice of the frequency interval
and model structure depends heavily on the end-objective of the identification exercise and
application use.

6. Conclusion
The paper presents a minimal parameter versatile FOIM to identify viscosity-related properties
in NN fluids. The experimental test samples and identified model parameters suggest the model
is adequate to determine variations in fluid properties from several applications.
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