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The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated

from their success in treating HIV-related Kaposi’s sarcoma (KS). While these findings were initially attributed to immune

reconstitution and better control of oncogenic viral infections, the number of reports on solid tumors, KS, lymphoma, fibrosar-

coma, multiple myeloma and prostate cancer suggest other mechanisms for the anti-neoplastic activity of PIs. However, a

major drawback for the possible adoption of HIV-PIs in the therapy of cancer relies on their relatively weak anticancer potency

and important side effects. This has propelled several groups to generate derivatives of HIV-PIs for anticancer use, through

modifications such as attachment of different moieties, ligands and transporters, including saquinavir-loaded folic acid conju-

gated nanoparticles and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical

evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer.

Following characterization of the three-dimensional structure
of the HIV-1 protease,1 several HIV protease inhibitors (HIV-
PIs) have been developed.1,2 The inhibitors of HIV protease are
peptidomimetics containing an analogue of the peptide bond
between phenylalanine and proline at positions 167 and 168 of
the gag-pol polyprotein, target of the HIV aspartyl protease.
The first in class HIV-PI was saquinavir, and up to now, there
are 10 HIV-PIs approved by the FDA, that is, saquinavir,
indinavir, ritonavir, nelfinavir, amprenavir, fosamprenavir,
lopinavir, atazanavir, tipranavir and darunavir.1,2

Several lines of evidence indicate that in addition to the
antiretroviral properties, HIV-PIs possess pleiotropic pharma-
cological actions, including anticancer effects.3 The possible
use of HIV-PIs as a new therapeutic option for the treatment
of cancer primarily originated from their success in treating
HIV-related Kaposi’s sarcoma (KS).3 While these findings
were initially attributed to immune reconstitution and better
control of oncogenic viral infections, a number of reports on
treating tumors, for example, KS, lymphoma, fibrosarcoma,

multiple myeloma and prostate cancer, suggests other mecha-
nisms for the antineoplastic activity of HIV-PIs.

Although HIV-PIs are not expected to cross-react with
human proteases, preclinical data show that their anticancer
effect may in part be attributed to inhibition of endopepti-
dases, such as metalloproteases and proteasomes. Indeed,
aberrant proteasome-dependent proteolysis may lead to the
accumulation of pro-apoptotic proteins in malignant cells
and matrix metalloproteases (MMPs) are supposed to allow
local expansion of cancer via disruption of normal tissue
structure and by promoting invasion of blood vessels and
lymphatics by metastatic cells.4–9

HIV-PIs may also protect against virus-associated cancers.
Hampson et al. 2006,10 reported that lopinavir, indinavir and
ritonavir inhibit in vitro the HPV E6-mediated proteasomal
degradation of mutant p53 in E6-transfected C33A cells with
a stable increase in the levels of nuclear p53 as consequence.
Ritonavir has been found to efficiently target NFkB and to
inhibit tumor growth and infiltration of EBV-positive lym-
phoblastoid B cells.11 Also, HIV-PIs hamper KS-associated
herpesvirus and cytomegalovirus replication in vitro12 and
HHV-8 shedding in HIV patients under HIV PI-based High-
ly Active Anti-Retroviral Therapy (HAART).13

Currently used chemotherapeutic drugs are being tested in
combination with HIV-PIs, both in preclinical and clinical
studies in order to evaluate whether the combination of can-
cer chemotherapy and HAART may achieve better response
rates than antineoplastic therapy alone. However, HIV-PIs
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generally show low potency as anticancer drugs, requiring
concentrations >10 lM for cellular activity.14

The recognition of HIV-PIs as potential antitumor agents
has intensified the effort to understand their mechanism of
action in cancer and to develop more potent derivatives. In
this article, we discuss the current preclinical and clinical evi-
dences for the potential use of HIV-PIs, and of novel deriva-
tives, such as saquinavir-nitric oxide (Saq-NO), in the
treatment of cancer.

Preclinical Studies
Anticancer effects of HIV-PIs

Inhibitory effects on tumor cell growth, proliferation, inva-
sion and angiogenesis indicate that HIV-PIs may have valu-
able therapeutic effects in both hematological and solid
malignancies. A summary of the HIV-PIs anticancer effects is
presented in Table 1. Gills et al. found that 3 out of 6 HIV-
PIs (ritonavir, saquinavir and nelfinavir) inhibited the growth
of over 60 cancer cell lines derived from 9 different tumor
types.15,16 Nelfinavir was the most effective in blocking
growth factor receptor activation and downstream Akt signal-
ing, thus triggering caspase-dependent apoptosis, Endoplas-
mic Reticulum (ER) stress (ERS) and autophagy. Nelfinavir
also forced tumor growth and up regulated markers of ERS,
autophagy and apoptosis. Ritonavir, saquinavir and nelfinavir
in particular, inhibited proliferation of NSCLC cells and
drug-resistant breast cancer cell lines in the NCI60 cell line
panel. In this system, nelfinavir’s mechanism of action
included both caspase-dependent and caspase-independent
death followed by induction of ERS and autophagy. Knowing
that inhibition of autophagy increased nelfinavir-induced
death, autophagy in this case seemed to have a protective
role. The antitumor effect of nelfinavir on NSCLC was con-
firmed in vivo using a xenograft model.15,16

HIV-PIs also affect cancer stem cells (CSCs) detected in
different high-grade tumor types with poor prognosis. These
cells exhibit an embryonic phenotype characterized by the
expression of Oct-4, Nanog and Sox2. The ability of HIV-PIs
to specifically target CSCs derived from tumors with distinct
origins opens the prospect of using HIV-PIs to treat patients
with aggressive malignances. Lopinavir was found to be par-
ticularly efficacious, as it abolished self-renewal and provoked
apoptosis of CSCs, thus inhibiting formation of CSC-induced
allografts in vivo.17

Apart from a direct tumoricidal effect, HIV-PIs suppress
growth of adenocarcinomas of lung, breast, colon and hepatic
origin by blocking angiogenesis and MMP activity.18 Indina-
vir and saquinavir also inhibit the appearance and regression
of angioproliferative KS-like lesions in nude mice. At concen-
trations achieved in patients, HIV-PIs inhibited endothelial-
and KS-cell invasion and of MMP-2 activity.19 Similarly,
saquinavir and ritonavir inhibit growth and invasion of cervi-
cal intraepithelial neoplasia by reducing cellular expression
and activity of MMP-2 and 29.19 Nelfinavir declined Vascu-
lar Endothelial Growth Factor (VEGF) secretion under

normoxic conditions, most likely through the PI3K/Akt path-
way. Hypoxic induction of VEGF and the HIF-1a, a known
regulator of the VEGF promoter, was also diminished under
nelfinavir treatment.20,21

Radiosensitization and chemosensitization properties

of HIV-PIs

Studies have shown that HIV-PIs are useful radiosenzitizers,
as amprenavir, nelfinavir and saquinavir increase the cytotox-
ic effect of radiation on tumor cells.22,23 This effect was con-
firmed in vivo, likely due to their potential to inhibit Akt
phosphorylation, since administration of amprenavir or nelfi-
navir down-regulated the phosphorylation of Akt in SQ20B
and T24 xenografts.22 Nelfinavir and other PI-3K/Akt inhibi-
tors, are effective pancreatic cancer radiosensitizers regardless
of K-ras mutation status.24 Nelfinavir sensitized pituitary ade-
noma cells to ionizing radiation probably through decreased
phospho-S6 and the PI-3K-Akt-mTOR pathway.25 Nelfinavir
decreased Akt phosphorylation and enhanced radiosensitiza-
tion in PTEN deficient, U251MG and U87MG glioblastoma
cells.26 Radiosensitization was also assessed in vivo using a
tumor regrowth delay assay in nude mice implanted with
U87MG xenografts.26 Nelfinavir also increased the sensitivity
of U251MG cells to temozolomide. These results support the
use of nelfinavir in combination with radiation and temozo-
lomide in clinical trials for patients with glioblastomas.26 At
clinically attainable concentrations, saquinavir’s activity was
potentiated in association with imatinib in neuroblastoma
cells.27 Similarly, Gupta et al. proposed that nelfinavir not
only potentiates imatinib efficacy on meningiomas, but also
abrogates resistance to imatinib by decreasing survivin pro-
tein levels.28 In an in vivo assay, this combined application
was found to be more effective than imatinib alone. Ritona-
vir, saquinavir, nelfinavir and lopinavir have been shown to
sensitize AML primary cells for proteasome inhibitor borte-
zomib/carfilzomib even in bortezomib/carfilzomib-resistant
myeloma cells.29 Ritonavir enhanced the antiproliferative and
proapoptotic effects of docetaxel in the hormonally indepen-
dent DU145 prostate cancer cells. Furthermore, combined
treatment of docetaxel and ritonavir dramatically inhibited
the growth of DU145 cells present as tumor xenografts in
BNX nude mice compared with either drug alone.30 Doce-
taxel induced expression of CYP3A4 in DU145 xenografts
and ritonavir completely blocked this induction. Ritonavir
also inhibited NFjB DNA binding activity in DU145 xeno-
grafts. Induction of ERS and suppression of the PI-3K/Akt
survival pathway as a potent chemosensitization approach
was evaluated in castration resistant prostate cancer cells.30

When co-treated with nelfinavir, the doxorubicin (DOX)-
resistant breast cancer cell line, MCF-7/Dox, which shows a
DOX-induced cytotoxicity at 48 hr post-exposure (DOX
IC50) 15–20 fold higher than the parental MCF-7 cells,
showed a significant reduction in DOX IC50.31 Multiple
exposures to nelfinavir inhibited both P-gp expression and
efflux function, thus elevating intracellular DOX
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Table 1. Preclinical studies on the HIV PIs anticancer effects

HIV-PI Cancer type/cell line(s) Mechanism of Action Reference

Nelfinavir Prostate cancer/LNCap # AR-induced STAT3 and AKT signaling 32

Liposarcoma/SW872 and LiSa2 " Apoptosis, cell cycle arrest via " SREBP1 33

Multiple myeloma/U266, MM1S, RPMI8226,
OPM2,LP1, 293T, ARH77, primary myeloma cells

# Mcl-1 34,35

" PERK phosphorylation and CHOP expression;
# AKT, STAT3 and ERK1/2

Various cancer types/NCI panel " ER stress, autophagy, apoptosis 16

Glioblastoma/U251, LN229, T98G, U87 " ER stress 21,36

# Proteasome activity

# VEGF/HIF1alpha

Breast cancer/HCC1143, HCC1395, HCC1937,
HCC1954, HCC2218, MCF-7, BT474 and HCC38

# HSP90 37

# HER2-induced AKT and ERK signaling

Head and neck cancer/SQ20B # VEGF/HIF1alpha 21

Lung cancer/A549 # VEGF/HIF1alpha 21

Thyroid cancer/TT and MZ-CRC-1 " RET signaling 38

" Apoptosis, autophagy

" HSP90

Mitochondrial oxidative stress

Cervical cancer/Hela, SiHa and CaSki " Apoptosis, cell cycle arrest 39

" Mitochondrial ROS # SOD-2

Saquinavir Prostate cancer/LNCap, DU-145, PC3 # NFkB 23

# 26s Proteasome

" Apoptosis

Multiple myeloma/U266, RPMI8226, ARH77 # Mcl-1 34

# AKT, STAT3 and ERK1/2

Various cancer types/NCI panel " ER stress, autophagy, apoptosis 16

Ovarian cancer/A2780, CAOV3, SKOV3,
OVCAR3, TOV21G, OVCAR4, OVCAR5,
OVCAR8, OVCA429, OVCA432

" ER stress, autophagy and apoptosis 40

Leukemia/Jurkat " Telomerase activity 41

Lung cancer/A549 # Angiogenesis 18

# MMPs

Colon cancer/SW480 # Angiogenesis 18

# MMPs

Breast cancer/MDA-MB-468 # Angiogenesis 18

# MMPs

Liver cancer/SK-HEP-1 # Angiogenesis 18

# MMPs

Kaposi sarcoma(primary cells # Angiogenesis 19

# MMPs

Cervical cancer/primary cells # MMP-2, MMP-9 42

Ritonavir Multiple myeloma/U266, RPMI8226, ARH77 # Mcl-1 43

# AKT, STAT3 and ERK1/2

# GLUT4

Prostate cancer/DU145 # NFkB binding activity 44
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concentrations, suppressing phosphorylated Akt levels and
increasing unfolded protein response (UPR) transducers and
ERS induced death sensor expression. This was confirmed in
vivo using mice carrying MCF-7/Dox tumor xenograft.

Clinical Trials
Nelfinavir

The marked anticancer activity of HIV-Pis in the preclinical
setting has propelled clinical investigations of these drugs in
cancer patients. Table 2 shows the trials of HIV-PIs listed in
http://www.clinicaltrials.gov. Most studies have been carried
out with nelfinavir in view of its stronger anticancer efficacy
in the preclinical setting. Ongoing phase II trials are primari-
ly in myeloma (in association with bortezomib and lenalo-
mide), glioma (in association with chemoradiation), pancreas
(in association with gemcitabine and radiation), lung (in
association with radiation with concurrent chemotherapy, i.e.,
cisplatin and etoposide) and cervical cancer.

The first phase I/II clinical trial of nelfinavir for liposarco-
mas (NCT00233948) showed that nelfinavir may be an
option for the treatment of subjects with unresectable liposar-
comas.46 With the exception of one subject experiencing
reversible, grade 3 pancreatitis, no dose-limiting toxicities
were observed; these included grade 1 or 2 hematologic toxic-
ities (i.e., anemia and lymphopenia), diarrhea and liver toxici-
ty (i.e., alkaline phosphatase and AST elevation). Clinical
benefit was observed in 6 of 20 subjects, which is a promising
result given that liposarcomas are relatively resistant to
chemotherapy.

A phase I trial of nelfinavir in combination with a fixed
dose of cisplatin and escalating doses of gemcitabine in com-
bination with radiation for locally advanced pancreatic cancer
showed that Nelfinavir added to chemoradiotherapy was well
tolerated.47 Partial CT responses were observed in 5 of 10
patients (KB: In the previous and following paragraphs you
use digits for the numbers of patients) who completed che-
moradiotherapy and minor responses were observed in 2 of
10 patients. Of 9 patients assessable by PET, responses were
complete in 5 and partial in 2 patients; stable disease was
observed in 2 patients. CA19-9 tumor marker levels
decreased after therapy in 8 of 9 assessable patients. There-
fore, the observed PET/CT and CA19-9 responses support
the hypothesis that nelfinavir may increase the chemoradio-
therapy effects in borderline or unresectable pancreatic ductal
adenocarcinoma.

A phase I trial of the HIV-PI nelfinavir with concurrent
chemoradiotherapy for unresectable stage IIIA/IIIB non-small
cell lung cancer (NSCLC) showed no dose limiting toxicity at
the two tested doses (625 mg PO BID and 1250 mg PO
BID).48 Median follow-up for the 12 evaluable patients was
31.6 months compared to 23.5 months for survivors. The
locoregional metabolic response rate was 100%, with 5 of 9
patients (56%) having a complete response on PET/CT
obtained 3 months after completion of treatment. This trial
suggests that nelfinavir may have a positive effect in
NSCLC.48

In a Phase I trial of nelfinavir in combination with radia-
tion and capecitabine 825 mg/m2 BID for locally advanced
rectal cancer, the recommended phase II dose (RP2D) for

Table 1. Preclinical studies on the HIV PIs anticancer effects (Continued)

HIV-PI Cancer type/cell line(s) Mechanism of Action Reference

Various cancer types/NCI panel " ER stress, autophagy, apoptosis 16

Breast cancer/MCF7, T47D,
MDA-MB-436, MDA-MB-231

# AKT, #HSP90 45

" Cell cycle arrest

Cervical cancer/primary cells # MMP-2, MMP-9 42

Indinavir Leukemia/Jurkat " Telomerase activity 41

Lung cancer/A549 # Angiogenesis 18

# MMPs

Colon cancer/SW480 # Angiogenesis 18

# MMPs

Breast cancer/MDA-MB-468 # Angiogenesis 18

# MMPs

Kaposi sarcoma(primary cells # Angiogenesis 19

# MMPs

Lopinavir CSCs " Apoptosis 17

Atazanavir Glioblastoma/U251, LN229, T98G, U87 " ER stress 36

# Proteasome activity

Amprenavir Glioblastoma/U251, U87 # VEGF/HIF1alpha 20
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Table 2. Clinical trials of HIV-PIs in cancer

NCT Number Drug(s) Conditions Concurrent therapy Phase Enrollment Start Date

NCT00589056 Nelfinavir Lung Cancer radiation I/II 42 June 2007

NCT00436735 Nelfinavir Colorectal Cancer/Gastrointes-
tinal Carcinoid Tumor/Head
and Neck Cancer/Islet Cell
Tumor/Lung Cancer/Meta-
static Cancer/Neuroendo-
crine Carcinoma of the Skin/
Ovarian Cancer/Pheochro-
mocytoma/Sarcoma/Unspec-
ified Adult Solid Tumor,
Protocol Specific

I 45 September 2006

NCT02080416 Nelfinavir Non-Hodgkin Lymphoma/Hodg-
kin Lymphoma/Kaposi Sar-
coma/Gastric Cancer/
Nasopharyngeal Cancer/
EBV/Castleman Disease

0 10 July 2014

NCT01068327 Nelfinavir Adenocarcinoma of the Pancre-
as/Stage III Pancreatic
Cancer

gemcitabine hydrochloride,
leucovorin calcium and
fluorouracil

I 46 November 2007

NCT01959672 Nelfinavir Pancreatic Adenocarcinoma/
Resectable Pancreatic Can-
cer/Stage IA Pancreatic Can-
cer/Stage IB Pancreatic
Cancer/Stage IIA Pancreatic
Cancer/Stage IIB Pancreatic
Cancer/Stage III Pancreatic
Cancer

gemcitabine hydrochloride,
leucovorin calcium and
fluorouracil, with or with-
out oregovomab followed
by stereotactic body
radiation

II 66 September 2013

NCT00704600 Nelfinavir Colorectal Cancer/Colorectal
Carcinoma/Colorectal
Tumors/Neoplasms,
Colorectal

I/II 15 September 2008

NCT01445106 Nelfinavir Solid Tumors I 28 December 2006

NCT01485731 Nelfinavir Cervical Cancer Cisplatin Chemotherapy
With Pelvic Radiation

I 8 January 2012

NCT01079286 Nelfinavir Renal Cell Cancer/Cancer Temsirolimus I 18 June 2009

NCT01065844 Nelfinavir Carcinoma, Adenoid Cystic/
Head and Neck Neoplasms

II 35 October 2009

NCT02024009 Nelfinavir Pancreatic Neoplasms (Locally
Advanced Non-metastatic)

Nab-paclitaxel I/II 289 March 2016

Radiation: 60Gy in 30#

Radiation: 50.4Gy in 28#

Capecitabine

Gemcitabine

NCT01086332 Nelfinavir Pancreatic Neoplasms Gemcitabine I 7 May 2009

NCT01164709 Nelfinavir Leukemia/Lymphoma/Mature
T-cell and Nk-cell Neo-
plasms/Multiple Myeloma
and Plasma Cell Neoplasm

Bortezomib I 18 July 2010

NCT02363829 Nelfinavir Uterine Cervix Cancer Cisplatin I 6 February 2015

Pelvic radiation

NCT01108666 Nelfinavir Non Small Cell Lung Cancer Cisplatinum 1 Etoposide or
Carboplatin 1 Paclitaxel

I 72 March 2010

NCT00915694 Nelfinavir Brain and Central Nervous Sys-
tem Tumors

Radiation therapy and
temozolomide

I 23 39904

NCT01447589 Nelfinavir Lung Cancer Radiotherapy I/II 0 February 2012

NCT01925378 Nelfinavir Cervical Dysplasia II 10 July 2012
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Table 2. Clinical trials of HIV-PIs in cancer (Continued)

NCT Number Drug(s) Conditions Concurrent therapy Phase Enrollment Start Date

NCT00791336 Nelfinavir Carcinoma, Non-Small-Cell
Lung

II 1 August 2008

NCT00694837 Nelfinavir Glioblastoma Temozolomide and
Radiotherapy

I 6 March 2009

NCT01020292 Nelfinavir Glioma Temozolomide and
Radiotherapy

I 31 39904

NCT01555281 Nelfinavir Multiple Myeloma Lenalidomide/
Dexamethasone

I/II 32 41000

NCT02207439 Nelfinavir Stage III, IVa, or IVb Squamous
Cell Carcinoma of the Oral
Cavity, Oropharynx, Larynx,
or Hypopharynx

Chemoradiotherapy II 28 July 2014

NCT01728779 Nelfinavir Oligometastases Stereotactic Body Radiation II 42 41365

NCT00233948 Nelfinavir Adult Liposarcoma/Recurrent
Adult Soft Tissue Sarcoma/
Stage III Adult Soft Tissue
Sarcoma/Stage IV Adult Soft
Tissue Sarcoma

I/II 29 March 2006

NCT02188537 Nelfinavir Myeloma Bortezomib II 34 December 2014

Dexamethasone

NCT00002185 Nelfinavir Sarcoma, Kaposi/HIV
Infections

II 20 null

NCT01095094 Ritonavir/
Lopinavir

Brain Tumor/Anaplastic Astro-
cytoma/Anaplastic Ependy-
moma/Anaplastic Oligoden-
droglioma/Brain Stem
Glioma/Giant Cell Glioblas-
toma/Glioblastoma/Gliosar-
coma/Mixed Glioma

II 19 January 2009

NCT00444379 Ritonavir/
Lopinavir

KS/HIV Infections Emtricitabine/Tenofovir
Efavirenz plus
Emtricitabine/Tenofovir.

IV 224 39173

NCT00834457 Ritonavir/
Lopinavir

AIDS-related KS Abacavir/3TC II/III 49 June 2007

NCT01009437 Ritonavir Breast Cancer Therapeutic conventional
surgery

I/II 52 May 2010

NCT01095094 Ritonavir/
Lopinavir

Brain Tumor/Anaplastic Astro-
cytoma/Anaplastic Ependy-
moma/Anaplastic Oligoden-
droglioma/Brain Stem
Glioma/Giant Cell Glioblas-
toma/Glioblastoma/Gliosar-
coma/Mixed Glioma

II 19 January 2009

NCT00637637 Indinavir
Ritonavir

Cancer Radiation therapy II 60 September 2007

NCT00002366 Ritonavir Sarcoma, Kaposi/HIV
Infections

II null null

NCT00444379 Ritonavir/
Lopinavir

KS/HIV Infections Emtricitabine/Tenofovir
Efavirenz plus
Emtricitabine/Tenofovir

IV 224 39173

NCT00834457 Ritonavir/
Lopinavir

AIDS-related KS Abacavir/3TC II/III 49 June 2007

NCT00637637 Indinavir
Ritonavir

Cancer Radiation therapy II 60 September 2007

NCT01067690 Indinavir KS Vinblastina 1/2

Bleomicina
II 25 June 2008

NCT00362310 Indinavir Classical KS II 28 June 2003
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nelfinavir was found to be 750 mg BID.49 Three of 11
patients (27%) had a complete response and 4 of 11 patients
(36%) had a major response. These response rates were con-
siderably higher than those reported in trials using a compa-
rable chemoradiation regimen,50 but further studies are
required to demonstrate a significant synergistic effect of
nelfinavir.

In another phase II trial of 10 patients with advanced
metastatic rectal cancer treated for 7 days with oral nelfinavir
(1250 mg bid) and for further 7 days with nelfinavir during
pelvic RT (25 Gy/5 fractions/7 days), median tumor cell den-
sity decreased from 24.3% at baseline to 9.2% in biopsies tak-
en 7 days after RT. Overall, 5/9 evaluable patients exhibited
good tumor regression on MRI assessed by Tumor Regres-
sion Grade.51

In a Phase I study conducted on newly diagnosed glioblas-
toma after surgical resection, 21 patients were treated with
standard radiotherapy (6,000 cGy to the gross tumor vol-
ume), temozolomide (75 mg/m2 daily) together with daily
oral nelfinavir starting 7–10 days prior to chemoradiotherapy
continuing for the duration of chemoradiation for 6 weeks.52

Two doses of nelfinavir were investigated: 625 mg bid and
1,250 mg bid in a cohort escalation design. No dose-limiting
toxicity was observed at 625 mg bid. At 1,250 mg bid, 3
dose-limiting episodes of hepatotoxicity and 1 of diarrhea
were observed. The maximally tolerated dose was 1,250 mg
bid. The percentage of patients with Out Of Field (OOF)
recurrences was 14.3, and the Progression Free Survival (PFS)
among the three patients with OOF recurrence was more
than double the overall mean PFS, suggesting that better local
tumor control for a longer period led to increased likelihood
of first recurrence elsewhere. Despite these observations, larg-
er cohorts of patients should be tested to assess the efficacy
of nelfinavir in association with chemotherapy in glioblasto-
ma patients.

In a trial of 28 patients with refractory cancers (colorectal,
SCLC and NSCLC, carcinoid, thyroid, renal, adenoic cystic,
sarcoma, head and neck, pancreatic and prostate cancer), oral
nelfinavir was generally well tolerated.53 The Maximal Toler-
ated Dose (MTD) was 3125 mg twice daily. In an expansion
cohort given MTD, 1/11 (9%) evaluable subjects had a con-
firmed partial response. This plus two minor responses
occurred in patients with neuroendocrine tumors of the mid-
gut or pancreatic origin. Thirty-six % of subjects had stable
disease for >6 months.53 In another study, no efficacy was
observed in 15 patients with adenoid cystic carcinomas.54

The median progression-free survival was 5.5 months and no
patient achieved a partial or complete response.

In a phase I study of patients with advanced hematologic
malignancies, the combination of nelfinavir with the protea-
some inhibitor bortezomib showed little or no effect.55 Of 10
evaluable patients in a dose escalation cohort, three achieved
a partial response, four had stable disease for two cycles or
more and three suffered progressive disease. In addition, in
an exploratory extension cohort with six relapsed,

bortezomib-refractory, lenalidomide-resistant myeloma
patients treated at the recommended phase II dose (2 3

2500 mg), three reached a partial response, two a minor
response and one had progressive disease. This suggests that
nelfinavir may overcome the biological features of protea-
some inhibitor resistance, likely by upregulating expression of
proteins related to the UPR (such as, PDI, BIP, CHOP and
PARP) in peripheral blood mononuclear.

However, an observational study to examine the associa-
tion between cancer incidence and nelfinavir treatment
revealed that the drug was not associated with a lower cancer
incidence compared to other protease inhibitor regimens.56

Indinavir

Currently, 3 clinical trials on indinavir in cancer are listed on
Clinicaltrials.gov: (i) a phase II trial, NCT00637637, studying
external-beam radiation therapy together with indinavir and
ritonavir in patients with brain metastases in comparison to
radiation therapy alone; (ii) NCT01067690, testing the effects
of indinavir in association with vinblastin6 bleomycin in
patients affected by advanced non HIV-associated KS; and
(iii) NCT00362310, a single group assignment, non-
randomized, open-label phase II study of indinavir in non-
HIV-related KS. In the latter, 28 patients with early-stage KS
(stage I or II, 14 patients) or late-stage KS (stage III or IV,
14 patients) were enrolled.57 Treatment consisted of 800 mg
of indinavir twice daily for 12 months. Adverse events were
infrequent and modest, that is, mild-to-moderate asthenia or
arthralgia and nonspecific skin manifestations such as erythe-
ma, rash, or itching. A favorable effect of treatment was
observed in 61.5% of the patients with complete remission in
1 patient, partial regression in 2, improved disease in 5 and
stabilization of progressive disease in 8. A non-favorable clin-
ical course was observed in 38.5%, mostly in patients suffer-
ing from late-stage KS.

Lopinavir/ritonavir

Lopinavir shows low bioavailability when given alone, while
blood levels are significantly increased by low-dose ritona-
vir.58 For this reason, the combination of lopinavir/ritonavir
is often tested in clinical trials. The NCT00444379 trial has
studied whether a protease inhibitor-based antiretroviral regi-
men (lopinavir/ritonavir 200/50 mg plus emtricitabine/teno-
fovir 200/300 mg) is more effective than a non-nucleoside
reverse transcriptase inhibitor-based antiretroviral regimen
(efavirenz 600 mg plus emtricitabine/tenofovir 200/300 mg)
promoting the regression of KS tumor burden in persons
with AIDS-related KS in Africa. The outcome of this study is
currently not available. In addition, it is actually unclear
whether in this study the dose was 200/50 mg daily or 400/
100 mg BID that is the dose of lopinavir/ritonavir usually
used in the antiretroviral regimens.

In another phase II trial, NCT01095094, ritonavir/lopina-
vir (400 mg/100 mg BID) was tested in 19 patients with pro-
gressive or recurrent high-grade gliomas.59 A complete
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response was seen in 1 Patient (5%), 3 (16%) had stable dis-
ease as best outcome and 15 (79%) had progressive disease.
Six-months progression-free survival was seen in only 2/19
patients (11%) and the study did not meet its primary effica-
cy endpoint.

Finally, a single-arm, proof-of-concept trial of self-applied
topical treatment with lopimune (lopinavir/ritonavir) in 23
women with HPV-related cervical high grade squamous
intraepithelial lesions, ISRCTN Registry 48776874, demon-
strated a combined positive response in 81.8%, 77.8% of
which was confirmed histologically.60

Bioavailabity and Toxicity of HIV-PIs
Despite the interest generated from the convincingly emerg-
ing anticancer action profile of HIV-PIs, a major concern for
therapeutic applications in cancer is their low biological avail-
ability and a degree of toxicity. Up to now, darunavir boosted
with ritonavir (DRV/r) is the preferred HIV-PI in the US
Department of Health and Human Services treatment guide-
lines for na€ıve patients, in combination with tenofovir/emtri-
citabine,61 and atazanavir boosted with ritonavir and
lopinavir boosted with ritonavir are the preferred second-line
antiretroviral therapy.62 However, there is no indication for
the use of nelfinavir nor indinavir in HAART.

The main barriers for HIV-PIs absorption63 are the
expression and distribution of different ATP-binding cassette
drug transporters in the intestine and the enzyme system-
cytochrome 450, mainly the CYP3A4 isoform.63 Moreover,
P-glycoprotein is expressed in a variety of excretory tissues,
liver, kidney and at blood-tissue barriers such as the blood-
brain barrier, the blood-testis barrier and the placenta.64 It
was found that attained HIV-PIs plasma levels, and the diffu-
sion of the drugs to immune privileged tissues at least partly
depends on the same MDRI P-glycoprotein (P-gp) transport-
ers.65 The substrates of P-glycoprotein and drug-metabolizing
enzymes, particularly CYP3A4, overlap and the inhibitors of
P-glycoprotein are also effective as inhibitors of CYP3A4.66

Saquinavir and ritonavir are both substrates and inhibitors of
P-glycoprotein. However, ritonavir remarkably enhances
saquinavir effectiveness through inhibition of CYP3A4 rather
than P-glycoprotein.67 First-pass liver metabolism mediated
by CYP3A4 expression on hepatocytes is one of the key
causes of low biological availability of indinavir,68 nelfinavir69

and saquinavir.70 In the blood, most HIV-PIs bind primarily
to alpha-1-acid glycoprotein (AGP), which affects tissue
delivery and excretion of numerous drugs. It has been shown
that the in vitro efficacy of HIV-PIs decreases with increased
blood levels of AGP.71 Furthermore, increased levels of AGP
abrogate the volume of saquinavir distribution and enhance
plasma saquinavir binding in the transgenic mouse model.71

Thus, drug efficacy is compromised even with higher plasma
levels of HIV-PI.71

The apical expression of energy dependent efflux pumps
as (P-gp) and multidrug resistance protein 2 (MRP2) at the
vascular endothelial cells determines tissue delivering of

HPIs.72 In contrast to P-glycoprotein and MRP2, MRP1, 23
and 25 and Bcrp1 are not classified as efficient transporters
of saquinavir, ritonavir and indinavir.73 Hence, the in vivo
effects of HIV-PIs can be improved by combined treatment
with MRP2 inhibitors. In addition, nelfinavir is both an
inhibitor and a substrate of MRP4.74 Together with P-
glycoprotein and MRP2 efflux transporters, influx transporter
OATP-A is also included in transport and excretion of HIV-
PIs. This is especially important in liver-mediated detoxica-
tion activities and saquinavir excretion into bile.75

By acting as cytochrome P-450 inhibitors, HIV-PIs are
able to significantly modify the pharmacokinetics of other
drugs with ritonavir and saquinavir being the most and less
potent, respectively. The effects on cytochrome P-450 are
augmented when two HIV-PIs are given simultaneously.1

Ritonavir inhibits hepatic metabolism of saquinavir, increas-
ing its plasma levels 20- to 30-fold. Nelfinavir increases the
area under the plasma-concentration–time curve by 392% for
saquinavir and by 51% for indinavir. Indinavir increases the
area under the curve of saquinavir by about 5-fold.1

Even if HIV-PIs are created as peptide-mimetics with highly
specific affinity to the HIV protease binding site, numerous
mammalian proteins are affected directly or consequently by
their action. This results in various toxic events that often fol-
low long term treatment with most members of HIV-PIs.
These include gastrointestinal, renal and hepatic adverse
effects. Thus, nausea, vomiting and abdominal pain are fre-
quently associated with ritonavir, especially during the first few
weeks of therapy, and diarrhea is the dose-limiting side effect
of nelfinavir. Serum aminotransferase elevation have been
reported, but hepatitis is uncommon. Reversible unconjugated
hyperbilirubinemia is frequent in patients taking indinavir
but rarely associated with high serum aminotransferase con-
centrations or overt liver disease. Nephrolithiasis and crystallu-
ria are the most important side effect of indinavir and can
occur within a few days after start of therapy. Several cases of
hemolytic anemia have also been reported with the use of
indinavir.1

Other common side effects include metabolic syndromes
such as dyslipidemia, insulin-resistance and lipodystrophy.
Interestingly, no significant differences have been observed
between HIV-PIs monotherapy and the combination of pro-
tease inhibitors with the HIV integrase inhibitor, raltegravir,
nor nucleoside reverse transcriptase inhibitors, suggesting
that HIV-PIs may be mainly responsible for the adverse
effects.14

Lipodystrofy induced by HIV-PIs has been associated with
the effects on adipocyte transcription factors such as peroxi-
some proliferators activated receptor g (PPAR-g) and
SREBP-1. In particular, a >2-fold increase in SREBP-1
expression has been found in HIV infected individuals
treated with ritonavir.76 However, data on lipodystrophy are
conflicting and some longitudinal studies have failed to dem-
onstrate the association with HIV-PIs.77
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Insulin resistance may be induced by HIV-PIs via multiple
mechanisms. HIV PIs have been shown to inhibit the release
of insulin by pancreatic beta-cells,78 and to decrease the
response to insulin of skeletal muscle cells, adipocytes and
hepatocytes, likely by inhibition of Akt and protein kinase C
signaling and through direct binding to the glucose trans-
porters, Glut1 and Glut4.79–81

Preclinical Anticancer Effects of Novel HIV-PIs
Analogs of HIV-PIs

The development of new drugs is expensive and time con-
suming. Novel applications of drugs already approved for
other indications are therefore important especially if sup-
ported by clear-cut preclinical and clinical data. In this
regard, the repeatedly demonstrated anticancer activity of
HIV-PIs is promising, but the above-mentioned toxicity
along with nonoptimal pharmacokinetic properties and an
overall modest therapeutic potency has propelled several
groups to generate derivatives of HIV-PIs for anticancer use
through modifications such as attachment of different moie-
ties, ligands and transporters.

You et al. has synthesized a new indinavir analogue with
important anticancer activity, CH05-10.82 This drug achieved
similar cytotoxity against leukaemia, melanoma, ovarian and
prostate cancer cell lines as nelfinavir, but at lower concen-
trations. It induced cell cycle arrest in G1 and caused
caspase-dependent apoptosis, but also caspase-independent
death via the induction of ERS and UPR.

Using a different attempt, Singh and coworkers created
saquinavir-loaded folic acid conjugated PEGylated and non-

PEGylated poly(D,L-lactide-co-glycolide) (PLGA) nanopar-
ticles (NPs) (Saq-Fol-PEG-PLGA and Saq-Fol-PLGA), which
were tested on human prostate and breast cancer cell lines
(ref?). Effective concentrations were 566 0.60 and 586 0.80
w/v for Saq-Fol-PEG-PLGA and Saq-PLGA NPs, respectively.
Saq-Fol-PEG-PLGA displayed elevated cytotoxicity, cellular
uptake and high selectivity toward the malignant cells. Saq-
Fol-PEG-PLGA NPs had enhanced anticancer potential in
comparison to non-targeted Saq-PLGA NPs.83

NO-modified HIV-PIs

During the last 10 years, our group has been committed to
generate NO-derivatives of HIV-PIs. The rationale behind
this relied on observations that hybridization with NO pro-
moted anticancer effects of nonsteroid antiinflammatory
drugs (NSAID). For example, NO-acethylsalicylic acid and
other NO-NSAIDs exhibit anticancer activity in a wide range
of cancer cell lines and in in vivo models,84–95 and these
compounds are invariably more potent than the correspond-
ing NSAID analogs. The mechanism(s) of action of NO-
NSAIDs as cancer chemotherapeutic agents is likely to be
multifactorial as they inhibit tumor cell growth, induce apo-
ptosis and exhibit antiangiogenic and antimetastatic activi-
ty.84–95 Along this line of research we have also demonstrated
that hybridization of the immunomodulatory compound
GIT-27 with NO endowed this compound with unique che-
motherapeutic properties in vitro and in vivo, features that
were not seen with the parental compound.96 Hence, we
hypothesized that NO-hybridization of HIV-PIs may enhance

Figure 1. Saq-NO features. [Color figure can be viewed at wileyonlinelibrary.com]
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their anticancer actions allowing lower dosing and reduced
side effects.

The modality of NO hybridization chosen consisted of
covalent linking of the NO moieties to the parental molecule
by covalent linking with an OH group of the parental mole-
cule.97 The HIV-PIs most suitable for this NO-hybridization
were saquinavir, lopinavir and ritonavir.

This line of research was initially carried out at GaNiAl
Immunotherapeutics (Wilmington, DE) and subsequently at
OncoNox (Copenhagen, Denmark). The data generated indi-
cate that Saq-NO is a new chemical entity with unique
behavior in a variety of experimental systems in vitro and

in vivo (Fig. 1). Although Saq-NO retained an antiretroviral
action superimposable to that of saquinavir, the toxicity of
Saq-NO was significantly lower than that of saquinavir.103

Therefore, in addition to non-toxicity toward primary astro-
cytes and fibroblasts in vitro, there was no lethality after
exposure of animals to Saq-NO at a dose corresponding to
the lethal dose of saquinavir.97 However, anticancer activity
of the modified drug compared to saquinavir was elevated
in vitro (Table 3).97,100–104 Independent confirmation of these
findings was achieved using NCI screening of 60 cell lines
(Fig. 2). Furthermore, the in vitro data were substantiated by
experiments showing Saq-NO anticancer activity in syngeneic
and xenograft models of melanoma, prostate and colon
cancers (Table 4).

It is important to note that the in vivo experiments were
carried out under a “therapeutic regimen”; that is, postponing
Saq-NO treatment until the tumor was palpable. The
improved anticancer action of Saq-NO over the parent com-
pound cannot be ascribed to cytotoxicity of released NO
since only insignificant quantities were detected in cells after
therapy. In addition, the therapeutic effect cannot be simulat-
ed by independent application of saquinavir and the NO
donor, DETA NONOate, underlining the unique anticancer
property of the newly developed drug.101

In a manner similar to that described for HIV-PIs, induc-
tion of apoptosis by Saq-NO was always connected with
some cellular specificity like p53 deficiency or constitutive
expression of iNOS.99,100,102 In other cancer cell lines, the
inhibition of proliferation was accompanied by differentiation
and transdifferentiation of the tumor cells toward their nor-
mal counterparts. Thus, Saq-NO induced changes to cells
bearing markers of their ancestors or even embryonic pro-
genitors was noted in the case of astrocytoma and melanoma,
and this effect was not observed with saquinavir.97

Table 3. Cell lines sensitive to Saq-NO

Origin Cell line Type References

Mouse B16 Melanoma 97

Mouse CT26CL25 Colon carcinoma 98

Rat C6 Glioma 97

human PC-3 Prostate adenocarcinoma 99

human LnCap Prostate carcinoma 104

human HCC1419 Breast carcinoma 97

human BT20 Breast carcinoma 97

human A375 Melanoma 100,101

human HeLa Cervical adenocarcinoma 97

human HCT116 Colorectal carcinoma 98

human HL60 Acute promyelocytic
leukemia

102

human Jurkat Acute T cell leukemia 102

human Raji Burkitt’s lymphoma 102

human K562 Chronic myelogenous
leukemia

102

Figure 2. NCI screening of Saq-NO anticancer effect.

M
in
i
R
ev
ie
w

1722 HIV-PIs for the treatment of cancer

Int. J. Cancer: 140, 1713–1726 (2017) VC 2016 UICC



One of the major pathways involved in the anticancer
action of saquinavir and other HIV-PIs is the capacity to
downregulate the PI3-Akt-mTOR axis, and this effect may be
related with numerous toxic effects accompanying their ther-
apeutic use.2 In contrast to saquinavir, Saq-NO transiently
activates the upstream part of this pathway.97,100 As inhibi-
tion of Akt is responsible for many side effects of saquinavir,
different regulation of Akt by Saq-NO could be connected
with a loss of general toxicity.100 Further analysis of mole-
cules involved in the downstream segment of this signaling
pathway revealed an inhibitory action of Saq-NO, but not of
saquinavir, on p70S6K.102,105 Indeed, compromised activity of
p70S6K by Saq-NO influenced numerous cell activities, for
example protein synthesis, cytoskeletal rearrangements, pro-
liferation and cell survival. Sensitization of malignant cells to
apoptosis triggered both by chemotherapeutic agents and by
tumor necrosis factor-related apoptosis inducing ligand, a
product of many cell types, may also be secondary to inhibi-
tion of S6K1 function. A spectrum of S6K dependent pro-
teins disturbed by Saq-NO are intracellular caspase
inhibitors, xIAP and FLIP, as well as S6 protein responsible
for transcription of oligopyrimidin mRNAs. Thus, malignant
cells exposed to Saq-NO undergo phenotypic transformation
with loss of malignant properties (dividing, migratory and
invasive potentials) and acquisition of apoptotic-prone phe-
notype.100 In addition, Saq-NO may potentiate the recogni-
tion and killing of cancer cells by the immune system as the
compound decreased expression of DR4/DR5 repressor YY1
in cells whose vitality is controlled by NO.100

Apart from the intracellular events triggered by Saq-NO,
chemosensitizing properties may be ascribed to inhibition of
p-gp, MRP-1 and BCRP-1.106 This would make it a candidate
for treatment of multidrug-resistant tumors. Furthermore,
Saq-NO sensitized P-gp- or MRP1-expressing cancer cells to
chemotherapy more potently then saquinavir, whereas
BCRP1-expressing cells were equally sensitized by both

substances. It was also verified that Saq-NO is a substrate of
P-gp as well as of MRP1. Accordingly, Saq-NO may prove
valuable for combined treatment of multidrug-resistant
tumors.106

Few data have been generated on the anticancer potential
of other NO-derived HIV-PIs, for example lopinavir-NO and
ritonavir-NO. A recent article, however, demonstrated that
lopinavir-NO had a 2–4 fold stronger anticancer action on
blood cancer cells than its parent compound.102

Conclusions
Increasing preclinical and clinical evidence support the
potential of HIV-PIs as antineoplastic drugs, with nelfinavir
being the most potent. Despite the lack of a unique mecha-
nism of action for HIV-PIs, the antitumor effect seems to be
related, in a HIV-PI-dependent manner, to MMP-inhibition,
ERS induction, proteasome activity inhibition, AKT phos-
phorylation and angiogenesis inhibition. It is likely that addi-
tional mechanisms of action will be identified. These data
make the HIV-PIs promising candidates for cancer therapeu-
tics, also in consideration of the knowledge of their toxicity
profile, pharmacokinetics and metabolism and drug interac-
tions. Novel analogs and derivatives of HIV-PIs have been
developed, and promising data come from NO-hybridized
HIV-PIs, such as saquinavir. This led to the generation of
Saq-NO that, while retaining an antiretroviral effect superim-
posable to that of the parental compound, showed lower tox-
icity than that of saquinavir and a significantly higher
antineoplastic effect. In conclusion, we believe that the pre-
sent data warrant additional studies aimed at evaluating the
impact of NO-hybridization on the chemotherapeutic profile
of other HIV-PIs with anticancer potential.
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