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Abstract

Consumers’ preferences and choices are traditionally described by appealing to two
classical tenets of rationality: transitivity and completeness. In 1971, Schmeidler
proved a striking result on the interplay between these properties: On a connected
topological space, a nontrivial bi-semicontinuous preorder is complete. Here we re-
formulate and extend this well-known theorem. First, we show that the topology is
not independent of the preorder, contrary to what the original statement suggests.
In fact, Schmeidler’s theorem can be restated as follows: A nontrivial preorder with a
connected order-section topology is complete. Successively, we extend it to comono-
tonic bi-preferences: these are pairs of relations such that the first is a preorder, and
the second consistently enlarges the first. In particular, a NaP-preference (necessary
and possible preference, Giarlotta and Greco, 2013) is a comonotonic bi-preference
with a complete second component. We prove two complementary results of the
following kind: Special comonotonic bi-preferences with a connected order-section
topology are NaP-preferences. Schmeidler’s theorem is a particular case.

Key words: Rational behavior; transitivity; completeness; preorder; order-section
topology; Schmeidler’s theorem; bi-preference; necessary and possible preference.

1 Motivation and goal

Nearly invariantly, graduate textbooks on the foundation of microeconomics start the
description of consumers’ individual preferences and choice behavior by discussing the
two (almost) undisputed tenets of economic rationality: transitivity and completeness.
The classical textbook by Mas-Colell, Whinston, and Green (1995), as well as the recent
treatise on the foundations of microeconomic theory by Kreps (2013), are no exception to
this didactic rule; in fact, transitivity and completeness are extensively discussed starting
from Chapter 1. These two features of rationality, which are defined for any binary
relation S on a set X of alternatives, are the following:
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Transitivity: for all x, y, z P X , if xSy and ySz, then xSz.

Completeness: for all distinct x, y P X , either xSy or ySx (or both).1

The overwhelming influence of these two tenets of rationality2 within economic theory
calls for an attentive analysis of their mutual relationship. Schmeidler’s theorem, proved
almost fifty years ago, is one of the most well-known instances of this kind. Intuitively, this
striking result states that, for a nontrivial preference on a connected topological space,
the join of transitivity and weak continuity implies completeness. More formally:

Theorem (Schmeidler, 1971). Let S be a nontrivial preorder on a connected topologi-
cal space X. If S is closed-semicontinuous and Są is open-semicontinuous, then S is
complete.

(Recall that a preorder S is a reflexive transitive binary relation, the strict preference Są

denotes the asymmetric part of S, and nontrivial means that Są is nonempty. The two
semicontinuity properties assumed by Schmeidler consist of (1) the closeness of all upper
and lower sections in S, and (2) the openness of all upper and lower sections in Są.)3

The proof given by Schmeidler is neat and compact. However, two arguments of a
different nature, one order-theoretic and one topological, are quite intertwined. Thus it
is not clear to what extent the assumptions of connectedness (of the space) and double
semicontinuity (of the preorder) are needed to yield completeness (of the preorder).

In this paper, we clarify how each hypothesis of Schmeidler’s result contributes in
deriving the thesis. It turns out that one can extract two preliminary facts from the
original proof: the first is order-theoretic, and uses the two assumptions of semicontinuity
to obtain that suitable sets are equal; the second is topological, and uses the connectedness
of the space to conclude that some sets must be either empty or equal to the whole
space. Then, starting from the nontriviality of the given preorder, these two facts deliver
completeness.

In fact, one of the contributions of this paper is to fully understand the relationship
between the topology and the preorder in the statement of Schmeidler’s theorem. The
original formulation suggests that the topology and the preorder are ‘primitive’, in the
sense that they are given independently of each other. However, this is not true. In-
deed, Schmeidler’s theorem can be compactly reformulated in a way that the preorder is
primitive, whereas the topology is induced by the preorder:

1Sometimes (see, e.g., Mas-Colell, Whinston, and Green, 1995), completeness is defined in a broader
way, that is, for all (not necessarily distinct) pair of elements x, y P X . In this extended sense, complete-
ness implies reflexivity. We prefer the formulation of completeness given in the main body of the paper,
since otherwise asymmetric linear orders would fail to be complete by definition.

2Mas-Colell, Whinston, and Green (1995) call a preference relation rational whenever both transitivity
and completeness hold. To emphasize even more the relevance of these two properties, the notion of a
rational preference is repeated twice, namely in the context of Preference and Choice (Chapter 1, page 6),
and in the process of dealing with Classical Demand Theory (Chapter 3, page 42).

3For x P X , the upper section of x in S is the set ty P X : ySxu, and the lower section of x in S is the
set ty P X : xSyu. The upper and lower sections of x in Są are defined similarly, with Są in place of S.
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Theorem (Schmeidler, 1971, reformulated). A nontrivial preorder with a connected order-
section topology is complete.

(Here the order-section topology is a refinement of the order topology by means of the
complements of the closed sections.) In other words, transitivity of a preference implies
its completeness whenever a natural induced topology happens to be connected.

Although clarifying the nature of Schmeidler’s result already provides us with a strong
motivation for the present work, our aim is broader than singling out the main ingredients
of his original proof. In fact, this paper provides an extension of this classical theorem
to a more general setting, where two interconnected binary relations are involved. To
that end, we develop a similar analysis in the realm of bi-preferences : these are pairs
pR, Sq of nested binary relations on the same set X such that R (the Rigid preference)
is a preorder, and S (the Soft preference) is a transitively coherent enlargement of R.
Here by ‘transitively coherent enlargement ’ we mean the following two facts: (i) S is a
super-relation of R, i.e., the inclusion R Ď S holds; and (ii) S is transitive with respect
to R, i.e., the two inclusions R ˝ S Ď S and S ˝ R Ď S hold.4

The bi-preferences pR, Sq we examine here are comonotonic, in the sense that Są is
contained in Rą. These bi-preferences can be interpreted as follows in a decision making
context. The rigid component R models the very core of an agent’s mental judgement,
hence it is assumed to be transitive, but it is typically quite far from being complete. The
soft component S models a transitively coherent enrichment of R, which has the goal of
‘smoothing’ the agent’s core judgement, due to the rising of reasonable doubts.5

In the special case that the soft component of a comonotonic bi-preference is also com-
plete, we finally obtain a NaP-preference (Necessary and Possible preference). Originally
introduced in multiple criteria analysis (Greco, Mousseau, and S lowiński, 2008), NaP-
preferences have been extensively used in applications: see the surveys by Corrente et al.
(2013), Corrente et al. (2016), and Greco, Figueira, and Ehrgott (2016). The economic
rationale of NaP-preferences stems from an attempt to consistently combine Knightian
preferences (Bewley, 1986) and justifiable preferences (Lehrer and Teper, 2011). NaP-
preferences naturally arise in mathematical psychology, decision theory, operations re-
search, multiple criteria decision analysis, and choice theory: see Giarlotta (2014, 2015)
and Giarlotta and Watson (2017a, 2017b) for some theoretical aspects, as well as Al-
cantud, Biondo, and Giarlotta (2018) for a fuzzy modelization of political parties, and
Alcantud and Giarlotta (2019) for group decisions based on hesitant fuzzy sets.6

4Here “˝” denotes the composition of two binary relations, defined as follows: xpR ˝ Sqy if there is
z P X such that xRzSy. Since the transitivity of S can be equivalently defined by the inclusion S ˝S Ď S,
the two inclusions R ˝S Ď S and S ˝R Ď S can be interpreted as a form of transitivity of S with respect
to its sub-relation R.

5The requirement Są Ď Rą implies that, for instance, whenever xRąy holds, we may have either
xSąy or xS„y (where xS„y means that x and y are S-indifferent, i.e., both xSy and ySx hold). In the
described situation, xS„y says that the soft preference ‘smoothens’ the rigid judgement xRąy by adding
a soft reverse preference ySx: this may typically happen because there are feasible scenarios in which the
agent believes that x may fail to be strictly better than y. See Section 4.1.2 in Giarlotta (2019), p. 40–43,
for an extensive discussion on the point.

6For an overview of motivations and applications of NaP-preferences, see Giarlotta (2019).
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The vast range of applications of bi-preferences—and, in particular, NaP-preferences—
suggests that the use of pairs of interconnected binary relations to model decision makers’
attitude entails some advantages over the usual approach based on a single preference.
Thus, from a theoretical point of view, it is natural to extend classical results in decision
theory to a bi-preference setting. Here we exhibit a first instance of this kind by proving
two generalizations of Schmeidler’s theorem, in which a (enhanced form of) comonotonic
bi-preference plays the role of a preorder, and a NaP-preference that of a total preorder.

The key property that shapes the structure of a comonotonic bi-preference pR, Sq is
only one of the two tenets of economic rationality, namely transitivity: in fact, R and
Są are transitive,7 and S is transitive with respect to R. However, no assumption is
made about completeness, whose satisfaction has indeed become quite controversial in
economic theory.8 Schmeidler’s theorem establishes a sharp relationship between the
two tenets of rationality for a single preference in a connected topological space. The
approach used in this paper is similar: we split the two hypotheses of semicontinuity over
the two components of a comonotonic bi-preference, and, using transitivity and transitive
coherence, we derive the completeness of the soft part in two different settings. More
formally:

Theorem. Let pR, Sq be a nontrivial comonotonic bi-preference on a connected topological
space. Suppose pR, Sq is either (1) ‘quasi-monotonic’ or (2) ‘everywhere nontrivial’. If R
is closed-semicontinuous and Są is open-semicontinuous, then pR, Sq is a NaP-preference.

Using a compact (and more transparent) formulation, in which the only primitive
element is a bi-preference pR, Sq, whereas the order-section topology is generated by the
closed section of R and the open sections of S, our results can be rewritten as follows:

Theorem (reformulated). Let pR, Sq be a nontrivial comonotonic bi-preference with a
connected order-section topology. If pR, Sq is either (1) ‘quasi-monotonic’ or (2) ‘every-
where nontrivial’, then it is a NaP-preference.

As we shall clarify later on, the two additional properties (1) and (2) are somehow
complementary to each other: in fact, (1) enhances the quasi-transitive structure of S,
whereas (2) goes in the direction of its completeness by ensuring that Są has no isolated
points. Schmeidler’s theorem readily follows from our extensions by taking R “ S.

Additional related literature

This paper aims at studying the interplay between the two classical tenets of rationality
(transitivity and completeness) by discussing economically/psychologically sound gener-
alizations of a well-known result by Schmeidler, which links them to each other in a
topological setting. Before proceeding into a technical analysis, it is important to empha-
size how the recent literature in mathematical psychology no longer considers transitivity

7The transitivity of Są is an easy consequence of the properties of a comonotonic bi-preference.
8Completeness is the most debated feature of rationality: see Aumann (1962) for the seminal work on

incomplete preferences, after which a plethora of contributions in the same direction followed.
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and completeness as undisputed tenets of rationality, due to several experimental coun-
terexamples.9

Concerning transitivity, there is a long list of publications in which intransitive choice
cannot be regarded sic et simpliciter as not rational. The most classical contribution
of this kind dates back to Tversky (1969). More recent contributions detect different
types of problems with the identification of rationality by the property of transitivity:
see, among many others, Caravagnaro and Davis-Stober (2012), Regenwetter and Davis-
Stober (2012), Regenwetter et al. (2011), and Tsai and Böckenholt (2006). Moreover,
there is the problem with intransitive dice: this shows that intransitivity can be “very
rational”. For the paradox of three or more random variables, see Trybula (1961, 1963).
Random utility aspects of this example are discussed in Suck (2002). Finally, a complete
taxonomy of the ‘transitive degree’ of preference relations has recently been given by
Giarlotta and Watson (2014, 2018).

Concerning completeness, the situation is even more controversial. A decision maker
can be extremely rational and nevertheless have no preference for two alternatives. For
example, two job candidates may have very different qualifications, which make them
incomparable. In many experiments in psychology, completeness is obtained by forced
choice. The above cited paper by Regenwetter and Davis-Stober (2012) shows that this
can produce awkward choice behavior. Furthermore, in the theory of achievement tests,
the incompleteness of difficult comparisons of items is common knowledge. Here, failure
of completeness is by no means a lack of rationality in the subjects, but a feature of the
complexity of the area for which the test is designed.

In view of the drawbacks and pitfalls of behavioral models that assume the full sat-
isfaction of the axioms of transitivity and completeness, a new stream of research in
mathematical psychology and theoretical economics has arisen. This alternative approach
employs two binary relations—in place of one—to model decision makers’ attitudes to-
ward preference and choice: the two classical tenets of rationality are either relaxed or
combined in different ways within the two relations. We have already mentioned some
contributions of this kind; here we recall additional results in decision making under un-
certainty and choice theory, as well as some work directly related to Schmeidler’s theorem
(which is extendable to bi-preferences).

Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) consider pairs of relations in
an Anscombe-Aumann (1963) setting: in their approach, the rigid part is an incomplete
preorder à la Bewley (1986), and the soft one is an uncertainty averse preference à la
Gilboa and Schmeidler (1989). Additional contributions in the same stream of research
are Cerreia-Vioglio (2016), Faro and Lefort (2019), and Kopylov (2009).

In the Anscombe-Aumann model described by Cerreia-Vioglio et al. (2018), two types
of mutually consistent preferences are used. The first preference reflects the decision
maker’s judgments about well-being (her mental preferences), whereas the second rep-
resents the decision maker’s choice behavior (her behavioral preferences). The resulting
structure is, in fact, a NaP-preference.

9We thank one of the referees for pointing out this aspect.
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Nishimura and Ok (2018) study preference structures, which are bi-preferences pR, Sq
with the properties that the soft preference S is complete, and the strict soft preference
Są extends the strict rigid preference Rą. These bi-preferences, which allow one to model
a novel theory of choice, are complementary to NaP-preferences.

Within the theory of bounded rationality, several contributions employ more than one
binary relation to explain choice behavior. See, among others, Apestegúıa and Ballester
(2013), Au and Kawai (2011), Kalai, Rubinstein, and Spiegler (2002), Manzini and Mari-
otti (2007), and Rubinstein and Salant (2006). It is of some interest to examine situations
in which the ‘rationales’—the binary relations that explain a choice behavior—display
some structural connections, for instance forms of transitive coherence.10

Another important contribution related to Schmeidler’s result is a recent paper by
Khan and Uyanik (2019). The two authors examine in depth the relationship between
various hypotheses of connectedness (of the underlying topological space) and some be-
havioral assumptions on single preference relations (transitivity, completeness, and conti-
nuity). In their analysis, the authors generalize not only Schmeidler’s theorem, but also
pioneering results of Eilenberg (1941), Sen (1969), and Sonnenschein (1965).11 For a very
recent bi-preference approach by the same authors, see Uyanik and Khan (2019).

Gerasimou (2013) characterizes the continuity of a preorder in terms of its semicon-
tinuity, and, relying on Schmeidler’s theorem, concludes that an approach based on a
primitive weak preference leads to counter-intuitive behavioral predictions. Dubra (2011)
shows that the analogue of Schmeidler’s theorem holds for lotteries (probability distribu-
tions over a finite set of prizes). Karni (2011) shows that incompleteness is compatible
with all continuity properties for some nonstandard notions of preference relations, and
gives a revisited reading of Schmeidler’s and Dubra’s results. Finally, Schmeidler’s theo-
rem is explicitly used in proving the completeness of preorders derived from Richter-Peleg
multi-utility representations:12 see Alcantud, Bosi, and Zuanon (2016).

Organization of the paper

This paper is divided in three parts: (1) preliminaries and motivations; (2) an interlude;
(3) results and proofs. Regarding (1), Section 2 collects basic notions on bi-preferences,
and presents a wide range of examples. Regarding (2), Section 3 gives an alternative

10On the point, let us quote Kalai, Rubinstein, and Spiegler (2002, p. 2487) in their self-critique of the
methodology RMR (Rationalization by Multiple Rationales) for the rationalizability of choice functions
by means of (possibly several) linear orderings: “We fully acknowledge the crudeness of this approach.
The appeal of the RMR proposed for ‘Luce and Raiffa’s dinner’ does not emanate only from its small
number of orderings, but also from the simplicity of describing in which cases each of them is applied. ...
More research is needed to define and investigate ‘structured’ forms of rationalization.”.

11An extension of their analysis to bi-preference structures appears possible and interesting.
12A Richter-Peleg utility representation of a preference R on X is a map u : X Ñ R such that, for

all x, y P X , xRy implies upxq ě upyq, and xRąy implies upxq ą upyq (Richter, 1966; Peleg, 1970). A
multi-utility representation of R is a family U of maps u : X Ñ R such that, for all x, y P X , xRy if and
only if upxq ě upyq for all u P U (Ok, 2002; Evren and Ok, 2011; Evren, 2014). Finally, a Richter-Peleg
multi-utility representation of R is a multi-utility representation of R whose elements are Richter-Peleg
utility representations (Minguzzi, 2013, Sect. 5).
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reading of Schmeidler’s theorem, by providing several reformulations of it. Regarding (3),
Sections 4 and 5 exhibit two different extensions of Schmeidler’s theorem to comonotonic
bi-preferences: since one of our goals is to sharpen Schmeidler’s original argument, proofs
are fully discussed in these sections. Conclusive remarks are in Section 6. The Appendix
collects some technical facts related to our main results.

2 Preliminaries on bi-preferences

We first recall the basic notions on (single) preferences, and then introduce bi-preferences.
Successively we analyze special types of bi-preferences, called uniform, which comprise
comonotonic bi-preferences, NaP-preferences, and preference structures.

The purpose of this section is twofold: (i) to collect preliminary facts in an organized
fashion; (ii) to show how bi-preferences naturally arise in several areas of economics and
psychology. The reader who is more interested in results rather than motivations can
quickly glance at it, and then go to Section 3. However, we do believe that the material
included here allows one to gain valuable insight into the topic of bi-preferences, thus
providing the needed motivation for our analysis.

Throughout the paper, X denotes a nonempty (typically infinite) set of alternatives.

2.1 Preferences

A (weak) preference on X is a reflexive binary relation on X , which usually satisfies some
ordering properties.13 We employ capital letters (R, S, E, F , etc.) to denote preferences.
For any preference R and any pair of alternatives x, y P X , we use xRy in place of
px, yq P R, and interpret it from left to right: thus, xRy means “x is weakly preferred
to y” or “x is at least as good as y”. We slightly abuse notation, and write sequences of
binary relationships in a compact way: for example, xRySzRw stands for xRy, ySz, and
zRw, where R, S are preferences on X , and x, y, z, w P X .

Given a (weak) preference R on X , three binary relations are derived from it: the strict
preference Rą, the indifference R„, and the incomparability RK. They are respectively
defined by xRąy if xRy and  pyRxq, xR„y if xRy and yRx, and xRKy if  pxRyq and
 pyRxq, where x, y P X are arbitrary. Thus R is the union of Rą and R„, whereas R

and RK are disjoint. The indifference R„ is never empty, since it contains the diagonal
∆pXq “ tpx, xq : x P Xu of X . On the contrary, Rą may be empty; we call R trivial if
Rą “ H, and nontrivial otherwise.14

A (reflexive) preference R is quasi-transitive if Rą is transitive, Ferrers if xRy and
zRw imply xRw or zRy, and semitransitive if xRy and yRz imply xRw or wRz, where
x, y, z, w P X are arbitrary. Further, R is complete (or total) if xRy or yRx holds for all

13In this paper, the terminology ‘weak preference’ will be used only when it is necessary to avoid
confusion; otherwise, we shall simply speak of a ‘preference’. Reflexivity is always assumed.

14We think that ‘trivial’ is a somehow misleading term, because the symmetric part of a weak preference
typically represents meaningful judgements of similarity. However, in this paper we employ standard
terminology, also because ‘nontrivial’ is the term originally used by Schmeidler in stating his result.
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distinct x, y P X . Then R is said to be a preorder if it is transitive, a partial order if it is
transitive and antisymmetric, a quasi-preorder if it is quasi-transitive, an interval order
(Fishburn, 1970a, 1985) if it is Ferrers, a semiorder (Luce, 1956, Pirlot and Vincke, 1997)
if it is a semitransitive interval order, and a linear order if it is an antisymmetric total
preorder.

Given two (not necessarily distinct or reflexive) relations R and S on X , the compo-
sition R ˝ S is defined by xpR ˝ Sqy if there is z P X such that xRzSy. Notice that R

is transitive if and only if R ˝ R Ď R, and quasi-transitive if and only if Rą ˝ Rą Ď Rą.
A reflexive relation R is called strongly quasi-transitive if the two inclusions R ˝ Rą Ď R

and Rą ˝ R Ď R hold, that is, xRyRąz or xRąyRz implies xRz for all x, y, z P X ; in
this case, we shall also say that R is a strong quasi-preorder. Strong quasi-transitivity
implies quasi-transitivity, but the converse is false; however, for a complete preference,
quasi-transitivity and strong quasi-transitivity are equivalent.15 Notice that an interval
order—hence, a semiorder—is complete and (strongly) quasi-transitive.

Finally, we recall the notions of the upper and lower sections of an element (with
respect to a given preference), which will play a main role in our extensions of Schmeidler’s
theorem. Let R be a (reflexive) preference on X . Given x P X , define

xÓ,R :“ tw P X : xRwu (weak lower section of x),

xÒ,R :“ tw P X : wRxu (weak upper section of x),

xÓ,Rą

:“ tw P X : xRąwu (strict lower section of x),

xÒ,Rą

:“ tw P X : wRąxu (strict upper section of x).

The upper and lower sections are used to define forms of semicontinuity (see Definition 3.1
in Section 3). Further, the sections of a preference R yield a new relation derived from
R, the trace Rtr of R, defined as follows for each x, y P X :

xRtry
def

ðñ xÓ,R Ě yÓ,R and xÒ,R Ď yÒ,R.

In words, x is “trace-better” than y if the set of elements below x contains the set of
elements below y, and the set of elements above x is contained in the set of elements
above y. The trace of a preference is a preorder. The notion of trace dates back to the
work of Luce (1956) on semiorders, and Fishburn (1970a) on interval orders.16 For any R,
the trace Rtr is the largest sub-relation of R such that the two inclusions R ˝Rtr Ď R and
Rtr ˝ R Ď R hold: see Bouyssou and Pirlot (2004) and Cerreia-Vioglio and Ok (2018).

15In fact, strong quasi-transitivity can be characterized as follows: A preference R is strongly quasi-
transitive if and only if R is quasi-transitive, pR ˝ Rąq X RK “ H, and pRą ˝ Rq X RK “ H. The easy
proof of this fact is left to the reader.

16On the topic, see also the paper by Bouyssou and Pirlot (2004). For a generalized notion of trace,
called sliced (which is associated to universal types of semiorders, and is again a total preorder), see
Giarlotta and Watson (2016). Very recently, the notion of trace has been axiomatically characterized,
and suggestively renamed transitive core: see Nishimura (2017).
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2.2 Bi-preferences

Bi-preferences were originally introduced by Giarlotta and Greco (2013) in their work
on NaP-preferences, where they are named ‘partial NaP-preferences’.17 In this note we
employ the more intuitive term ‘bi-preferences’ instead.

Definition 2.1 (Giarlotta and Greco, 2013). A bi-preference on X is a pair pR, Sq of binary
relations on X such that the following properties hold:

✸ (Core Transitivity) R is a preorder,

✸ (Soft Extension) S includes R, and

✸ (Transitive Coherence) R ˝ S Ď S and S ˝ R Ď S.

R is the rigid preference, S is the soft preference, and G “ SzR is the gap of pR, Sq. A bi-
preference pR, Sq is stable if R “ S. A NaP-preference (necessary and possible preference)
on X is a bi-preference pR, Sq on X such that the following additional property holds:

✸ (Mixed Completeness) for all x, y P X , xRy or ySx.

In Giarlotta and Greco (2013), the authors are mostly concerned with NaP-preferences,
rather than generic bi-preferences, because of their possible applications in several fields
of research (decision theory, multiple criteria decision analysis, etc.). Under the Axiom of
Choice (AC), these special bi-preference structures can be neatly characterized as follows:

Theorem 2.2 (Giarlotta and Greco, 2013). Under AC, a pair pR, Sq of binary relations
on X is a NaP-preference if and only if there is a family F of total preorders on X such
that R “

Ş

F and S “
Ť

F .

It is worth noticing that—exactly in the spirit of the present paper—Theorem 2.2
provides a bi-preference extension of a well-known result by Donaldson and Weymark’s
(1998), which says that every preorder is the intersection of a family of total preorders.

Transitivity is the property that shapes the structure of an arbitrary bi-preference. In
fact, Core Transitivity ensures that the rigid part R of an agent’s preference structure is
transitive, whereas Soft Extension and Transitive Coherence require that the soft prefer-
ence S expands R in a transitively consistent way. However, Transitive Coherence does not
guarantee the rationality of S by any means, since S may even fail to be quasi-transitive.

The rigid preference R represents the core of an agent’s judgement, and models the
preference rankings that ‘must’ happen. On the other hand, the soft preference S repre-
sents the admissibility/tolerability/enrichment of an agent’s judgement, and models the
preference rankings that ‘may’ happen. The gap G “ SzR encodes a grey area of ‘inde-
cisiveness’: the larger it is, the more indecisive the agent is. (Thus, an alternative term
for ‘stable’ may be ‘fully decisive’.) No completeness is assumed to hold in the general
setting; however, several bi-preferences that arise in practice are complete. Uyanik and
Khan (2019) effectively describe a bi-preference setting as follows:

17The reason for this terminology is that these pairs of relations satisfy all properties of NaP-preferences,
with the possible exception of ‘mixed completeness’: see Section 2.4.
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[A bi-preference models] a decision-maker who can be single-minded on some choices and
double-minded regarding others. [Such a decision-maker] is not uniformly decisive or uni-
formly hesitant, never always assured and never always skeptical.

Bi-preferences naturally appear in various applied areas. To wit, below we present
a wide range of examples of bi-preferences. The first example collects some simple, yet
significative, instances of bi-preferences.

Example 2.3 (Elementary bi-preferences). Let R be a preference on X .

(i) pR,Rq is a (stable) bi-preference if and only if R is a preorder.

(ii) p∆pXq, Rq is a bi-preference. (Recall that ∆pXq is the diagonal of X .)

(iii) If R is a preorder, then pR,X2q is a bi-preference, in fact a NaP-preference.

(iv) The pair p∆pXq, X2q is the bi-preference on X with the largest gap.

Part (i) shows that bi-preferences generalize preorders. Parts (ii) and (iii) exhibit two
limit instances of bi-preferences: in (ii) R is minimal, whereas in (iii) S is maximal. The
trivial bi-preference (iv) is ‘the least stable’ pair in the family of all bi-preferences on X ,
since nothing must happen and everything may happen: in fact, the gap is maximum.18

A second example stems from utility theory.

Example 2.4 (Utility bi-preference). Let U “ tui : i P Iu be a family of real-valued
functions ui : X Ñ R. Define two relations RU and SU on X as follows for each x, y P X :

xRU y
def

ðñ uipxq ě uipyq for all i P I ,

x SU y
def

ðñ uipxq ě uipyq for some i P I .

Then the pair pRU , SUq is a bi-preference, called the utility bi-preference associated to U .
Utility bi-preferences are typical examples of preference structures that are derived from
a family of functional evaluators by using universal and existential quantifiers. Notice
that utility bi-preferences are, in fact, NaP-preferences.

Our third example of bi-preferences links a weak preference to its trace.

Example 2.5 (Tracing bi-preference). Let S be a weak preference, and Str is its trace.
Then pStr, Sq is a bi-preference, called the tracing bi-preference of S. One can show that,
among all bi-preferences having S as soft component, the tracing bi-preference pStr, Sq is
the one with the smallest gap.

Our forth example establishes a relationship between bi-preferences on one side, and
the theory of individual choices and revealed preferences on the other one.

18See Section 5 in Giarlotta and Greco (2013) for the meaning of ‘the least stable’, which refers to
both ‘positive’ information (encoded by the rigid preference) and ‘negative’ information (encoded by the
complement of the soft preference).
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Example 2.6 (Bi-preference revealed by a path independent choice). Let c : 2X Ñ 2X be
a choice correspondence on X , that is, a map such that cpAq Ď A for all A P 2X , and
cpAq “ H if and only if A “ H. (As usual, 2X denotes the family of all subsets of X .)
Define two relations Rc and Sc on X as follows for each x, y P X :19

xRc y
def

ðñ for all A P 2X , if x P A and y P cpAq, then x P cpAq;

xSc y
def

ðñ there is A P 2X such that x P cpAq and y P A.

Assume that c satisfies the following property due to Plott (1973):

✸ (PI: Path Independence) cpAYBq “ cpcpAq Y cpBqq for all A,B P 2XztHu.

Then pRc, Scq is a bi-preference, called the bi-preference revealed by c.20 Path indepen-
dent choices are also important in combinatorial mathematics. In fact, as Koshevoy (1999)
shows, path independent choices are “isomorphic” to abstract convex geometries, as de-
fined by Edelman and Jamison (1985).

Our fifth example is a bi-preference that collects judgements of similarity.

Example 2.7 (NaP-indifference, Giarlotta and Watson, 2017b). A necessary and possible
indifference (for short, NaP-indifference) on X is a pair pE, F q of reflexive symmetric
binary relations on X satisfying the following properties:

✸ (Symmetric Core Transitivity) E is an equivalence relation,

✸ (Symmetric Soft Extension) F is a symmetric extension of E, and

✸ (Transitive Coherence) E ˝ F Ď F and F ˝ E Ď F .

NaP-indifferences are bi-preferences, and can be characterized in a way similar, mutatis
mutandis, to NaP-preferences (cf. Theorem 2.2):

Theorem 2.8 (Giarlotta and Watson, 2017b). A pair pE, F q of binary relation on X is
a NaP-indifference if and only if there is a family E of equivalence relations on X such
that E “

Ş

E and F “
Ť

E .

19Sc the relation of revealed preference, connected to the work of Samuelson (1938), Houthakker (1950),
Richter (1956), Arrow (1959), and Sen (1971), among many other contributions. Thus xSc y says that x

is “(existentially) revealed to be preferred” to y if there exists a menu in which both x and y are available,
and x is chosen. The relation Rc is the universal counterpart of the relation Sc: in fact, xRc y says that
x is “(universally) revealed to be preferred” to y when, for all menus containing both x and y, if y is
chosen then so is x.

20The proof of this fact is available upon request. As a matter of fact, pRc, Scq is a bi-preference under
the weaker condition that c satisfies both the axiom of contraction consistency pαq (Chernoff, 1954) and
the axiom of replacement consistency pρq (Cantone et al., 2016). Recall that pαq says that for any two
menus A,B P 2X and item x P X , if A Ď B and x P AX cpBq, then x P cpAq. On the other hand, pρq says
that for any menu A P 2X and items x, y P X , if y P cpAq and y R cpA Y txuq, then x P cpA Y txuq. It is
not difficult to show that PI implies both pαq and pρq, but the converse does not hold: thus, PI is strictly
stronger that pαq&pρq. Finally, it is worth noticing that, for the special case of a choice c satisfying the
Weak Axiom of Revealed Preference (WARP, see Samuelson (1938) and Arrow (1959)), the two relations
of revealed preference Rc and Sc are equal, and coincide with a total preorder.
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NaP-indifferences arise in the theory of choice, as ordered pairs of symmetric relations
revealed by a choice. These relations of ‘revealed similarity’ link to each other those
alternatives that are interchangeable according to the agent’s choice behavior.21

Finally, we present a rather involved instance of a bi-preference, which arises in deci-
sions under uncertainty. (Since the notions in the next example do not play a role in the
sequel of the paper, the reader who does not wish to get distracted from the main themes
may skip it, without altering the overall comprehension of the topic.)

Example 2.9 (Mental and behavioral bi-preference, Cerreia-Vioglio et al., 2018). Within the
stylized version of the Anscombe-Aumann (1963) setting analyzed by Fishburn (1970b),
let A be a set of acts, i.e., simple measurable functions f : W Ñ X , with X convex set
of outcomes, W set of states of the world endowed with an algebra Σ of events (and the
set ∆ of finitely additive probabilities on Σ is endowed with the event-wise convergence
topology). For any relation R on A, the strong-strict preference Rąą is given by

fRąąg
def

ðñ for all h, k P A there is ǫ ą 0 : p1´δqf`δhRą p1´δqg`δk for all δ P r0, ǫs.

The strong-strict preference Rąą is the algebraic interior of Rą. Intuitively, if R is a
preorder that models mental preferences, then Rąą encodes a ‘strong mental preference’:
in fact, fRąąg holds if and only if “f plus a specification error is strictly better than g

plus a specification error”. Then, a bi-preference pR, Sq on A is called:

- algebraically monotonic22 if the inclusion Rąą Ď Są holds;

- mixed complete23 if, for all acts f, g P A,  pfRgq implies gSf .

Under standard expected utility assumptions, a mixed complete algebraically monotonic
bi-preferences pR, Sq on A is characterized by the existence of an affine utility function u

on outcomes and a set C of probabilities on states, which jointly represent R and S by

fRg ðñ

ż

upfqdp ě

ż

upgqdp for all p P C,

fSg ðñ

ż

upfqdp ě

ż

upgqdp for some p P C,

fRąg ðñ

ż

upfqdp ě

ż

upgqdp for all p P C, with at least one strict inequality,

fSąg ðñ

ż

upfqdp ą

ż

upgqdp for all p P C ðñ fRąąg.

Further, C is unique, and u is unique up to positive affine transformations.24

21Examples of NaP-indifferences in choice theory are those having the binary relation of revealed in-
discernibility (Cantone, Giarlotta, and Watson, 2019a) as the rigid component, and some of the classical
relations of revealed indifference as the soft component: see Section 3.2 in Giarlotta and Watson (2017b).

22Algebraic monotonicity is weaker than monotonicity, which is characterized by the satisfaction of the
inclusion Rą Ď Są: see Definition 2.10 below.

23This property is equivalent to the formulated in Definition 2.1.
24Notice that if S is finite, X “ R, u “ idR, and C “ ∆, then the mental preference R is the weak

Pareto dominance ě on R
S , the strict mental preference Rą is the Pareto dominance ą on R

S , and the
strong mental preference Rąą is the strong Pareto dominance ąą on R

S .
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2.3 Special bi-preferences

We single out special bi-preferences, and summarize their connections (cf. Figure 1).

Definition 2.10. A bi-preference pR, Sq on X is:
- complete (resp. nontrivial) if S is complete (resp. nontrivial);
- weakly monotonic if Rą X pS ˝ Sąq Ď Są and Rą X pSą ˝ Sq Ď Są;
- weakly comonotonic if, for each x, y, z P X , we have:

`

xSąz ^ ySąz
˘

^ xSKy ùñ
`

xRąz ^ yRąz
˘

`

zSąx ^ zSąy
˘

^ xSKy ùñ
`

zRąx ^ zRąy
˘

;

- monotonic if the inclusion Rą Ď Są holds;
- comonotonic if the inclusion Są Ď Rą holds;
- strongly monotonic if it is both monotonic and weakly comonotonic;
- strongly comonotonic if it is both comonotonic and weakly monotonic;
- essentially rigid if S “ X2;
- monolithic if Rą “ Są (i.e., it is both monotonic and comonotonic);
- stable if R “ S (cf. Definition 2.1).

Let us quickly motivate the employed terminology. A bi-preference is complete (re-
spectively, nontrivial) if the larger component is complete (respectively, nontrivial). The
notions of monotonic and comonotonic bi-preference are dual to each other, since the
inclusion Rą Ď Są reverses the inclusion Są Ď Rą. Weak monotonicity is implied by
monotonicity, since it states that a strict rigid preference xRąy implies a strict soft pref-
erence xSąy whenever X contains elements already witnessing that possibility, in the
sense that either xSzSąy or xSązSy holds for some z P X . Similarly, weak comonotonic-
ity is a weakening of comonotonicity. Strong comonotonicity and strong monotonicity
are suitable enhancements of comonotonicity and monotonicity, respectively. Monolithic
bi-preferences represent the limit case of mutual enhancement. Stable bi-preferences are
in a one-to-one correspondence with preorders (cf. Example 2.3(i)). An essentially rigid
bi-preference is shaped by its rigid part, since its soft part is everything.

Figure 1 summarizes the relationships existing among the bi-preferences introduced in
Definition 2.10. The three shaded boxes are related to Schmeidler’s theorem and its first
generalization to bi-preferences. In fact, Schmeidler’s theorem can be equivalently stated
by saying that, under suitable topological assumptions, a nontrivial stable bi-preference is
complete. Our generalization in Section 4 substantially weakens Schmeidler’s hypotheses
while deriving a stronger conclusion: in fact, it states that, under equivalent topological
assumptions, a nontrivial strongly comonotonic bi-preference is complete and transitive.

2.4 Uniform bi-preferences

In passing from a preorder R to a bi-preference pR, Sq, the role of the soft component S

is to extend R according to specific objectives. For instance, S may be used with the goal
of ‘sharpening’ the judgement formulated by R, thus introducing new strict preferences.
In this case we may have, e.g., xSąy and xRKy. As an example, imagine that in the
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weakly
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Figure 1: Implications between types of bi-preferences, represented by black arrows (which are transi-
tive). The three shaded types of bi-preferences are related to Schmeidler’s theorem and our first extension
to strongly comonotonic bi-preferences.

process of selecting the set of best alternatives, an agent uses R to filter some of them
according to a logic of dominance. Thus, an alternative x is pre-selected whenever there
is no other alternative that R-dominates x, i.e., yRąx holds for no y P Xztxu. Then, in
order to make a more accurate selection, the agent may asks an external source to rank
the remaining non-dominated options, thus introducing new strict preferences via S.25

Quite in the opposite direction, it may happen that the soft component S is employed
to extend R with the objective of ‘smoothing’ some strong judgements, having, e.g., xS„y

despite being xRąy. To justify this approach, imagine that an agent is required to sharply
choose between two alternatives, say xRąy. However, this forces her to neglect possible
scenarios in which y is at least as good as x. The role of S is then to smoothen the rigid
judgement modeled by R, thus transforming the rigid strict preference xRąy into a soft
indifference xS„y, which is obtained adding a soft preference ySx.

Of course, the soft relation S may be guided by a rationale of sharpening a judgement
for some pairs of alternatives, and one of smoothing it for some others. The next definition
describes the two limit cases, in which the logic of extension from the rigid preference to
the soft preference is uniform for all pairs of alternatives.

Definition 2.11. A bi-preference pR, Sq is uniform if the two strict preferences are nested:
that is, pR, Sq is either monotonic (i.e., Rą Ď Są) or comonotonic (i.e., Są Ď Rą).

Most of the bi-preferences already presented in Section 2.2 are indeed uniform.

25This procedure resembles the bounded rationality approach in choice theory called rational short-
list method, proposed by Manzini and Mariotti (2007), and further studied by Au and Kawai (2011),
and Garc̀ıa-Sanz and Alcantud (2015). However, in Manzini and Mariotti’s model, the two preferences
rationalizing a choice behavior usually fail to be nested into each other and structurally coherent.
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Example 2.12. Any utility bi-preference (Example 2.4), the tracing bi-preference of any
strong quasi-preorder (Example 2.5), and the bi-preference revealed by any path inde-
pendent choice (Example 2.6) are all comonotonic. Further, any NaP-indifference (Exam-
ple 2.7) is monolithic (both monotonic and comonotonic). The algebraically monotonic
bi-preference defined in an Anscombe-Aumann setting (Example 2.9) is comonotonic.

If completeness is required along with uniformity, then we obtain either (i) preference
structures (Nishimura and Ok, 2018), or (ii) necessary and possible preferences (Giarlotta
and Greco, 2013). The next two examples describe these special bi-preferences.

Example 2.13 (Preference structures, Nishimura and Ok, 2018). A preference structure
is a complete monotonic bi-preference. Preference structures allow to model phenomena
like rational choice, indecisiveness, imperfect ability of discrimination, regret, and advice
taking, among others. Further, an alternative kind of choice theory, which uses the notion
of top cycles, arises from preference structures.

Example 2.14 (NaP-preferences, Giarlotta and Greco, 2013). Recall from Definition 2.1
that a NaP-preference (necessary and possible preference) on X is a bi-preference pR, Sq
on X such that Mixed Completeness holds. Notice that any utility bi-preference (Exam-
ple 2.4) and the bi-preference revealed by any path independent choice (Example 2.6) are
NaP-preferences. Further, the tracing bi-preference of any interval order or any semiorder
(Example 2.5) is a NaP-preference. The bi-preference that describes decision makers’
mental attitude and choice behavior in an Anscomb-Aumann framework (Example 2.9)
is a NaP-preference, too.

The following additional characterization of NaP-preferences (the first is given by
Theorem 2.2) will be useful in this paper:26

Lemma 2.15. A bi-preference is a NaP-preference if and only if it is comonotonic and
complete.

Proof. Let pR, Sq be a bi-preference on a nonempty set X .
For necessity, assume that pR, Sq is a NaP-preference. Completeness of S is an im-

mediate consequence of Soft Extension and Mixed Completeness. To prove that pR, Sq is
comonotonic, let x, y P X be such that xSąy. Mixed Completeness readily yields xRy.
Since yRx implies ySy, which is impossible, it follows that xRąy, as required.

For sufficiency, suppose x, y P X satisfy  pySxq. By the completeness of S, we
get xSąy, hence xRąy by comonotonicity. In particular, we have xRy, and so Mixed
Completeness holds. Thus pR, Sq is a NaP-preference.

We conclude this section mentioning a strong type of NaP-preference, in which both
classical tenets of rationality hold for the soft component:

Definition 2.16. A NaP-preference pR, Sq is transitive if S is transitive (that is, a total
preorder). Equivalently, a transitive NaP-preference is an ordered pair of preorders pR, Sq
such that S is a completion27 of R.

26For a third characterization of NaP-preferences, see Lemma 2.4 in Giarlotta and Watson (2017b).
27By “S is a completion of R” we mean that S is a complete super-relation of R.
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In our first extension of Schmeidler’s theorem (see Section 4) we shall obtain a bi-
preference that is indeed a transitive NaP-preference.

3 Reformulating Schmeidler’s theorem

This section is a brief interlude between preliminaries and new results. First, we introduce
all notions of semicontinuity that are needed for a topological setting.28 Successively, we
state several equivalent reformulations of Schmeidler’s theorem, which concern either a
single binary relation or an ordered pair of binary relations.

The purpose of this interlude is to cast light on the overall significance of Schmeidler’s
theorem, also providing important insight into a bi-preference approach to the topic. In
particular, we shall show that, although appearances say otherwise, Schmeidler’s theorem
is not about the relationship between a primitive preorder and an independently given
primitive topology: in fact, the topology depends on the preorder.

Definition 3.1. Let pX, τq be a topological space, S a preference on X , and Są its
asymmetric part. We say that S is closed-semicontinuous if all weak lower sections xÓ,S

and weak upper sections xÒ,S are closed subsets of pX, τq. Further, we say that Są is
open-semicontinuous if all strict lower sections xÓ,Są

and strict upper sections xÒ,Są

are
open subsets of pX, τq.

Let us recall again the main result under analysis:

Theorem (Schmeidler). Let S be a nontrivial preorder on a connected topological space
X. If S is closed-semicontinuous and Są is open-semicontinuous, then S is complete.

This theorem about the relationship between a preorder and a topology. The way it is
stated suggests that the preorder and the topology are given independently of each other.
To see why this conclusion is essentially false, we shall define a natural topology that is
induced on any set endowed with a reflexive binary relation.

Definition 3.2. Let S be a weak preference on X . Define a topology τ
ÒÓ
S on X by taking

as a subbase both the strict sections (upper or lower) and the complements of the weak
sections (upper or lower). In other words, τ ÒÓ

S is the topology obtained by declaring all
strict sections open and all weak sections closed.29 We call τ ÒÓ

S the order-section topology
induced by S.

If S is a total preorder, then the complement of a weak section is always a strict section.
Thus the order-section topology induced by a total preorder S is, in fact, the usual order
topology induced by S (that is, the topology having the open sections as subbase).

The order-section topology induced by a preference can be used to characterize semi-
continuity (the proof of this fact is straightforward):

28Alternative settings are possible. See Wakker (1988) for an ‘algebraic approach’, which is shown to
be more general than the topological one for the special case of additive representations.

29Thus, if S denotes the collection of all strict sections and all complements of weak sections, then the
topology τ

ÒÓ
S

is the set whose elements are arbitrary unions of finite intersections of elements in S.
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Lemma 3.3. The following statements are equivalent for any preference S on a topological
space pX, τq:

(i) S is closed-semicontinuous and Są is open-semicontinuous;

(ii) τ is a refinement of τ ÒÓ
S (that is, τ Ě τ

ÒÓ
S ).

By Lemma 3.3, τ ÒÓ
S is the coarsest topology on X such that S is closed-semicontinuous

and Są is open-semicontinuous. Then we can restate Schmeidler’s theorem as follows:

Theorem1 (Schmeidler, reformulation 1). Let S be a nontrivial preorder on a connected
topological space pX, τq. If τ is a refinement of τ ÒÓ

S , then S is complete.

Now we can see why the given (exogenous) topology τ plays no role. If τ is connected
and τ

ÒÓ
S is included in τ , then τ

ÒÓ
S is connected. Thus we can reformulate the above result

once again, so that the only topology that matters is the topology τ
ÒÓ
S induced by S.

Theorem2 (Schmeidler, reformulation 2). If S is a nontrivial preorder on X such that τ ÒÓ
S

is connected, then S is complete.

Theorem1 is an immediate corollary of Theorem2, however Theorem2 does not mention
any primitive topology τ at all. We can also reformulate the last fact in a way that the
induced order-section topology is only in the conclusion:

Theorem3 (Schmeidler, reformulation 3). If S is a nontrivial incomplete preorder on X,
then τ

ÒÓ
S is not connected.

In Schmeidler’s theorem, a reflexive transitive relation S satisfies a double form of semi-
continuity. In our extensions (see Sections 4 and 5), semicontinuity is split between the two
components of a comonotonic bi-preference pR, Sq, with R being closed-semicontinuous
and Są open-semicontinuous. The definition of an ‘adequate’ topology on X , induced by
R and S, also yields several alternative reformulations in this extended setting.

Definition 3.4. Let R and S be weak preferences on X . Define a topology τ
ÒÓ
R,S on X

by taking as a subbase the strict sections (upper or lower) of S and the complements of
the weak sections (upper or lower) of R. In other words, τ ÒÓ

R,S is the topology obtained

by declaring the strict sections of S open and the weak sections of R closed. We call τ ÒÓ
R,S

the order-section topology induced by pR, Sq.

As it happens for τ
ÒÓ
S , also τ

ÒÓ
R,S can be used to characterize semicontinuity:

Lemma 3.5. The following statements are equivalent for any pair pR, Sq of preferences
on a topological space pX, τq:

(i) R is closed-semicontinuous and Są is open-semicontinuous;

(ii) τ is a refinement of τ ÒÓ
R,S (that is, τ Ě τ

ÒÓ
R,S).

By Lemma 3.5, τ ÒÓ
R,S is the coarsest topology on X such that R is closed-semicontinuous

and Są is open-semicontinuous. Then, a general statement (here called ‘Desiderata’) that
extends Schmeidler’s theorem to bi-preferences may be formulated as follows:
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Desiderata. Let pR, Sq be a nontrivial bi-preference with property P on a connected
topological space pX, τq. If R is closed-semicontinuous and Są is open-semicontinuous,
then pR, Sq is a NaP-preference (equivalently, S is complete).

In this ideal result, P is a suitable property of the bi-preference pR, Sq. By Lemma 3.5,
we can restate any such result as follows:

Desiderata1 (reformulation 1). Let pR, Sq be a nontrivial bi-preference with property P

on a connected topological space pX, τq. If τ is a refinement of τ
ÒÓ
R,S, then pR, Sq is a

NaP-preference (equivalently, S is complete).

And again, since the connectedness of τ plus the inclusion τ
ÒÓ
R,S Ď τ implies that τ

ÒÓ
R,S

is connected as well, the last statement is an immediate corollary of the following:

Desiderata2 (reformulation 2). If pR, Sq is a nontrivial bi-preference with property P such
that τ ÒÓ

R,S is connected, then pR, Sq is a NaP-preference (equivalently, S is complete).

As for a single preference, the exogenously given topology τ has disappeared, and
all that matters is whether the bi-preference pR, Sq induces a connected order-section
topology τ

ÒÓ
R,S, which is an intrinsic feature of the preorder. Therefore, we can finally

rephrase our ideal result as follows:

Desiderata3 (reformulation 3). If pR, Sq is a nontrivial bi-preference with property P

such that S is incomplete, then τ
ÒÓ
R,S is not connected.

The next two sections are the bulk of the paper. In fact, we shall discuss two extensions
of Schmeidler’s theorem, which are in the spirit of the above Desiderata. The properties
P that we employ consist of two different enhancements of comonotonicity: (i) strong
comonotonicity, and (ii) everywhere nontrivial comonotonicity.

We emphasize from the outset that the above enhancements of comonotonicity are
independent of each other, in general. On the other hand, under the assumption that the
order-section topology induced by a bi-preference is connected, property (i) is stronger
than property (ii). Nevertheless, this does not affect the autonomous interest of our two
main results by any means: in fact, under the stronger hypothesis (i), we shall obtain the
stronger conclusion that the bi-preference is indeed a transitive NaP-preference.

4 First extension of Schmeidler’s theorem

The first main result of this paper concerns strongly comonotonic bi-preferences, that is,
comonotonic bi-preferences that are also weakly monotonic (see Definition 2.10). Our
analysis is divided in three parts: (1) order-theoretic preliminaries, (2) topological pre-
liminaries, and (3) main result.

To start, we mention the two key properties of a binary relation that are needed to
extrapolate the basic ingredients from Schmeidler’s original argument:

Definition 4.1. A preference S on X is called:
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• strictly covering if xSąy implies xÓ,Są

Y yÒ,Są

“ X (for all x, y P X);

• splitting if xSKy implies xÓ,Są

X yÓ,Są

“ H and xÒ,Są

X yÒ,Są

“ H (for all x, y P X).

In other words, S is strictly covering if the strict sections of any pair of elements
witnessing the nontriviality of S suffice to cover X . Further, S is splitting if it fully
separates the strict sections of incomparable elements.

Remark 4.2. The following facts, which describe the asymmetric part of strictly covering
and splitting binary relations, are useful to clarify the structure of these special types of
preferences. These results are essentially embodied in (or may be derived from) those of
Sections 4 and 5; however, it worth to mention them from the outset, in order to help the
reader getting some preliminary insight.30

(i) Let S be a strictly covering (reflexive) relation on X . Then Są is transitive, the
incomparability relation of Są is transitive, and any two equivalence classes of the
incomparability relation are comparable by Są. In short, Są must be an irreflexive
weak order, that is, the complement of a total preorder.31

(ii) Let S be a splitting (reflexive) relation on X . When X is finite, the alternatives
of any maximal path in Są (where “maximal” means with respect to set-inclusion)
are unrelated by Są to all alternatives lying outside the path. Consequently, X

is a parallel, disjoint union of maximal paths, where “parallel” means that two
alternatives lying in different maximal paths are incomparable for Są.

4.1 Order-theoretic preliminaries

Here we are only concerned with properties of a strongly comonotonic bi-preference. No
topological structure is assumed. In the next section, we shall derive some topological
consequences under the hypothesis that the order-section topology is connected.

30We thank the Editor-in-Charge, Jean-Paul Doignon, for pointing out all these very interesting facts.
They suggest that the notions of strictly covering and splitting may be of independent (combinatorial)
interest.

31In fact, strictly covering preferences can be characterized by using the notion of ‘resolution of pref-
erences’, called ‘composition of relations’ by Bang-Jensen and Gutin (2001, p. 8). Recall that, given a
binary relation RX on X and a family pRxqxPX of binary relations on Yx such that Yx X Yx1 “ H for all
distinct x, x1 P X , the resolution of RX into pRxqxPX is the relation RZ on Z :“

Ť

xPX Yx defined by

zRZz
1 ðñ

#

either pDx P Xq pz, z1 P Yx ^ zRxz
1q ,

or pDx, x1 P Xq px ‰ x1 ^ z P Yx ^ z1 P Yx1 ^ xRXx1q

where z, z1 P Z. Then, one can show that the following fact holds (proof is available upon request):

Lemma. A preference is strictly covering if and only if it is the resolution of a linear order into trivial
binary relations.

The notion of preference resolution can be seen as a particular case of the notion of ‘choice resolution’,
recently introduced by Cantone, Giarlotta, and Watson (2019b), and then adapted to ‘convex geometries’
(which are in one-to-one correspondence with path independent choice spaces) by Cantone et al. (2020).
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Lemma 4.3. The following are equivalent for a comonotonic bi-preference pR, Sq on X:

(i) pR, Sq is weakly monotonic;

(ii) for each x, y P X, if xSąy, then xÓ,Są

Y yÒ,Są

“ xÓ,R Y yÒ,R ;

(iii) for each x, y P X, if xRąyS„x, then there is no z P X such that either xSązS„y

and zRKy, or xS„zSąy and xRKz holds.

Proof. Let pR, Sq be a comonotonic bi-preference pR, Sq on X .

(i) ñ (ii). Assume that pR, Sq is weakly monotonic. Let x, y P X be such that xSąy.
We shall prove that the equality xÓ,Są

Y yÒ,Są

“ xÓ,R Y yÒ,R holds. One inclusion readily
follows from comonotonicity. For the reverse inclusion, we let z P xÓ,R Y yÒ,R, and show
that z P xÓ,Są

Y yÒ,Są

. By duality, it suffices to prove the claim whenever z P xÓ,R, that
is, if xRz holds. We deal separately with two possible cases: (a) zRx; (b) xRąz.

In case (a), we get zRxRąy by hypothesis and comonotonicity, hence zRąy by the
transitivity of R. Since zSxSąy holds, weak monotonicity yields zSąy, that is, z P yÒ,Są

,
as required. For case (b), if xSąz, then we are immediately done. Next, assume that
zSx. It follows that zSxRąy by hypothesis and comonotonicity, and so zSy by transitive
coherence. Now if ySz were to hold, then we would get xSąySz and xRąz, hence xSąz by
weak monotonicity, a contradiction. Therefore, zSąy holds, that is, z P yÒ,Są

, as claimed.

(ii) ñ (i). Assume that (ii) holds. By symmetry, to show that (i) holds as well, it
suffices to prove the inclusion Rą X pSą ˝ Sq Ď Są. Thus let x, y, z P X be such that
xSąySz and xRąz. By extension, it follows that xSz. Toward a contradiction, assume
that zSx holds. Since z P xÓ,R, the hypothesis yields z P yÒ,Są

, which is impossible.

(i) ñ (iii). We prove the contrapositive. Assume that there are x, y, z P X such that
xRąyS„x, xSąz and zS„yRKz. Thus, we have xRąy and xpSą ˝Sqy, but  pxSąyq, that
is, Rą X pSą ˝ Sq Ę Są. This shows that pR, Sq fails to be weakly monotonic. Similarly,
if xRąyS„x, xSąz and zS„yRKz holds, then weak monotonicity fails again.

(iii) ñ (i). Assume that (iii) holds. Let x, y, z P X be such that xRąy and xSązSy.
By hypothesis, we cannot have ySx, hence we obtain xSąy. Similarly, if x, y, z P X are
such that xRąy and xSzSąy, then the hypothesis yields  pySxq, hence xSąy again. This
shows that pR, Sq is weakly monotonic, as claimed.

The following immediate consequence of Lemma 4.3 will be useful:

Lemma 4.4. Let pR, Sq be a strongly comonotonic bi-preference on X. For all x, y P X,

xSąy ùñ xÓ,Są

Y yÒ,Są

“ xÓ,R Y yÒ,R.

We still need an additional order-theoretic result, which we shall state in a more
general way than needed, that is, for weakly comonotonic bi-preferences:

Lemma 4.5. Let pR, Sq be a weakly comonotonic bi-preference on X. For all x, y P X,

xSKy ùñ
`

xÓ,Są

X yÓ,Są

“ xÓ,R X yÓ,R
˘

^
`

xÒ,Są

X yÒ,Są

“ xÒ,R X yÒ,R
˘

.
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Proof. Assume that x, y P X are such that xSKy. We prove the first equality only,
since the proof of the second is similar. Let z P xÓ,Są

X yÓ,Są

, that is, xSąz and ySąz.
The hypothesis readily implies xRąz and yRąz, and so z P xÓ,R X yÓ,R. For the reverse
inclusion, assume that z P xÓ,R X yÓ,R, i.e., xRz and yRz. Since S extends R, we obtain
xSz and ySz. If zSx were to hold, then we would get yRzSx, hence ySx by transitive
coherence, a contradiction. It follows that xSąz. A similar argument yields ySąz. We
conclude z P xÓ,Są

X yÓ,Są

, as claimed.

4.2 Topological preliminaries

Here we present two topological consequences of Lemmas 4.4 and 4.5. Specifically, we show
that whenever the order-section topology induced by a strongly comonotonic bi-preference
is connected, the soft component is simultaneously strictly covering and splitting.

The first result of this section requires the full power of strong comonotonicity.

Lemma 4.6. If pR, Sq is a strongly comonotonic bi-preference such that τ ÒÓ
R,S is connected,

then S is strictly covering.

Proof. Suppose pR, Sq is a strongly comonotonic bi-preference such that the order-
section topology τ

ÒÓ
R,S is connected. By Lemma 3.5, R is closed-semicontinuous and Są is

open-semicontinuous in pX, τ
ÒÓ
R,Sq. To show that S is strictly covering, let x, y P X be such

that xSąy. Lemma 4.4 yields xÓ,Są

Y yÒ,Są

“ xÓ,R Y yÒ,R. The closed-semicontinuity of R
implies that the set xÓ,R Y yÒ,R is closed. Dually, the open-semicontinuity of Są implies
that the set xÓ,Są

YyÒ,Są

is open. It follows that the set xÓ,Są

YyÒ,Są

“ xÓ,RYyÒ,R is both
closed and open; further, it is nonempty, since x P xÓ,R by the reflexivity of R. Now the
connectedness of τ ÒÓ

R,S implies that xÓ,Są

Y yÒ,Są

“ X , that is, S is strictly covering.

Our second topological result holds under the milder assumption of weak comono-
tonicity.

Lemma 4.7. If pR, Sq is a weakly comonotonic bi-preference such that τ ÒÓ
R,S is connected,

then S is splitting.

Proof. Suppose pR, Sq is a weakly comonotonic bi-preference such that the order-
section topology τ

ÒÓ
R,S is connected. By Lemma 3.5, R is closed-semicontinuous and Są is

open-semicontinuous in pX, τ
ÒÓ
R,Sq. Let x, y P X be such that xSKy. Lemma 4.5 yields the

equalities xÓ,Są

X yÓ,Są

“ xÓ,RX yÓ,R and xÒ,Są

X yÒ,Są

“ xÒ,RX yÒ,R. The semicontinuity
hypothesis implies that the two sets xÓ,Są

X yÓ,Są

and xÒ,Są

X yÒ,Są

are clopen. Since x

belongs to none of them, the connectedness of τ
ÒÓ
R,S implies that both intersections are

empty. Thus S is splitting.
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4.3 Main result and consequences

We are ready to prove the first extension of Schmeidler’s theorem:32

Theorem 4.8. If pR, Sq is a nontrivial strongly comonotonic bi-preference such that τ ÒÓ
R,S

is connected, then S is complete and transitive (that is, a total preorder).

Proof. Suppose pR, Sq is a strongly comonotonic bi-preference on a connected topolog-
ical space X . Assume further that R is closed-semicontinuous, and Są is nonempty and
open-semicontinuous. Below we show that S is both complete and transitive. We shall
argue by contradiction in both cases.

To prove completeness, suppose there are a, b P X such that aSKb. By hypothesis,
there are p, q P X such that pSąq. Since S is strictly covering by Lemma 4.6, we obtain
a P X “ pÓ,Są

Y qÒ,Są

. It follows that at least one of the following two cases happens: (1)
pSąa; (2) aSąq. By symmetry, it suffices to derive a contradiction in case (2). Assume
that aSąq, i.e., q P aÓ,Są

. Another application of Lemma 4.6 yields b P X “ aÓ,Są

Y qÒ,Są

.
Since aSKb, we must have bSąq, i.e., q P bÓ,Są

. It follows that q P aÓ,Są

X bÓ,Są

. However,
since S is splitting by Lemma 4.7, we also have aÓ,Są

X bÓ,Są

“ H, which is impossible.
To prove transitivity, suppose x, y, z P X are such that xSySz but  pxSzq. By the

completeness of S, we get zSąx. Since S is strictly covering by Lemma 4.6, we have
zÓ,Są

Y xÒ,Są

“ X . Thus, either zSąy or ySąx holds. However, both cases contradict the
hypothesis. This completes the proof.

In particular, we obtain Schmeidler’s theorem:

Corollary 4.9. A preorder R on a connected topological space such that R is closed-
semicontinuous and Rą is open-semicontinuous is either trivial or complete.

Proof. Let pX, τq be a connected topological space, and R a nontrivial preorder
on X such that R is closed-semicontinuous and Rą is open-semicontinuous. The pair
pR,Rq is a nontrivial and strongly comonotonic bi-preference on X such that R is closed-
semicontinuous and Rą is open-semicontinuous. By Lemma 3.5, τ contains the order-
section topology τ

ÒÓ
R,S. Thus, R is complete by Theorem 4.8.

Corollary 4.9 does not allow to deduce Theorem 4.8 by any means. In fact, if pR, Sq
is a bi-preference satisfying the hypothesis of Theorem 4.8, then we can apply Schmei-
dler’s theorem to neither the pair pR,Rq (because the hypothesis of the semicontinuity
of Rą is missing) nor the pair pS, Sq (because S may possibly fail to be transitive or
semicontinuous). The following result slightly generalizes the findings of Theorem 4.8:

Corollary 4.10. Let pR, Sq be a strongly comonotonic bi-preference on a topological space
X. If R is closed-semicontinuous and Są is open-semicontinuous, then the restriction of
S to each connected component of X is either trivial or complete.

32This result was originally formulated with no deduction about the transitivity of S. During the
process of revision of the paper, we became aware that, under the hypotheses of Theorem 4.8, S is not
only complete but also transitive. We thank M. Ali Khan and Metin Uyanik for pointing out this fact.
See also Uyanik and Khan (2019) for a different proof of a result similar to Theorem 4.8, in which the
rigid component satisfies a mixed form of transitivity.
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Proof. Suppose K is a connected component of X . Let RK “ RXK2 and SK “ SXK2

be the restrictions of R and S to K. Then, pRK , SKq is a strongly comonotonic bi-
preference on the connected topological space K, and RK and Są

K are semicontinuous. If
SK is nontrivial, then SK is complete by Theorem 4.8.

A last consequence of Theorem 4.8 is the following:

Corollary 4.11. A nontrivial strongly comonotonic bi-preference with a connected order-
section topology is a transitive NaP-preference.

Proof. If pR, Sq is a strongly comonotonic bi-preference on X such that τ
ÒÓ
R,S is con-

nected, then S is transitive and complete by Theorem 4.8. Thus the claim readily follows
from Lemma 2.15.

We conclude this section by exhibiting an intransitive NaP-preference with a connected
order-section topology.

Example 4.12 (Scott-Suppes representable semiorder, Scott and Suppes, 1958). Let S be
the binary relation on R defined as follows for each x, y P X :

xSy
def

ðñ x` 1 ě y.

Notice that xSąy if and only if x ą y ` 1, hence S is quasi-transitive; further, S is not
transitive because of S„. In fact, S is a universal Scott-Suppes representable semiorder,33

in the sense that any other Scott-Suppes representable semiorder embeds into it. The
trace Str of S is the usual linear order ě of the reals.34 In particular, Str and Są are,
respectively, closed and open in the product space R ˆ R. It follows that the tracing
bi-preference pStr, Sq is a nontrivial NaP-preference with the property that Str is closed in
R ˆ R, and Są is open in R ˆ R. In particular, Str is closed-semicontinuous and Są is
open-semicontinuous. By Lemma 3.5, τ ÒÓ

Str,S
is connected. Notice that Theorem 4.8 implies

that pStr, Sq is not weakly monotonic: indeed, 2.5Są
tr

2 and 2.5S 3.3Są 2, but  p2.5Są 2q.

5 Second extension of Schmeidler’s theorem

Our second main result is about ‘everywhere nontrivial’ comonotonic bi-preferences. Ev-
erywhere nontriviality accounts for a mild richness of the strict soft component:

Definition 5.1. A weak preference S on X is everywhere nontrivial if for each x P X

there is y P X such that either xSąy or ySąx holds. A bi-preference pR, Sq is everywhere
nontrivial if S is everywhere nontrivial.

33After Scott and Suppes (1958), a semiorder S on X is Scott-Suppes representable if there is a real-
valued function u : X Ñ R such that, for each x, y P X , xSy if and only if upxq ` 1 ě upyq.

34For a different kind of trace (sliced), see Example 4.4 in Giarlotta and Watson (2016): this trace is
(isomorphic to) the lexicographic product r0, 1q ˆlex Z

˚, where Z
˚ is the reverse ordering of the integers.
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The property described in Definition 5.1 is satisfied in most economic settings: for
instance, it is trivially implied by the property of local nonsatiation in classical demand
theory.35 Notice that being everywhere nontrivial is also undemanding in terms of the
transitive structure of the preference relation: in fact, such a relation S need not even be
semitransitive, because a configuration of the type xSąySąz,  pxSątq and  ptSązq is
allowed, as long as there exists w P X such that either tSąw or wSąt holds.

We shall prove the following counterpart of Theorem 4.8, where ‘everywhere nontrivial’
replaces ‘weakly monotonic’ (but in this case the NaP-preference may fail to be transitive):

Theorem 5.2. If pR, Sq is an everywhere nontrivial comonotonic bi-preference such that
τ

ÒÓ
R,S is connected, then S is complete (equivalently, pR, Sq is a NaP-preference).

For nontrivial bi-preferences, the two properties of (i) strong comonotonicity and (ii)
everywhere nontrivial comonotonicity are, in general, independent of each other. For
instance, the nontrivial bi-preference pR, Sq on X “ tx, y, zu, defined by R “ tpx, zqu Y
∆pXq and S “ X2ztpz, xqu, is a strongly comonotonic (in fact, monolithic) bi-preference,
which fails to be everywhere nontrivial. However, under the assumption of a connected
order-section topology, property (i) implies property (ii):

Lemma 5.3. If pR, Sq is a nontrivial strongly comonotonic bi-preference such that τ ÒÓ
R,S

is connected, then S is everywhere nontrivial.

Proof. Suppose pR, Sq is a nontrivial strongly comonotonic bi-preference such that
the induced order-section topology τ

ÒÓ
R,S is connected. By the nontriviality of S, there

are a, b P X such that aSąb. Since S is strictly covering by Lemma 4.6, we have X “
aÓ,Są

Y bÒ,Są

. Thus, for any x P X , we have either aSąx or xSąb. This shows that S is
everywhere nontrivial.

The remainder of this section is devoted to a formal proof of Theorem 5.2.

5.1 Order-theoretic preliminaries

Recall from Section 2.1 that a strong quasi-preorder is a strongly quasi-transitive prefer-
ence S, i.e., the inclusions S ˝ Są Ď S and Są ˝ S Ď S hold. Strong quasi-transitivity
implies quasi-transitivity, and the converse holds under completeness.36

The key result to derive Theorem 5.2 is the Decomposition Lemma (Lemma 5.10),
which fully describes the structure of a strong quasi-preorder that is also splitting. To
state this result, we need some new notions that concern a single binary relation.

Definition 5.4. Let S be a weak preference on X , and A,B Ď X . We say that A and B

are incomparable sets, denoted by ASKB, if aSKb for all a P A and b P B. Similarly, we
say that A and B are indifferent sets, denoted by AS„B, if aS„b for all a P A and b P B.

35A preference relation R on a metric space pX, dq is locally nonsatiated if, for every x P X and ε ą 0,
there is y P X such that dpx, yq ă ε and yRąx: see Mas-Colell, Whinston, and Green (1995, page 42).

36See Footnote 15.
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Remark 5.5. In graph-theoretic terms, the pair pX,Sq can be looked at as a directed
graph, where e “ pa, bq is an edge in pX,Sq if and only if aSb. Then two sets A and B

are incomparable (with respect to S) if there is no directed edge between an element of A
and element of B. Notice that being incomparable sets says nothing about the internal
structure of each of the two sets: in fact, there may well be directed edges inside A and
B. A similar remark applies for the notion of indifferent sets.

The next definition establishes an equivalence relation on X on the basis of a sequence
of ‘mixed’ strict preferences, in the sense that they can go in either directions.

Definition 5.6. Let S be a weak preference on X , and a, b P X . A mixed strict path from
a to b is a finite sequence a “ x0 T1 x1 T2 . . . Tn xn “ b, with n P Nzt0u, x0, . . . xn P X , and
Ti P tS

ą, Său for all i “ 1, . . . , n (where xSăy if and only if ySąx).37 Define a binary
relation « on X by letting, for each a, b P X , a « b if there is a mixed strict path from a

to b. Then « is an equivalence relation on X : we shall denote by Mixpaq the equivalence
class of a.

Remark 5.7. In graph-theoretic terms, if pX, T q is the undirected graph obtained from
the directed graph pX,Sq by transforming each directed edge into an undirected edge, then
the equivalence classes of pX,Sq with respect to « are exactly the connected components
of pX, T q, that is, the maximal connected subsets of the graph pX, T q.

Then we have:

Lemma 5.8. Assume S is a strongly quasi-transitive. For any a, a1, x P X, if a « a1 and
 pxSąa2 _ a2Sąxq for all a2 P Mixpaq, then aS„x if and only if a1S„x.

Proof. Let a, a1 P X be such that a « a1. Further, let x P X be such that x is strictly
S-related to no element of Mixpaq (the «-equivalence class of a). Since a1 « a, there is
a sequence a “ x0, x1, . . . , xn “ a1 of elements in X such that, for each 0 ď i ă n, either
xiS

ąxi`1 or xi`1S
ąxi holds. Notice that the definition of Mixpaq yields that xi P Mixpaq

for all 0 ď i ă n.
To prove that aS„x if and only a1S„x, it suffices to prove one direction only, since

the proof of other direction is similar. Thus, assume that x0 “ aS„x; we shall show
that a1S„x. If x0S

ąx1 holds, then we get xSx1 by the strong quasi-transitivity of S, and
so xS„x1, since there is no strict preference between x and any element of Mixpaq by
hypothesis. On the other hand, if x1S

ąx0 holds, we get x1Sx, and again xS„x1. Now
iterate the argument to obtain xS„xn “ a1. This completes the proof.

Strong quasi-preorders that are also splitting satisfy an additional property:

Lemma 5.9. Assume S is strongly quasi-transitive and splitting. For all x, y P X, if
xSKy then MixpxqSKMixpyq.

37Examples of mixed strict paths from a to b (equivalently, from b to a) are (1) aSąx1S
ăb, (2)

aSăx1S
ąx2S

ăb, (3) aSąx1S
ąx2S

ąx3S
ąb, etc.
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Proof. Assume S is strongly quasi-transitive and splitting.

Claim: For each A,B Ď X, if ASKB and a P A, then
`

A Y aÓ,Są

Y aÒ,Są
˘

SKB.

To prove the Claim, let z P aÓ,Są

Y aÒ,Są

and b P B. We show that zSKb. Without loss of
generality, suppose z P aÓ,Są

, i.e, aSąz. If zSb, then aSb by the strong quasi-transitivity
of S, which contradicts aSKb. Further, we cannot have bSąz, since otherwise z would
contradict the fact that S is splitting. It follows that zSKb. This proves the Claim.

Now we can iteratively apply the Claim to all a P Mixpxq and b P Mixpyq, and get
MixpxqSKMixpyq. This completes the proof.

We can finally state the key result to prove Theorem 5.2.

Lemma 5.10 (Decomposition Lemma). If S is strongly quasi-transitive and splitting, then
X is the disjoint union of sets Xi such that each restriction S æXi is complete, and distinct
Xi’s are either indifferent sets or incomparable sets.

Proof. Let tXi : i P Iu be the family of all distinct equivalence classes with respect
to «. Each equivalence class is complete, because incomparable elements are in different
equivalence classes by Lemma 5.9. Notice also that the definition of mixed strict path
implies that we can never have a relation of strict preference between elements of distinct
equivalence classes. Finally, Lemma 5.8 rules out the possibility that there are distinct
i, j P I, x, x1 P Xi and y, y1 P Xj such that xS„y but x1SKy1. It follows that, for each
i ‰ j, either XiS

„Xj or XiS
KXj holds. This completes the proof.

5.2 Proof of main result

The next two results link properties of bi-preferences to properties of single preferences.

Lemma 5.11. The soft component of a comonotonic bi-preference is strongly quasi-
transitive.

Proof. Let pR, Sq be a comonotonic bi-preference on X . By symmetry, it suffices
to show that S ˝ Są Ď S. Let x, y P X be such that xSzSąy for some z P X . Now
comonotonicity yields xSzRąy, and transitive coherence entails xSy, as required.

Lemma 5.12. The following statements are equivalent for a bi-preference pR, Sq such
that τ ÒÓ

R,S is connected and S is strongly quasi-transitive:

(i) pR, Sq is weakly comonotonic;

(ii) S is splitting.

Proof. Assume that R and Są are semicontinuous, and S is strongly quasi-transitive.
If pR, Sq is weakly comonotonic, then S is splitting by Lemma 4.7: thus (i) implies
(ii). Conversely, if S is splitting, the Decomposition Lemma ensures that both pxSąz ^
ySązq ^ xSKy and pxSąz ^ ySązq ^ xSKy never happen, hence pR, Sq is (vacuously)
weakly comonotonic.
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We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let pR, Sq be an everywhere nontrivial comonotonic bi-
preference on X such that the order-section topology such that τ

ÒÓ
R,S is connected. Since

S is strongly quasi-transitive by Lemma 5.11, and a comonotonic bi-preference is triv-
ially weakly comonotonic, Lemma 5.12 yields that S is splitting. By the Decomposition
Lemma, X can be partitioned into the disjoint union of sets Xi such that the restriction
of S to each Xi is complete, and distinct Xi’s are either pairwise indifferent or pairwise
incomparable. Since S is everywhere nontrivial by hypothesis, it follows that each com-
plete component Xi has size at least two. By the definition of Xi (see the proof of the
Decomposition Lemma), we obtain

Xi “
ď

 

xÒ,Są

: x P Xi

(

Y
ď

 

xÓ,Są

: x P Xi

(

‰ H

for all i P I. Since Są is open-semicontinuous, each Xi is open. Now the connectedness
of X implies that there is only one such Xi. It follows that S is complete or, equivalently
by Lemma 2.15, pR, Sq is a NaP-preference.

Remark 5.13. Theorem 5.2 holds in a more general form, with no requirement that the
rigid preference R be transitive. In fact, if one goes through the proof of all preliminary
results that are involved in the proof of Theorem 5.2 (Lemmas 5.11, 4.7, 3.5, 4.5, and 5.12)
and the proof of Theorem 5.2 itself, it becomes apparent that the transitivity of R is never
used. As a matter of fact, R need not satisfy any form of transitivity at all. Nevertheless,
since here we are mostly interested in bi-preference structures for their amenability to
applications, we prefer to state Theorem 5.2 in a particular case.38 On the point, see also
Uyanik and Khan (2019) for two additional extensions of Schmeidler’s theorem to pairs
of binary relations, which only require a weak form of transitivity of the rigid preference.

Example 4.12 differentiates the extent of the two main results of this paper. In fact,
if S is the classical semiorder on R with discrimination threshold 1, and Str is its trace,
then pStr, Sq is a comonotonic bi-preferences such that S is everywhere nontrivial, τ ÒÓ

R,S

is connected, and yet S is not transitive. In fact, the most important difference between
the two extensions of Schmeidler’s theorem is that strong comonotonicity is not needed,
whereas everywhere nontriviality is. In the Appendix, we exhibit a minimal failure of the
property of being everywhere nontrivial, which in turn causes the failure of completeness.

We conclude the paper with an additional consequence of the Decomposition Lemma,
which delivers the completeness of a single preference relation with a connected order-
section topology, whenever its strict part satisfies suitable forms of transitivity and local
completeness. Its proof is similar to that of Theorem 5.2.

Corollary 5.14. A strongly quasi-transitive, splitting, and everywhere nontrivial prefer-
ence with a connected order-section topology is always complete.

38However, we believe that this second extension of Schmeidler’s theorem is more far reaching than the
first, especially in view of applications to weaker preference structures.
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6 Conclusions

In this paper we have revisited and extended a celebrated theorem by Schmeidler on
the completeness of a preorder. Specifically, we have shown that what appears to be a
relationship between order and topology is, in fact, a topological property of a primi-
tive preorder. Further, we have extended Schmeidler’s theorem to bi-preferences, using
an enhanced comonotonic bi-preference in place of a preorder in the hypothesis, and a
(possibly transitive) NaP-preference in place of a complete preorder in the thesis. These
extensions of Schmeidler’s theorem contribute to better clarify the relationship between
the two classical tenets of economic rationality.

Future research on the topic may try to derive an extension of Schmeidler’s theorem to
monotonic bi-preferences, instead of comonotonic ones. Furthermore, it appears possible
to generalize the analysis between topological connectedness and behavioral assumptions
on single preferences to bi-preferences: see Khan and Uyanik (2018).
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Appendix: ‘Everywhere nontrivial’ is needed

Here we show that the property of being everywhere nontrivial is needed in the statement
of Theorem 5.2. In fact, we shall provide an instance of a comonotonic bi-preference with
a connected order-section topology, which is everywhere nontrivial except at one point,
and yet it fails to be complete. For the sake of brevity, most proofs of the results in this
section are either sketched or left to the reader.

To start, we consider trivial extensions of bi-preferences by adding a new single point
to the ground set.

Definition 6.1. Let pR, Sq be a bi-preference on X . Select a point 8 not in X , and set
X 1 :“ X Y t8u. The one-point trivial extension of pR, Sq is the pair pR1, S 1q, where R1

and S 1 are the (unique) binary relations on X 1 such that R1 X X2 “ R, S 1 X X2 “ S,
R1 Ď S 1, and xpS 1qK8 for all x P X .

In words, R1 and S 1 are the binary relations which are obtained from R and S by (1)
adding a new point to the ground set X , and (2) declaring this new point incomparable
to all points of X , both for R1 and S 1. The following fact is obvious:
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Lemma 6.2. One-point trivial extensions of bi-preferences preserve the following proper-
ties: (i) being a bi-preference, (ii) being comonotonic, (iii) having a rigid preference that
is a partial order, and (iv) having a nontrivial soft component. However, one-point trivial
extensions are always incomplete.

The following topological fact will be needed.

Lemma 6.3. Let X be a connected locally compact non-compact Hausdorff topological
space, and X 1 “ XYt8u its one-point (Alexandroff) compactification. Further, let pR, Sq
a bi-preference on X such that R is closed-semicontinuous and Są is open-semicontinuous,
and let pR1, S 1q be its one-point trivial extension to X 1. If all closed sections xÒ,R and
xÓ,R are compact, then R1 and pS 1qą are, respectively, closed-semicontinuous and open-
semicontinuous in X 1.

Next, we construct a bi-preference on a product space starting from two partial orders.

Definition 6.4. Let pA,ěAq and pB,ěBq be partially ordered sets (posets). Define two
binary relations R and S on A ˆB as follows. For all pa, bq, pa1, b1q P A ˆB, set

pa, bqRąpa1, b1q ðñ pa ąA a1 ^ b ąB b1q _ pa “ a1 ^ b ąB b1q _ pa ąA a1 ^ b “ b1q ,

pa, bqR„pa1, b1q ðñ a “ a1 ^ b “ b1 ,

and pa, bqRKpa1, b1q otherwise. Further, set

pa, bqSąpa1, b1q ðñ pa ąA a1 ^ b ąB b1q ,

and pa, bqS„pa1, b1q otherwise. We call pR, Sq the product bi-preference induced by the
posets pA,ěAq and pB,ěBq.

The terminology employed in Definition 6.4 is justified by the following fact:

Lemma 6.5. Let pA,ěAq and pB,ěBq be posets on connected locally compact topological
spaces. Suppose ěA, ąA, ěB, ąB are semicontinuous, and ěA,ěB are nontrivial. The
product bi-preference pR, Sq induced by pA,ěAq and pB,ěBq has the following properties:

(i) pR, Sq is a nontrivial NaP-preference on AˆB;

(ii) R is a partial order on AˆB;

(iii) R is closed-semicontinuous and Są is open-semicontinuous;

(iv) AˆB is a connected and locally compact topological space.

Proof. Most properties are obvious. Here we only check a part of (i), proving that
Transitive Coherence holds. By symmetry, it suffices to show that pa, bqRpa1, b1qSpa2, b2q
implies pa, bqSpa2, b2q for all pa, bq, pa1, b1q, pa2, b2q P A ˆ B. Suppose pa, bqRpa1, b1q and
pa1, b1qSpa2, b2q. By the completeness of S, proving that pa, bqSpa2, b2q holds is equivalent
to proving that pa2, b2qSąpa, bq fails. If pa, bqR„pa1, b1q, then the claim holds trivially.
Thus, let pa, bqRąpa1, b1q. Three cases are possible: (1) a ąA a1 and b ąB b1; (2) a “ a1

and b ąB b1; (3) a ąA a1 and b “ b1. It is immediate to show that pa2, b2qSąpa, bq (i.e.,
a2 ąA a and b2 ąB b) generates a contradiction in each of the above cases.
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As a simple application of Lemma 6.5, we get:

Lemma 6.6. There is a comonotonic bi-preference pR, Sq on a connected locally compact
non-compact Hausdorff topological space such that S is everywhere nontrivial, R is closed-
semicontinuous, Są is open-semicontinuous, and all sections xÒ,R, xÓ,R are compact.

Proof. Let pA,ěAq “ pB,ěBq “ pR,ěq in Lemma 6.5, and take the restriction of the
product bi-preference pR, Sq to the unbounded strip Y “ tpa, bq P R2 : |a` b| ď 1u.

Finally, we obtain what we were after:

Proposition 6.7. There is a comonotonic bi-preference pR, Sq with a connected order-
section topology such that S is incomplete and everywhere nontrivial except at one point.

Proof. Apply Lemmas 3.5, 6.2, 6.3, and 6.6.
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