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Abstract: Tetraspanins are a conserved family of proteins involved in a number of biological
processes including, cell–cell interactions, fertility, cancer metastasis and immune responses. It has
previously been shown that TSPAN32 knockout mice have normal hemopoiesis and B-cell responses,
but hyperproliferative T cells. Here, we show that TSPAN32 is expressed at higher levels in the
lymphoid lineage as compared to myeloid cells. In vitro activation of T helper cells via anti-CD3/CD28
is associated with a significant downregulation of TSPAN32. Interestingly, engagement of CD3
is sufficient to modulate TSPAN32 expression, and its effect is potentiated by costimulation with
anti-CD28, but not anti-CTLA4, -ICOS nor -PD1. Accordingly, we measured the transcriptomic levels
of TSPAN32 in polarized T cells under Th1 and Th2 conditions and TSPAN32 resulted significantly
reduced as compared with unstimulated cells. On the other hand, in Treg cells, TSPAN32 underwent
minor changes upon activation. The in vitro data were finally translated into the context of multiple
sclerosis (MS). Encephalitogenic T cells from Myelin Oligodendrocyte Glycoprotein (MOG)-Induced
Experimental Autoimmune Encephalomyelitis (EAE) mice showed significantly lower levels of
TSPAN32 and increased levels of CD9, CD53, CD82 and CD151. Similarly, in vitro-activated
circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared with cells
from healthy donors. Overall, these data suggest an immunoregulatory role for TSPAN32 in T
helper immune response and may represent a target of future immunoregulatory therapies for T
cell-mediated autoimmune diseases.
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1. Introduction

Tetraspanins are evolutionarily conserved cell-membrane proteins involved in a variety of
biological functions, from cell adhesion to intercellular communication and signaling. The tetraspanin
family counts 33 different members in the human species: some of them are ubiquitously expressed,
others are tissue specific [1].

The tetraspanin structure consists of four transmembrane (TM) domains, with TM domains 1
and 2 flanking a small extracellular loop (SEL), and TM 3 and 4 flanking a large extracellular loop
(LEL). Typically, the extracellular regions are involved in protein–protein interactions with other
membrane proteins and external ligands, such as integrins, while the intracellular domains mediates
the activation of signaling pathways. Tetraspanins are clustered in membrane microdomains, known as
tetraspanin-enriched microdomains, that regulate the intracellular transmission of external stimuli [2].
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Tetraspanins significantly contribute to different processes of the immune system, as shown from
their interactions with leukocyte proteins such as integrins and immunoreceptors, which allows these
proteins to modulate immune responses and processes such as antibody production, T cell proliferation,
leukocyte migration and extravasation. Some members of the superfamily (e.g., CD9, CD37 and CD81)
have been extensively studied for their immune-modulatory role in the co-stimulation and T cell
polarization processes [2].

In light of their role in regulating immune responses, the tetraspanin superfamily can be a potential
target for novel therapeutic approaches. Recent studies have investigated the contribution of some
members of the tetraspanin family to autoimmune diseases, in particular to multiple sclerosis (MS),
showing a possible involvement in its pathogenesis by controlling the transmigration of lymphocytes
and monocytes to the central nervous system (CNS) [3,4]. However, little is known about the
pathophysiological role of TSPAN32 (a.k.a. Tssc6) in the regulation of immune responses.

In a previous study, Tssc6gt/gt T cells bearing a null mutation of the Tssc6 allele showed enhanced
responses to stimulation due to increased IL-2 production, suggesting that Tssc6 may play a role in the
negative regulation of peripheral T-lymphocyte proliferation [5].

The present study focuses on the characterization of TSPAN32 in T cell responses and provides
the first proof of concept for a possible role of TSPAN32 in the immune dysregulation observed in MS,
defining this molecule as a potential translational target for further studies.

2. Results

2.1. TSPAN32 Expression Analysis in Immune Cells

Analysis of TSPAN32 expression levels in leukocyte populations revealed that TSPAN32 is
expressed at higher levels in the lymphoid lineage as compared with myeloid cells. Among the
lymphoid cells, cytotoxic T cells expressed lower levels of TSPAN32 while naïve T helper cells had the
highest expression (Figure 1A). During T cell development, TSPAN32 expression was acquired in the
later phases of thymocyte development (i.e., at the stage of double positive cells). In particular, double
negative thymocytes showed the lowest expression, while both double positives and single positive
mature thymocytes showed the highest expression levels (Figure 1B).
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Figure 1. Expression of TSPAN32 in murine immune cells. (A) Expression of TSPAN32 in murine
immune lineages was evaluated by interrogating the GSE15907 microarray dataset. (B) Modulation of
the transcriptomic levels of TSPAN32 during T cell development, as determined from the GSE15907
dataset. Data are shown as normalized mean ± SD and statistical analysis performed using one-way
ANOVA followed by Bonferroni multiple test correction.
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2.2. Tetraspanins Expression in T Cell Activation

Analysis of TSPAN32 expression levels during T cell activation showed a time-dependent decrease
in the levels of TSPAN32 in effector T cells following anti-CD3/CD28 stimulation. In particular,
a significant reduction in TSPAN32 levels was observed starting at 5 h post stimulation (Figure 2A).
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Figure 2. Expression of TSPAN32 during human T cell activation. (A) Expression of TSPAN32
was evaluated via real-time PCR, in CD4+ T effector cells stimulated at different time points with
anti-CD3/CD28 antibodies or (B) with anti-CD3 alone or in combination with anti-CD28, anti-CTLA4,
anti-PD1 and anti-ICOS antibodies for 36 h (n = 3 independent replicates). (C) TSPAN32 levels in CD4+

effector T cells upon anti-CD3/CD28 stimulation, in the presence or absence of rapamycin 200 nM,
were evaluated by real-time PCR (n = 3 independent replicates). (D) TSPAN32 expression levels were
evaluated at different time points upon activation of Treg cells via real-time PCR (n = 3 independent
replicates). (E) TSPAN32 protein levels were determined by western blot upon activation of effector
and regulatory T cells at different time points (pooled proteins of cells from 3 healthy donors). Data are
shown as normalized mean ± SD and statistical analysis performed using one-way ANOVA followed
by Bonferroni multiple test correction.

Anti-CD3 stimulation was sufficient to significantly downregulate TSPAN32 (p < 0.05 vs. the
control unstimulated cells), and its effect was potentiated by co-stimulation with anti-CD28 (p < 0.001
vs. the control unstimulated cells and p < 0.01 vs. the anti-CD3 stimulated cells) (Figure 2B). No
significant differences were observed in TSPAN32 levels after anti-CD3 stimulation and co-stimulation
with anti-CTLA4, anti-ICOS or anti-PD1 antibodies (Figure 2B).

Since CD28-mediated signaling depends on the PI3K/Akt/mTOR pathway, we wanted to verify
whether mTOR could be involved in the modulation of TSPAN32 expression. As expected, treatment of
T cells with the mTOR inhibitor rapamycin were shown to significantly increase the levels of TSPAN32
(p < 0.05) (Figure 2C).

In the Treg subset of CD4+ lymphocytes, a moderate decrease in TSPAN32 expression levels
was also observed upon activation, which reached statistical significance only at 5 h post stimulation
(p < 0.05 vs. the control unstimulated cells) (Figure 2D). Significantly lower levels of TSPAN32 were
observed in T effector cells as compared with Treg cells at 5 and 6 h post stimulation (p < 0.05).
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The modulation of TSPAN32 in both effector and regulatory cells was further confirmed at the
protein level. As shown in Figure 2E, a marked reduction of TSPAN32 could be observed in effector T
cells at 4 h post activation, while no modulation was observed in Treg cells.

2.3. Tetraspanins Expression in T Cell Polarization

Next, we determined the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and Th2
conditions. TSPAN32 in both Th1 and Th2 cell subsets was significantly reduced in comparison with
unstimulated cells (p < 0.001 for both Th1 and Th2 cells as compared with the control unstimulated
cells) (Figure 3A). Moreover, a significantly lower TSPAN32 expression was observed in Th1 cells
(p < 0.05) as compared with Th2 cells.
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Figure 3. Expression of tetraspanins in human T cell polarization. (A) Expression of TSPAN32 was
evaluated by real-time PCR in polarized Th1 and Th2 cells and unstimulated cells (n = 3 independent
replicates). (B) Expression of CD9, CD37, CD53, CD63, CD81, CD82 and CD151 in polarized Th1 and
Th2 cells and unstimulated cells as evaluated by real-time PCR (n = 3 independent replicates). Data are
shown as normalized mean ± SD and statistical analysis performed using one-way ANOVA followed
by Bonferroni multiple test correction.

The expression levels of other members of the tetraspanin family were also evaluated for
comparison and CD9, CD37, CD53, CD63, CD81, CD82 and CD151 were considered. Among them,
a significant increase could be observed in both Th1 and Th2 cells for CD37 and CD82, while a
significant increase in Th2 cells as compared with unstimulated cells was observed for CD63 and
CD151 (Figure 3B). The expression of CD9, CD53 and CD81 did not show significant variation between
the unstimulated and the polarized cells (Figure 3B).

In Jurkat T cells, overexpression of TSPAN32 (induced by transient transfection with a
TSPAN32-encoding plasmid) was associated with a significant reduction in the production of the
pro-inflammatory cytokines TNF-alpha and IFN-gamma upon cell activation (Figure 4).

2.4. TSPAN32 in Multiple Sclerosis

The expression of TSPAN32 was assessed in CD4+ T cells from a model of experimental
autoimmune encephalomyelitis (EAE). Encephalitogenic T cells from MOG-induced EAE mice showed
significantly lower levels of TSPAN32 (p < 0.001) (Figure 5A) and increased levels of CD9 (p < 0.01),
CD63 (p < 0.05), CD82 (p < 0.01) and CD151 (p < 0.05) (Figure 5B). A decrease in TSPAN32 levels was
also observed for CD53 in T cells from MOG-immunized mice (p < 0.01) (Figure 5B). The analysis of the
expression levels of pro-inflammatory cytokines in CD4 T cells from MOG-immunized mice showed
significantly higher levels for TNFα (p < 0.05), IL-6 (p < 0.05) and IL-2 (p < 0.001) (Figure 5C).

Finally, TSPAN32 expression was analyzed in lymphocytes from healthy controls (HC) and MS
patients before and after anti-CD3/CD28 stimulation. In both the HC and MS, stimulation reduced
TSPAN32 expression levels (p < 0.001). Moreover, the stimulated lymphocytes from MS patients
showed lower TSPAN32 levels than the stimulated lymphocytes from HC (p < 0.01) (Figure 6).



Int. J. Mol. Sci. 2019, 20, 4323 5 of 13

Int. J. Mol. Sci. 2019, 20, x 4 of 13 

 

PCR (n = 3 independent replicates). (E) TSPAN32 protein levels were determined by western blot 
upon activation of effector and regulatory T cells at different time points (pooled proteins of cells 
from 3 healthy donors). Data are shown as normalized mean ± SD and statistical analysis performed 
using one-way ANOVA followed by Bonferroni multiple test correction. 

2.3. Tetraspanins Expression in T Cell Polarization 

Next, we determined the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and 
Th2 conditions. TSPAN32 in both Th1 and Th2 cell subsets was significantly reduced in comparison 
with unstimulated cells (p < 0.001 for both Th1 and Th2 cells as compared with the control 
unstimulated cells) (Figure 3A). Moreover, a significantly lower TSPAN32 expression was observed 
in Th1 cells (p < 0.05) as compared with Th2 cells. 

The expression levels of other members of the tetraspanin family were also evaluated for 
comparison and CD9, CD37, CD53, CD63, CD81, CD82 and CD151 were considered. Among them, a 
significant increase could be observed in both Th1 and Th2 cells for CD37 and CD82, while a 
significant increase in Th2 cells as compared with unstimulated cells was observed for CD63 and 
CD151 (Figure 3B). The expression of CD9, CD53 and CD81 did not show significant variation 
between the unstimulated and the polarized cells (Figure 3B). 

In Jurkat T cells, overexpression of TSPAN32 (induced by transient transfection with a 
TSPAN32-encoding plasmid) was associated with a significant reduction in the production of the 
pro-inflammatory cytokines TNF-alpha and IFN-gamma upon cell activation (Figure 4). 

 
Figure 3. Expression of tetraspanins in human T cell polarization. (A) Expression of TSPAN32 was 
evaluated by real-time PCR in polarized Th1 and Th2 cells and unstimulated cells (n = 3 independent 
replicates). (B) Expression of CD9, CD37, CD53, CD63, CD81, CD82 and CD151 in polarized Th1 and 
Th2 cells and unstimulated cells as evaluated by real-time PCR (n = 3 independent replicates). Data 
are shown as normalized mean ± SD and statistical analysis performed using one-way ANOVA 
followed by Bonferroni multiple test correction. 

 
Figure 4. Effect of TSPAN32 overexpression in Jurkat cells. Following transient transfection of Jurkat
cells with a DNA plasmid encoding for TSPAN32 (pTSPAN32) or the empty plasmid, cells were
stimulated with anti-CD3/CD28 for 24 h and the concentrations of TNF-alpha and IFN-gamma in the
supernatant were determined by ELISA. Data are shown as normalized mean ± SD and statistical
analysis performed using one-way ANOVA followed by Bonferroni multiple test correction.
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Figure 5. Modulation of TSPAN32 in experimental allergic encephalomyelitis (EAE). (A) Expression of
TSPAN32 was evaluated using real-time PCR in CD4+ T cells isolated from the brains and spinal cords
of mice with EAE. Control cells are represented by CD4+ T cells isolated from the spleens of sham mice
(n = 3 replicates, each of 3 pooled animals). (B) Expression of CD9, CD37, CD53, CD63, CD81, CD82
and CD151 was evaluated using real-time PCR in CD4+ T cells isolated from the brains and spinal
cords of mice with EAE. Control cells are represented by CD4+ T cells isolated from the spleens of
sham mice (n = 3 replicates, each of 3 pooled animals). (C) Expression of TNF-alpha, IL-6 and IL-2 was
evaluated by real-time PCR in CD4+ T cells isolated from the brains and spinal cords of mice with EAE.
Control cells are represented by CD4+ T cells isolated from the spleens of sham mice (n = 3 replicates,
each of 3 pooled animals). Data are shown as normalized mean ± SD and statistical analysis performed
using one-way ANOVA followed by Bonferroni multiple test correction.
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3. Discussion

Tetraspanins are involved in the regulation of different steps of the immune response, such as
balancing the activation threshold of immune receptors, modifying surface expression and the
spatial arrangement of adhesion molecules and their subsequent intracellular signaling to control
APCs (Antigen-Presenting Cells migration. Furthermore, tetraspanins participate in the process of
antigen processing and have an important role in priming naïve T cells through the control of T cell
co-stimulation and MHC-II-dependent antigen presentation [6].

Several members of the family have been shown to play a crucial role in the adaptive immune
system. For instance, CD81 plays a key role in the formation of the immune synapse as it mediates
the contact between the APC and the T cells [7,8], while CD37 and CD151 are implicated in antigen
presentation and costimulatory inputs [9].

In a Tssc6 (TSPAN32)-deficient mouse model, T cell activation was altered, while leucocyte
development was normal. Thus, TSPAN32 seems to not be required for the development of the
hematopoietic system, but it may play a role in the negative regulation of peripheral T-lymphocyte
activation [5]. In mice knockout for both CD37 and TSPAN32, in vitro T cell proliferative responses
and dendritic cell stimulation capacity were significantly augmented compared with single knockout,
eliciting a cooperative role for these two proteins in cellular-mediated immunity [10]. These findings
support the hypothesis of an immune-regulatory role for TSPAN32.

In the present work, we have characterized the modulation of TSPAN32 in T cell-mediated
immune responses and in multiple sclerosis by means of in silico, in vitro and ex vivo analysis.
The use of whole-genome expression data has been largely used by us and other groups [11–14] to
identify pathogenic pathway and novel therapeutic targets in a variety of clinical settings, including
autoimmune diseases [15–19], cancer [20–27], fibrotic diseases [28] and neurological and infectious
diseases [29,30].

We show here for the first time that TSPAN32 is prevalently expressed in lymphoid lineage,
with the highest expression in naïve T-helper cells. In particular, we observed that TSPAN32 expression
is acquired in the later phases of the T maturation process (double positive and single positive mature).

To assess the relationship between TSPAN32 expression and T cell activation, different experimental
conditions were tested. In vitro activation of T-helper cells via anti-CD3 was associated with a significant
downregulation of TSPAN32, and its effect was potentiated by costimulation with anti-CD28, but not
anti-CTLA4, anti-ICOS or anti-PD1. Since CD28 signaling is dependent on the PI3K/Akt/mTOR pathway,
we investigated whether mTOR could promote a modulation in TSPAN32 levels. In accordance with
our hypothesis, treatment of T cells with rapamycin was associated with significantly higher levels
of TSPAN32. The PI3K/Akt/mTOR pathway physiologically plays a critical role in driving T cell
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differentiation and function. Indeed, upon rapamycin treatment, TCR engagement leads to T cell
tolerance even in the presence of costimulation [31]. We have previously demonstrated the involvement
of mTOR in the generation and progression of MS [17,32]. Administration of rapamycin to experimental
allergic encephalomyelitis (EAE) Dark Agouti rats, a model of relapsing-remitting multiple sclerosis
(RRMS), improved the clinical course of the disease, increasing the percentage of Tregs and reducing
the number of CD8+ T cells. Along the same lines, administration of rapamycin to RRMS patients
determined a significant reduction in plaque area size and improved Expanded Disability Status Scale
(EDSS) score [33]. Based on the data presented here, it can be speculated that part of the effects of
rapamycin in EAE/MS may be imputable to the modulation of TSPAN32 expression.

The measurement of the transcriptomic levels of TSPAN32 in polarized T cells showed that
TSPAN32 expression was significantly reduced in polarized cells as compared to unstimulated cells.
Interestingly, Th2 T cells showed a higher TSPAN32 expression than the Th1 subset. This may be
explained by the anti-inflammatory role of Th2 T cells, as it has also been observed in MS and in
experimental autoimmune encephalitis (EAE) [34]. Notably, HOXA3, a transcription factor promoting
the expression of TSPAN32 [35], is also responsible for the M2 polarization in macrophages. This may
suggest that the possible tolerogenic role of TSPAN32 may not be limited to lymphocytes [36].

It is worth pointing out that the analysis of the expression of other tetraspanins upon polarization
showed a significant increase in CD37, CD63, CD82 and CD151 levels in Th1 and Th2 cells as compared
with the unstimulated cells in accordance with their role in the T cell activation processes. We may
speculate that TSPAN32 works as a brake for other costimulatory factors, including members of
the tetraspanin family, thus regulating immune tolerance. Indeed, prediction analysis for proteins
interacting with TSPAN32 identified CD63 and TSPAN7 as the top protein–protein partners for
TSPAN32 (http://dcv.uhnres.utoronto.ca/FPCLASS/ppis/).

Finally, we have investigated the role of TSPAN32 in multiple sclerosis. Encephalitogenic T cells
from MOG-induced experimental autoimmune encephalomyelitis (EAE) mice showed significantly
lower levels of TSPAN32, which can be explained by a higher activity of T lymphocytes; the increased
levels of CD9, CD53, CD82 and CD151 are concordant with the in vitro data, suggesting their role in
the activation of the immune response. This is confirmed by the higher levels of pro-inflammatory
cytokines (TNF-alfa, IL-6, IL-2) observed in MOG CD4 T cells, showing an inverse correlation with
TSPAN32 expression.

Lastly, the analysis of TSPAN32 in CD4 T cells from healthy donors and MS patients confirmed
the results gathered from the in vitro and vivo analyses. Stimulated CD4 cells showed significantly
lower levels of TSPAN32 than the unstimulated counterparts; in addition, comparison between the
CD4 T from healthy controls and MS patients showed that, upon stimulation, CD4 T cells from MS
patients showed significantly lower transcriptional levels of TSPAN32.

As previously indicated, Tarrant et al. [5] have already demonstrated that CD4+ T cells from
TSPAN32 knockout mice are hyper-proliferative and produce higher levels of IL2. Based on our
data, we propose that T cells express a baseline level of TSPAN32 that hinders their proliferation and
activation, promoting the maintenance of an inactive state. In the presence of antigens, the lymphocytes
are stimulated and activated, resulting in a reduction of TSPAN32 levels via a possible activation
of the mTOR pathway and an increase in CD9, CD53, CD82 and CD151, which are necessary for
T-lymphocyte activation.

The disruption of the control switch provided by TSPAN32 may be one of the possible promoters
of the inflammatory damage to myelin, offering not only an important insight into the pathogenesis of
MS, but also novel therapeutic targets that may underlie potential primary drivers of autoimmunity.

To date, no drugs modulating the function of tetraspanins have been approved for the clinical
use. However, different therapeutic approaches have been investigated in a variety of settings,
including cancer [37] and microbial infections [38]. Tetraspanins can be targeted via multiple strategies,
for instance using mAbs, recombinant soluble large extracelullar loops (sLELs) or RNA interference

http://dcv.uhnres.utoronto.ca/FPCLASS/ppis/
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(RNAi) (reviewed by [39]). Hence, several opportunities for pharmacological intervention are available
and could be exploited for the treatment of human diseases in the future.

4. Materials and Methods

4.1. TSPAN32 Expression Analysis in Murine Immune Cells

Analysis of TSPAN32 expression in different leucocyte subpopulations was performed by
interrogating the GSE15907 microarray dataset. GSE15907 was generated as part of the Immunological
Genome Project (ImmGen) [40]. Briefly, primary cells from multiple immune lineages were isolated ex
vivo from young adult C57/B6 male mice (n = 3) and double-sorted to yield >99% purity. RNA was
extracted and whole-genome transcriptomic levels were obtained using the Affymetrix 1.0 ST MuGene
array platform (Santa Clara, California, U.S.).

4.2. Tetraspanins Expression in T Cell Activation

4.2.1. Purification and Cultivation of Human CD4+ T Cells

Mononuclear cells were obtained from the peripheral blood of healthy donors (n = 3) by
step-gradient centrifugation using Ficoll-Hypaque medium (Sigma Aldrich, Milano, Italy), as previously
described [41]. CD4+CD25− T effector cells and CD4+CD25hi Treg were enriched by positive
sorting using magnetic beads, obtaining a purity of >95%. Cells were stimulated with plate-bound
anti-CD3/CD28 antibodies and 50 U/mL recombinant human IL2 (PeproTech, BDA S.r.l., Italy) for
up to 6 h, and total RNA was collected every hour using TRIzol Reagent (Invitrogen, Milan, Italy).
Unstimulated cells served as control cells.

In a separate set of experiments, effector T cells from three healthy donors were stimulated with
anti-CD3 alone or in combination with anti-CD28, anti-CTLA4, anti-PD1 and anti-ICOS antibodies
for 36 h. Unstimulated cells served as a negative control. At the end of the incubation period, total
RNA was extracted and TSPAN32 expression was evaluated by real-time PCR. Two µg of total RNA
was reverse-transcribed with a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Monza, Italy) in a 20 µL reaction solution, and real-time PCR was carried out using the SYBR Green
PCR Master Mix (Applied Biosystems, Monza, Italy), 200 nM forward and 200 nM reverse primers and
20 ug cDNA. Gene expression was calculated using the formula: 2−∆∆Ct, where ∆∆Ct = (Cttarget gene −

Ctbeta-actin) stimulated cells – (Cttarget gene − Ctbeta-actin) control cells.
Proteins were extracted using M-PER lysis buffer (Thermo Fisher Scientific; Monza, Italy),

following the manufacturer’s instructions. Protein concentrations were quantified using the Bio-Rad
Protein Assay (Bio-Rad, Milan, Italy). Proteins were resolved by SDS-PAGE, followed by blotting
to PVDF membranes (Immobilon-P transfer membrane; Millipore). PVDF membranes were then
incubated in 5% bovine serum albumin (BSA) in phosphate buffered saline (PBS) for 1 h at room
temperature. Afterwards, membranes were incubated with an anti-TSPAN32 primary antibody (1:2000;
Thermo Fisher Scientific) overnight at 4 ◦C. Membranes were then incubated with HRP-conjugated
anti-IgG secondary antibody (1:2000; Santa Cruz Biotechnology; Heidelberg, Germany) for 1 h at room
temperature. In order to verify the equal loading of proteins, membranes were stripped and reprobed
with HRP-conjugated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody (1:1000; Cell
Signaling Technology, Milan, Italy). Images of protein bands were visualized using an ECL system
(Luminata Western HRP Substrates; Millipore, Milan, Italy), acquired by ChemiDoc MP System
(Bio-Rad) and quantified using ImageJ software (National Institutes of Health).

4.2.2. Involvement of mTOR in TSPAN32 Expression

In order to determine the involvement of the mTOR pathway in the modulation of TSPAN32
expression following T cell activation, CD4+ T cells from three healthy donors were stimulated with
plate-bound anti-CD3/CD28 antibodies (PeproTech, BDA S.r.l., Italy) for 4 h, alone or in the presence of
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200 nM rapamycin. Total RNA was collected using TRIzol reagent (Invitrogen, Milan, Italy) for the
subsequent determination of TSPAN32 expression by real-time PCR. Unstimulated cells served as
control cells.

4.2.3. Expression of TSPAN32 in Th1 and Th2 Cells

Expression levels of TSPAN32 and the tetraspanins, CD9, CD37, CD53, CD63, CD81, CD82 and
CD151 were evaluated in Th1 and Th2 cells. CD45RAhigh naïve CD4 T cells from three healthy donors
were activated by plate-bound anti-CD3/CD28 and IL12 (1 ng/mL), IFN-gamma (10 ng/mL) and anti-IL4
(1 µg/mL), to differentiate Th1 cells, and anti-IL12 (5 µg/mL), anti-IFN-gamma (5 µg/mL) and IL4
(1 ng/mL) to differentiate Th2 cells for 48 h. At day 3, medium was replenished and cells were cultured
for an additional 4 days. Afterward, cells were re-stimulated with anti-CD3/CD28 for 12 h and total
RNA was isolated for subsequent real-time PCR.

4.2.4. TSPAN32 Overexpression in Jurkat Cells

Jurkat T cells, Clone E6-1 (ATCC, TIB-152; obtained from American Type Culture Collection
(ATCC)), were cultured in RPMI 1640 medium + 2 mM glutamine + 10% fetal calf serum (FCS) +

penicillin (100 U/mL)/streptomycin (0.1 mg/mL) at a cell density of 0.5 × 106 cells/mL. Transient
transfection of Jurkat cells with a DNA plasmid encoding for TSPAN32 (pTSPAN32) or the empty
plasmid was performed using Lipofectamine (Life Technologies, Monza, Italy), following the
manufacturer’s instructions. To generate the pTSPANB32 plasmid, the cDNA fragment containing
the entire open reading frame of the TSPAN32 gene (GenBank accession number: NM_005705)
was amplified from the human liver cDNA library (Invitrogen, Monza, Italy) by polymerase chain
reaction (PCR), and the product was inserted into pcDNA3 vector (Invitrogen). At 72 h post
transfection, cells were stimulated with anti-CD3/CD28 for 24 h, and supernatant collected for the
determination of TNF-alpha and IFN-gamma by ELISA using commercially available kits (Invitrogen).
Three independent experiments were performed.

4.3. TSPAN32 in Multiple Sclerosis

4.3.1. Induction of EAE Induced by MOG in C57BL/6 Mice

Female 8- to 10-week-old C57BL/6 mice were purchased by ENVIGO RMS s.r.l. (San Pietro al
Natisone, Udine, Italy) and kept under standard laboratory conditions with ad libitum access to food
and water. The protection of animals used in the experiment complies with Directive 86/609/EEC,
implemented by D.Lgs. 26/2014.

The animals were immunized by a subcutaneous injection of 200 µg of MOG35-55 (Genemed
Synthesis Inc, San Francisco, CA, USA) emulsified in Complete Freund’s Adjuvant (CFA) with 1 mg of
Mycobacterium tuberculosis H37RA (Difco, Detroit, MI, USA). The emulsion was administered in two
sites, draining into the axillary lymph nodes. Pertussis toxin 200 ng/mouse (Calbiochem, Nottingham,
UK) was injected intra-peritoneally (i.p.) on days 0 and 2 post immunization (Mangano et al., 2014).
Mice were observed daily for clinical signs of EAE. At the peak of disease, mononuclear cells were
isolated from brains and spinal cords using a 40–70% Percoll gradient, and CD4+ T cells were enriched
by positive sorting using anti-CD4+ beads, with a final purity of >95%. Control CD4+ T cells were
obtained from the spleens of sham immunized animals. Expression levels of the genes of interest
were determined using real-time PCR. Primer sequences were designed in-house or obtained from the
PrimerBank database (http://pga.mgh.harvard.edu/primerbank/).

Gene expression was calculated using the formula: 2−∆∆Ct, where ∆∆Ct = (Cttarget gene −Ctbeta-actin)
encephalitogenic CD4 T cells – (Cttarget gene − Ctbeta-actin) control cells.

http://pga.mgh.harvard.edu/primerbank/
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4.3.2. TSPAN32 Expression in CD4+ T Cells from MS Patients

Gene expression profiling of resting and activated CD4+ T cells from MS patients and healthy
subjects was obtained from the GSE78244 dataset. TSPAN32 expression levels were evaluated in
unstimulated cells and upon 24 h incubation with anti-CD3/CD28 antibodies. GSE78244 included data
from 14 relapsing-remitting MS patients and 14 healthy donors. All patients were women who had
undergone no immunomodulatory or immunosuppressive treatment in at least the 2 months before
sampling, with the exception of one patient who received intravenous immunoglobulin 2 weeks prior
to sampling. Purity of cells was >96% [42].

4.4. Statistical Analysis

Data are shown as normalized mean ± SD and statistical analysis was performed using either a
Student’s t-test or one-way ANOVA followed by Bonferroni multiple test correction. GraphPad Prism
software was used for the statistical analysis and generation of the graphs.

5. Conclusions

TSPAN32 is a member of the tetraspanin family involved in the regulation of cell-mediated immune
responses. As compared to other tetraspanins such as CD9, CD63 and CD81 that promote antigen
presentation and T cell signaling, TSPAN32 is oppositely modulated upon T cell activation. Our in silico,
in vitro and ex vivo data suggest an immune-regulatory role for TSPAN32 and its possible involvement
in the pathogenesis of MS. This study follows previous reports on TSPAN32 in immunity and represents
a starting point for the ideation of possible new therapies for immunoinflammatory/autoimmune
diseases, exploiting its immunoregulatory role in cellular immune responses.
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