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Abstract: Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease with
X-linked recessive inheritance, that leads patients to premature death. The loss of dystrophin
determines membrane instability, causing cell damage and inflammatory response. Macrophage
migration inhibitory factor (MIF) is a cytokine that exerts pleiotropic properties and is implicated
in the pathogenesis of a variety of diseases. Recently, converging data from independent studies
have pointed to a possible role of MIF in dystrophic muscle disorders, including DMD. In the present
study, we have investigated the modulation of MIF and MIF-related genes in degenerative muscle
disorders, by making use of publicly available whole-genome expression datasets. We show here a
significant enrichment of MIF and related genes in muscle samples from DMD patients, as well as
from patients suffering from Becker’s disease and limb-girdle muscular dystrophy type 2B. On the
other hand, transcriptomic analysis of in vitro differentiated myotubes from healthy controls and
DMD patients revealed no significant alteration in the expression levels of MIF-related genes. Finally,
by analyzing DMD samples as a time series, we show that the modulation of the genes belonging
to the MIF network is an early event in the DMD muscle and does not change with the increasing
age of the patients, Overall, our analysis suggests that MIF may play a role in vivo during muscle
degeneration, likely promoting inflammation and local microenvironment reaction.

Keywords: macrophage migration inhibitory factor; Duchenne muscular dystrophy; dystrophic
muscle diseases

1. Introduction

Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease with X-linked
recessive inheritance, with an incidence ranging from 10.71 to 27.78 live-born males per year per
100,000 [1], and worldwide estimated prevalence of 4.78 per 100,000 [1]. The natural progression of
the disease includes hypertrophy of cardiac muscle and diaphragmatic contraction impairment, that
leads patients to premature death [2]. The pathogenesis of DMD depends on the absence or altered
forms of the dystrophin protein. This protein is essential for muscular growth and function. It acts as a
scaffold in the subsarcolemmal space protein complex and binds the actin, bridging the extracellular
and intracellular space [3,4]. The loss of dystrophin determines membrane instability, causing cell
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damage and inflammatory response [5]. Similar to dystrophin, other molecules have been identified
to be involved in the maintenance of membrane stability, such as dysferlin, a protein involved in
membrane repair processes that, when altered, determines the limb-girdle muscular dystrophy type
2B (LGMD2B), characterized by chronic muscle inflammation and damage [6].

Several factors have been proposed to promote the progression of the disease. In particular,
it has been shown that the immune system plays an important role in dystrophic muscle disease
pathogenesis, sustaining a continuous inflammatory and fibrotic response [7–9].

The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine secreted by
activated T cells and macrophages that exerts proliferative, chemotactic, and anti-apoptotic functions.
Its role has been well established in several pathologies of heterogeneous clinical symptomatology,
including inflammatory and autoimmune diseases [10–12] and cancer [13,14] (reviewed by [15]).
Reimann et al. [16] have observed increased MIF protein levels in dermatomyositis, polymyositis,
and sporadic inclusion body myositis muscle samples, suggesting a role for MIF in the regenerative
response to muscle fiber damage. In addition, it has been shown that MIF regulates muscle
metabolism [17]. These data suggest that MIF may exert a homeostatic and regulatory effect in
muscle cells.

MIF mediates its action through CD74 (also known as HLA-DR antigens-associated invariant
chain), which recruits the cell-surface glycoprotein CD44, and the co-receptors, CXCR2, CXCR4,
and CXCR7, as well as the intracellular protein JAB1 (encoded by the COPS5 gene), determining the
activation of a variety of signaling cascades, including the MAPK, PI3K/AKT, and NF-kB pathways [18].

In the present study, we have investigated the expression of MIF and related gene networks in
DMD by making use of publicly available whole-genome expression profiles of human muscle cellular
models and bioptic samples.

2. Materials and Methods

2.1. Network Construction

Genes functionally related to MIF were obtained from the GeneMania database
(http://genemania.org/) [19]. GeneMania integrates publicly available genomics and proteomics
data, including data from gene and protein expression profiling studies, and molecular interaction
pathways, to find related genes [19]. The search was conducted imputing the following terms: MIF,
DDT, CD74, CD44, CXCR2, CXCR4, CXCR7 (a.k.a. ACKR3), and COPS5. The genes were selected based
on Gunther et al. [15]. The parameters were the following: Maximum resultant genes, 40; maximum
attributes, 20; query, dependent weighting.

2.2. Dataset Selection and Analysis

The NCBI Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) was
used to identify microarray datasets comparing muscle transcriptomic profiles from healthy donors vs.
DMD patients. Two datasets were included in the meta-analysis, GSE38417, and GSE6011. Briefly,
the GSE38417 dataset included six samples of skeletal muscle biopsy from healthy people and 16
samples from DMD patients. The GSE6011 dataset included 14 healthy control samples and 23
samples from DMD patients [20]. The web-based application, ImaGEO [21] was used to perform
the meta-analysis (http://bioinfo.genyo.es/imageo/) [21], and the gene ontology of the identified
Differentially Expressed Genes (DEGs).

The GSE109178 dataset was used for the evaluation of the involvement of the MIF network in the
degenerative muscle disorders, Becker’s muscular dystrophy (BMD), and LGMD2B [22]. The dataset
contained whole-genome expression profiles from six healthy donors, 11 BMD patients (bearing
abnormal dystrophin protein), and eight LGMD2B patients (bearing mutations in the DYSF gene) [22].
The Affymetrix Human Genome U133 Plus 2.0 Array was used for the generation of the dataset [22].

http://genemania.org/
http://www.ncbi.nlm.nih.gov/geo/
http://bioinfo.genyo.es/imageo/
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For the comparative evaluation of the MIF network in in vitro differentiated human myotubes,
we interrogated the GSE79263 dataset [23]. The dataset comprised gene expression profiles from two
healthy and three DMD patients [23]. The Illumina HumanHT-12 V4.0 Expression BeadChip platform
was used for the generation of this dataset [23]. Raw data were background corrected followed by
quantile normalization.

2.3. Statistical Analysis

For the meta-analysis of the GSE38417 and GSE6011 datasets, a fixed-effect model of effect size
measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted
p-value < 0.05 and an |effect size| > 2 were identified as DEGs and selected for further analysis.

Linear Models for Microarray Data (LIMMA) was used to assess statistically significant differences
between groups, in the GSE10978 and GSE79263 datasets. Genes with an adjusted p-value < 0.05 and
a |fold change| > 2 were identified as DEGs.

The Bayesian Estimation of Temporal Regulation (BETR) [24] was used to determine the modulation
of the genes of interest in patients at different ages. BETR is a linear random-effects modeling statistical
method that takes into account the correlations between samples and the time-points. Each gene is
given a probability of differential expression that derives from an empirical Bayes approach using the
whole data set to reduce the number of parameters to be estimated [24]. For the analysis, patients were
arbitrarily grouped into three age-defined classes: Class 1: <2 yrs (n = 5), Class 2: 3–4 yrs (n = 6),
and Class 3: 5–8 yrs (n = 5).

Principal component analysis (PCA) was conducted on the genes of interest to assign the general
variability in the data to a reduced set of variables, by using the Multiple Experiment Viewer (MeV)
software (v. 4.9.0) [25].

For the evaluation of the significance of enrichment of the upregulated and downregulated DEGs
among the MIF network genes, a Chi-square test was performed. A p-value < 0.05 was considered to
be statistically significant.

3. Results

3.1. Generation of the MIF Network

The GeneMania database was used to construct the MIF network, based on physical interaction,
co-expression, predicted, co-localization, pathway, genetic interactions, and shared protein domains.
Input genes were: MIF, DDT, CD74, CD44, CXCR2, CXCR4, CXCR7 (a.k.a. ACKR3), and COPS5.
Overall, the network included 48 unique genes with 81 multi-edge node pairs (Supplementary Table S1).

3.2. Meta-Analysis of Gene Expression in Duchenne Muscular Dystrophy

Two GEO datasets were identified for the subsequent evaluation of the involvement of the MIF
pathway in DMD (Figure 1A). A total of 20 samples from healthy controls and 39 skeletal muscle
biopsies from DMD patients were used in the meta-analysis. We identified 7107 and 1586 differentially
expressed genes in the GSE38417 and in the GSE6011 dataset, respectively. The meta-analysis identified
4756 DEGs between healthy and DMD samples. Gene ontology analysis revealed that the top three
biological processes enriched by the upregulated DEGs were: “Immune response” (GO:0006955),
“immune system response” (GO:0002376) and “defense response” (GO:0006952) (Supplementary
Figure S1). Among the upregulated DEGs, Venn diagram analysis identified 10 genes overlapping the
MIF network, reaching the statistical significance (p = 0.035) (Figure 1B,C). On the other hand, eight
out of the 2013 downregulated DEGs overlapped the MIF network, without reaching the statistical
significance (Figure 1B,C). Figure 1D shows the expression levels of the four principal hubs (MIF,
DDT, CD74, and CD44) of the MIF network in the two individual microarray datasets used for the
meta-analysis (Figure 1D). In order to determine whether the involvement of the MIF network was
recapitulated in vitro, we interrogated the GSE79263 dataset, which contains the transcriptional profiles
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of primary myotubes from healthy and DMD patients. As shown in Table 1, no statistically significant
differences were observed in the expression levels of the MIF-related genes between healthy and DMD
samples (Table 1).
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Figure 1. Enrichment of the migration inhibitory factor (MIF) network in Duchenne muscular dystrophy
(DMD). Study layout (A). Overlapping between the differentially expressed genes (DEGs) in DMD
samples, as determined in the meta-analysis of the GSE6011 and GSE38417 datasets, and the MIF
network (B). MIF network showing the DEGs identified in the meta-analysis. Nodes are color-coded
based on the observed Effect Size (C). Z score of the expression levels of MIF, DDT, CD74 and CD44 in
the GSE6011, and GSE38417 datasets (D).

Table 1. Differential expression analysis of MIF-related genes in in-vitro differentiated myotubes from
healthy donors and DMD patients, as determined in the GSE79263 dataset. Values are approximated to
four digits.

Symbol p-Values Adj-p-Values Log Fold-Change t-Statistic

Ackr3 0.7736 0.9997 −1.0993 −0.2921

Adra1a 0.9940 0.9997 0.0286 0.0076

Amh 0.9782 0.9997 0.1045 0.0277

Atp13a2 0.9363 0.9997 −0.3327 −0.0810

Bnipl 0.9948 0.9997 0.0252 0.0066

Brcc3 0.9778 0.9997 −0.1144 −0.0282

Cckar 0.9988 0.9997 −0.0058 −0.0015

Cd44 0.9900 0.9997 −0.0764 −0.0127

Cd74 0.9584 0.9997 0.1988 0.0529

Col14a1 0.9821 0.9997 0.0863 0.0227

Cops3 0.9938 0.9997 −0.0417 −0.0079

Cops5 0.9967 0.9997 −0.0224 −0.0042
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Table 1. Cont.

Symbol p-Values Adj-p-Values Log Fold-Change t-Statistic

Cops6 0.9788 0.9997 −0.1265 −0.0269

Cox8a 0.9928 0.9997 0.0541 0.0092

Ctsf 0.8714 0.9997 0.6937 0.1642

Cxcl12 0.8103 0.9997 1.1162 0.2436

Cxcl8 0.7477 0.9997 1.6641 0.3266

Cxcr1 0.9895 0.9997 0.0503 0.0133

Cxcr2 0.9931 0.9997 −0.0332 −0.0088

Cxcr4 0.9865 0.9997 0.0641 0.0171

Ddt 0.9830 0.9997 −0.1208 −0.0216

Ddtl 0.9864 0.9997 −0.0649 −0.0173

Dmp1 0.9995 0.9997 −0.0025 −0.0007

Dstyk 0.9135 0.9997 −0.4908 −0.1102

Dusp14 0.9551 0.9997 0.2850 0.0571

Eif3f 0.9699 0.9997 −0.2166 −0.0382

Eif3h 0.9997 0.9997 0.0023 0.0004

Epcam 0.9901 0.9997 0.0475 0.0125

Fpr2 0.9989 0.9997 0.0050 0.0013

Hla–Dma 0.9984 0.9997 −0.0082 −0.0020

Hla–Dpb1 0.9938 0.9997 0.0293 0.0078

Hla–Dqa1 0.9960 0.9997 0.0190 0.0051

Igfbp3 0.8091 0.9997 1.3739 0.2452

Lamtor5 0.9795 0.9997 −0.1449 −0.0261

Lyve1 0.9951 0.9997 0.0232 0.0062

Mif 0.9855 0.9997 −0.1113 −0.0184

Mpnd 0.9990 0.9997 0.0048 0.0013

Ntsr2 0.9979 0.9997 0.0102 0.0027

Rgs12 0.9713 0.9997 0.1623 0.0365

Rnf139 0.9994 0.9997 0.0029 0.0008

St13 0.9808 0.9997 0.1248 0.0244

Susd5 0.9952 0.9997 −0.0235 −0.0061

Tacstd2 0.8993 0.9997 0.4954 0.1284

Uchl1 0.9456 0.9997 −0.3802 −0.0692

Vav2 0.9707 0.9997 0.1509 0.0373

3.3. Enrichment of the MIF Network in Becker Disease and Limb-Girdle Muscular Dystrophy Type 2B

In order to evaluate whether the involvement of the MIF network was peculiar to the DMD muscle
or was rather a pathogenetic pathway common to other muscular dystrophic disorders, we analyzed
the GSE109178 dataset that included whole-genome transcriptomic data from healthy donor muscle
samples and biopsies from Becker’s and LGMD2B patients. As shown in Figure 2, in Becker’s disease,
11 upregulated DEGs (p < 0.05) and two downregulated DEGs, overlapped with genes belonging to the
MIF network (Figure 2A). Similarly, in LGMD2B, 11 upregulated DEGs belonged to the MIF network
(p < 0.05) (Figure 2B).
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Figure 2. MIF network in dystrophic muscle diseases. MIF network showing DEGs as nodes color-coded
based on fold change, in Becker’s disease (A) and in limb-girdle muscular dystrophy type 2B (B), as
determined in the GSE79263 dataset.

3.4. Modulation of the MIF Pathway in Muscle Biopsies of DMD Patients at Different Ages

We sought to investigate whether alterations in the expression of MIF-related genes could be
observed in the muscles from DMD patients at different ages. To this aim, we used the GSE38417
dataset, which includes data from the muscles of DMD patients who had a broad range of ages. As the
disease is usually diagnosed at the age of three to seven years, the first two years are often referred
to as presymptomatic. We analyzed the samples as a time series, dividing the samples into three
age-defined classes: <2 yrs, 3–4 yrs, 5–8 yrs. BETR analysis revealed that no significant modulation
of the MIF-related network occurs at different patients’ age (Table 2). Accordingly, data complexity
reduction using PCA for the genes of interest showed that samples do not cluster based on age-related
transcriptomic features (Figure 3).
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Figure 3. Principal component analysis of MIF network genes in muscle biopsies of DMD patients at
different ages, as determined in the GSE38417 dataset. Samples were divided based on DMD patients’
age: <2 yrs (green), 3–4 yrs (red), 5–8 yrs (blue). Data points are projected onto principal components
(PC) 1, 2, and 3 (A). The same data (B), projected onto PC1 and 2, PC2 and 3, and PC1 and 3.



Genes 2019, 10, 939 7 of 13

Table 2. Results of the Bayesian estimation of temporal regulation analysis for the MIF-related genes in
DMD samples from the GSE38417 dataset.

Gene Symbol ID_REF Significance-Values

Ackr3 1559114_a_at 0.999979

Adra1a 211489_at 0.999979

Amh 206516_at 0.999981

Atp13a2 218608_at 0.99998

Brcc3 231913_s_at 0.99998

Cckar 211174_s_at 0.99998

Cd44 212063_at 0.999968

Cd74 1567627_at 0.999978

Col14a1 212865_s_at 0.927757

Cops3 202078_at 0.999981

Cops5 201652_at 0.999974

Cops6 201405_s_at 0.99998

Cox8a 201119_s_at 0.99998

Ctsf 203657_s_at 0.99998

Cxcl12 209687_at 0.999979

Cxcl8 202859_x_at 0.99998

Cxcr1 207094_at 0.999979

Cxcr2 207008_at 0.999976

Cxcr4 217028_at 0.999979

Ddt 202929_s_at 0.99998

Dmp1 217067_s_at 0.999981

Dstyk 211515_s_at 0.999979

Eif3f 200023_s_at 0.99998

Eif3h 230570_at 0.999979

Epcam 201839_s_at 0.99998

Fpr2 210773_s_at 0.999979

Gtf3a 201338_x_at 0.99998

Hbegf 203821_at 0.999981

Hla-Dma 217478_s_at 0.99998

Hla-Dpb1 244485_at 0.999975

Hla-Dqa1 203290_at 0.999981

Igfbp3 210095_s_at 0.999974

Lamtor5 202300_at 0.999976

Lyve1 219059_s_at 0.999981

Mif 217871_s_at 0.999981

Mpnd 233651_s_at 0.999981

Ntsr2 206899_at 0.99998

Rgs12 209639_s_at 0.999965

Rnf139 209510_at 0.999981

St13 207040_s_at 0.99998

Susd5 214954_at 0.99998

Tacstd2 202286_s_at 0.999981

Uchl1 201387_s_at 0.999979

Usp14 201672_s_at 0.999976

Vav2 205537_s_at 0.999979
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4. Discussion

DMD represents an unmet medical need, hence the identification of novel regulatory pathways
controlling muscle degeneration, may allow for the development of tailored approaches that delay
disease progression, improve the quality of life, and prolong the life of the patients. The use of
whole-genome expression data has been extensively used for the identification of novel pathogenic
pathways and therapeutic targets in several pathologies including, immunoinflammatory/autoimmune
diseases [26–30] and cancer [31–35], and have allowed identification of novel cellular and molecular
targets [36,37]. Gene regulatory networks and pathway analysis may help the development of new
therapies aimed at increasing muscle protection/regeneration, and some of them have already proven
their effectiveness, also in DMD [38].

Here, we have first conducted a meta-analysis considering two datasets of muscle biopsies
from DMD patients to evaluate the over-representation of the MIF network among the Differentially
Expressed Genes.

We have found that MIF, as well as the receptor CD74, CD44 and CXCR4 are significantly
upregulated in DMD. On the contrary, CXCR2 seems to be down-regulated in DMD. This may
be relevant in light of the fact that, even if both CXCR4 and CXCR2 converge to CD74 and then
CD44 [15,18], CXCR4 shows also a different sub-pathway associated with inflammatory response
(NFKB1, NFKBIA, STAT3) and cell survival (AKT1) [18]. From our analysis, CXCL12 was also
highly expressed in DMD, and this may have important implications, as the CXCL12/CXCR4 axis is
involved in muscle regeneration [5]. Moreover, MIF signaling increases the synthesis of the Tra2α
splicing factor, which in turn leads to the transcription of some specific CD44 isoforms, that facilitate
extracellular matrix migration and provide binding sites for matrix metalloproteinases (MMPs) and
growth factors, such as fibroblast growth factor (FGF) [39]. The MIF receptor, CD74, expressed on
the cell surface, recruits CD44, where both proteins become phosphorylated and initiate downstream
signal transduction [40]. In monocytes and stromal cells, the initial activation of CD44-associated Src
tyrosine kinase and MEK leads to phosphorylation of ERK1/2 MAP kinases, activation of cytosolic
phospholipase A2 (cPLA2), and the inhibition of p53 [41]. In B cells, CD44-associated Syk tyrosine
kinase leads to Akt phosphorylation and downstream NFκB activation [42]. MIF binding to CD74
also results in the intramembrane cleavage of CD74 involving the positive regulation of B cell
maturation [43], the activation of p65-NFκB, upregulation of TAp63, and stimulation of Bcl-2, leading
to enhanced cell survival [44]. MIF signaling through the CD74-CXCR4-CXCR7 complex is involved in
lymphocyte chemotaxis, particularly in B cells [45]. Since replacement fibrosis contributes to DMD
pathology [46–48], the present observation of the upregulated expression of MIF is extremely important,
in order to fully understand DMD pathogenesis and find possible new future therapeutic targets. It is
of interest that small molecule MIF inhibitors have been found to prevent fibrosis in an in vivo model
of bleomycin-induced pulmonary fibrosis [49], thus dismantling the fibrogenetic role of MIF.

Interestingly, we have not found any significant difference in myotubes from control patients and
DMD patients. We hypothesize that the in vitro culture of muscle cells may not reflect the complexity
of the environment that exists in vivo. Overall, our data suggest that MIF may play a role during
muscle degeneration, likely promoting inflammation and local microenvironment reaction [16]. This is
in line with the observation that the main biological processes enriched by the DEGs identified in
DMD are associated with immune responses. Moreover, supporting our hypothesis, our analysis
shows that MIF, and its related genes, are modulated also in other muscle diseases, i.e., LGMD2B
and Becker’s dystrophy. In addition, we have provided evidence that the MIF-related genes do not
undergo modulation in DMD patients over a broad range of ages (i.e., from 1 to 8 yrs), and this further
suggests that alteration of MIF network is an early event in the DMD muscle degeneration, which is
also maintained over time.

We are aware of the limitations of the current work that include the lack of in vitro and in vivo
validation. Nonetheless, this paper is the first demonstration of the upregulated network of MIF in
DMD patients and represents the first valuable proof-of-concept (POC) that highlights the potential
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contribution of this family of cytokines to the pathogenesis of the disease. This finding is also of clear
translational relevance as it suggests that the MIF family and its receptors may represent suitable
therapeutic targets in DMD.

Currently accepted pharmacological treatment for DMD is corticosteroids, in order to suppress
muscle inflammation. However, this treatment has limited efficacy and considerable side effects [2,50].
For this reason, new therapies are studied to reduce the inflammation associated with muscle
degeneration. In mdx mice, a well-known model used for the study of DMD, daily treatment with
nonsteroidal anti-inflammatory drugs (NSAIDs) reduces macrophage infiltration and necrosis but
does not modify the percentage of regenerating myofibers [51]. An effective new therapeutic approach
consists of reducing NF-kB activity to prevent or delay the onset of muscle dysfunction [52].

Today, different options exist to target MIF for the treatment of human patients: small molecule
inhibitors, monoclonal antibodies, and nanobodies, and peptide inhibitors. Interestingly, the FDA
approved drug, Ibudilast, has been shown to exert an additional action to its original PDE5 inhibition,
that entails inhibitory action of MIF [53]. The anti-MIF activity of Ibudilast has propelled attention for
the possible repurposing of this drug in immunoinflammatory pathologies where MIF is thought to be
implicated, such as multiple sclerosis [54]. In addition, an anti-MIF mAb has been tested in Phase II
trials in patients with cancer (NCT02448810, NCT02540356). Both Ibudilast and the anti-MIF mAb may
eventually be immediately available for their evaluation in POC Phase II studies in patients with DMD.
In a similar manner, the use of MIF and DDT receptor antagonists could be considered when evaluating
tailored MIF-DDT therapies for DMD. The anti-CD74 mAb milantuzumab is currently being studied
in phase I/II studies for hematological cancers [55] and could represent a potential pharmacological
candidate for MIF-DDT tailored interventions.

It is also of particular relevance in the context of DMD, given the involvement of the MIF network,
is that the biological function of MIF may be inhibited by nitrosylation [56]. The lack of endogenous
NO secondary to the loss of dystrophin has been hypothesized to play role in DMD pathogenesis since
this gas is a potent regulator of skeletal muscle metabolism, mass, function, and regeneration [57].
NO donors might have a dual and synergistic mode of action in DMD that entails NO donation
and MIF inhibition. Along this line of research, we propose that along with NO-NSAID, that have
been tested successfully in mice and with some efficacy in the clinical setting [57,58], also other
NO-donors including the recently characterized lopinavir-NO and ritonavir-NO [59–62], that have
different pharmacological mode of actions than NO-NSAID, and may have higher efficacy, should
deserve particular consideration as double-tailored drugs to be used in the treatment of DMD patients.
It is worth noting in this regard, that lopinavir-NO has been shown to exert immunomodulatory
properties more potent than its parental compound in vitro, and it has been capable of successfully
preventing a model of MIF-dependent immunoinflammatory hepatitis [63,64]. This analysis may set
the basis to encourage future clinical trials for anti-MIF drugs in disease like DMD, that despite being
considered only a genetic disease, is characterized by in important involvement of inflammation.

5. Conclusions

Although DMD is considered a progressive hereditary muscular disease, in recent years, many
studies have been focused on the impact of the immune system in the progression and symptomatology
of this disease. In this paper, we have shown the important role of MIF in DMD, and in other dystrophic
muscle diseases, as well, suggesting the potential use of anti-MIF drugs.
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