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Doria 6, 95125 Catania, Italy

2 INFN, sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy
3 International Institute of Physics, Universidade Federal do Rio Grande do

Norte, 59012-970 Natal, Brazil
4 Institute of Modern Physics, Chinese Academy of Sciences, Post Office Box 31,

Lanzhou 730000, Peoples Republic of China

Received: 2015 December 17; accepted: 2016 March 6

Abstract. We study the correlation between the central surface density and
the core radius of the dark matter haloes of galaxies and clusters of galaxies.
We find that the surface density within the halo characteristic radius r∗ is not
a universal quantity as claimed by some authors (e.g., Milgrom 2009), but it
correlates with several physical quantities (e.g., the halo mass M200, and the
magnitude MB). The slope of the surface density-mass relation is 0.18± 0.05,
leaving small room to the possibility of a constant surface density. Finally, we
compare the results with MOND predictions.
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1. INTRODUCTION

According to recent releases of the Planck observatory, our universe is charac-
terized by the matter density parameter Ωm = 0.315±0.017 (Ade et al. 2014)1, and
the physical densities of baryons and dark matter (DM), Ωbh

2 = 0.02205±0.00028
and Ωch

2 = 0.1199± 0.0027, respectively. The rest of mass is in the form of dark
energy (ΩΛ = 0.685).

The model which better describes the physical features of our Universe at inter-
mediate and large scales is the ΛCDM model, in which the Universe is constituted
of the above quoted constituents (Del Popolo 2007, 2013, 2014a). Despite the
self-consistency and remarkable success of this model, some problems are still on
the table.

One area of active investigation is testing predictions of the ΛCDM model at
scales from a few kpc to tens of pc (i.e., the smallest scales probed by observations
of galaxies). An example is the fact that substructures, such as small haloes and

1 In the 2015 Planck’s release, Ωm = 0.308± 0.012.
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galaxies orbiting within larger units, may not be as common as is expected on
the basis of numerical simulations of cold collisionless dark matter. This problem
has been dubbed the “missing satellites problem”, to whom is related the too-big-
to-fail problem (Klypin et al. 1999; Del Popolo & Gambera 1997; Del Popolo et
al. 2014; Del Popolo & Le Delliou 2014). Another problem is the determination
of the total mass of virialized haloes (Del Popolo & Gambera 1996; Del Popolo
2002; Hiotelis & Del Popolo 2006, 2013) (galaxy and galaxy clusters), and their
density profiles. As regards the issue of density profiles, there is a tension between
ΛCDM predictions and observations of the central dark matter distribution in
galaxies (Moore 1994; Cardone & Del Popolo 2012 (CD12); Del Popolo et al.
2013a; Saburova & Del Popolo 2014 (SD14); Del Popolo & Hiotelis 2014).

Notably, the tensions quoted have not gone away during the past 10–15 years,
even though both theoretical models and observations have improved dramatically.
On larger scales the cosmological constant problem (Weinberg 1989; Astashenok
& Del Popolo 2012), and the cosmic coincidence problem, afflict the model.

Finding the origin of some of such discrepancies is complicated mainly due to
the lack of understanding of the complex hydrodynamical phenomena in hot dense
plasma. A valuable help to address this problem comes from the scaling relations
between DM halo parameters and stellar quantities.

In this context, Kormendy & Freeman (2004) found several interesting rela-
tions among DM halo parameters, obtained through mass modeling of the rotation
curves of 55 galaxies using a pseudo-isothermal profile as a fitting profile. An in-
triguing property that they found is that the quantity µ0D = ρ0r0 ' 100M�/pc−2

(see note2), proportional to the halo central surface density for any cored halo
distributions, is nearly independent of the galaxy’s blue magnitude. The validity
of this relation has been much debated in the literature (Donato et al. 2009 (D09);
Gentile et al. 2009 (G09); Boyarsky et al. 2009 (B09); Cardone & Tortora 2010
(CT10); Napolitano, Romanowsky & Tortora 2010 (NRT10); CD12; SD14).

D09 repeated the analysis by Kormendy & Freeman (2004, hereafter KF04) by
means of rotation curves of ' 1000 spiral galaxies, the mass models of individual
dwarf and spiral galaxies and the weak lensing signal of elliptical and spirals and
found strong evidence for the constancy of the central DM column density, over
12 orders of magnitude in luminosity. They found logµ0D = 2.15± 0.2, in units of
log(M�/pc2).

Prompted by the previous claim, Milgrom (2009) showed that modified New-
tonian dynamics (MOND) predicts, in the Newtonian regime, a quasi-universal
value of µ0D for every different kind of internal structure and for all masses.

Opposite results were obtained by B09, NRT10, CT10, CD12, and SD14 that
show a systematic increase in surface density with luminosity LV , the stellar mass
M∗, the halo mass M200, morphological type, (B − V )0 color index, and content
of neutral hydrogen.

NRT10 showed that, within effective radius, the projected density of local early
type galaxies (ETGs) is, on average, systematically higher than the same quantity
for spiral and dwarf galaxies, pointing to its systematic increase with halo mass as
suggested by B09. B09 extended the above analyzed samples to both group and
cluster scale systems and found that the dark matter column density, S, (defined

2 ρ0 and r0 are, respectively, the central density and core radius of the adopted pseudo-
isothermal cored dark matter density profile.
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in the following and equivalent to µ0D in the case of fitting with a Burkert profile)
is given by

logS = 0.21 log
Mhalo

1010M�
+ 1.79 , (1)

with S in M�/pc2.
CT10, by modeling the dark halo with a Navarro - Frenk - White profile (NFW)

and assuming a Salpeter initial mass function (IMF) to estimate stellar masses,
found that the column density and the Newtonian acceleration within the halo
characteristic radius rs and effective radius Reff are not universal quantities, but
correlate with the luminosity LV , the stellar mass M∗ and the halo mass M200.

In order to try to discriminate among these results and to find an explanation
and analytical derivation of the surface density of haloes, we analyze the problem
using the secondary infall model (SIM) introduced in Del Popolo & Kroupa (2009)
(DPK09), taking into account ordered and random angular momentum, dynamical
friction, and baryon adiabatic contraction.

The paper is organized as follows: in Section 2, we discuss how surface density
was obtained by different authors, and compare the previous results with the result
of our theoretical model. In Section 3, we discuss the implication of the previous
results on MOND’s prediction. Section 4 is devoted to conclusions.

2. SURFACE DENSITY

The results discussed in the introduction that claim a constancy of the surface
density (KF04, D09) of DM and those that claim a mass dependence (e.g., B09,
CT10, NRT10, CD12) are fundamentally based on fitting of observed properties
of DM haloes.

With the exception of Boyarsky et al. (2010, hereafter B10), no qualitative
explanation and/or analytical derivation of the quoted results has been proposed
so far. B10 showed, with a very simple and minimal SIM, how the mass dependence
of the dark matter column density, S, (defined in the following and equivalent to
µ0D in the case of fitting with a Burkert profile) is given by S(rs) ∝ M1/3, or
S(rs) ∝M0.23, taking account of deviations from self-similarity.

This relation, in agreement with the simulations of B09, showing a similar trend
with mass but with a smaller slope (S(rs) ∝ M0.21), was considered by them as
a sort of universal scaling in the DM haloes, insensitive to baryons presence and
to the details of DM density distributions. This last result is in contradiction to
D09 results because B09 got a universal non-constant surface density, contrarily
to D09 who got a universal constant surface density. Therefore, while D09 claimed
that the surface density, which is also related to Newtonian acceleration inside the
system, is a further proof of the correctness of the Modified Newtonian Dynamics
(MOND)(see also Milgrom 2009), B09 and B10 reached the opposite result.

In what follows, we study the mass dependence of the surface density through a
much more improved SIM which not only takes into account angular momentum,
but also baryons dynamical friction, and adiabatic contraction. The model for
determining the density profiles of haloes that will be used to calculate the surface
density of haloes has been described in DPK09. The surface density of DM is
calculated, starting from the density profiles, as described in the following.
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2.1. The S-M relation

As mentioned at the beginning of this chapter, the results claiming a constancy
of the surface density (KF04, D09) of DM and those claiming a mass dependence
(e.g., B09, CT10) are fundamentally based on fitting of observed properties of DM
haloes. KF04 and D09 assumed that all galaxies, from dwarfs to giants (−5 <
MB < −25), have a cored density profile. KF04 assumed a pseudo-isothermal
profile, and D09 a Burkert profile:

ρ(r)B =
ρ0r

3
0

(r + r0)(r2 + r2
0)
. (2)

The fit to the rotation curves yields the values of the two structural DM pa-
rameters (i.e., r0 and ρ0), then the surface density is calculated as µ0D = ρ0r0.

The previous approach has a strong limits. It is based on the assumption that
all the galaxies studied, namely dwarf, spiral and elliptical galaxies, can be fitted
by cored models, and the inner slope of the density profile is independent from the
halo mass.3

In the case of dwarf galaxies, a large part of the studies indicate that the inner
part of density profiles is characterized by a core-like structure (e.g., Moore 1994;
Kuzio de Naray et al. 2008; Oh et al. 2010, 2011), but some studies found that
density profiles are compatible with cuspy and cored profiles (e.g., Hayashi et al.
2004; de Blok et al. 2008). In other terms, while a large part of dwarfs are well
fitted by core-like profiles, some of them are not (see also Del Popolo 2012a,b).

In the case of ellipticals, the situation is even more complicated. Several studies
(e.g., Mamon & Lokas 2005) showed that the DM profile of ellipticals is cuspy.
NRT10 found that early-type-galaxies (ETG) violate the constant density scenario
for the other galaxies by a factor of ' 10 on average, and a factor of ' 5 in the
same mass regime, in agreement with B09.

The quoted discussion implies that when we study the surface density it is
preferable to have a method that is able to fit not only cored density profiles but
also cuspy or intermediate ones among the two types.

Another more general way of determining the surface density, in the case one
uses more than one model density profile for the fit, or in the case the density
profile is not a standard one, like the Burkert, NFW, and pseudo-isothermal (ISO)
profiles, is to introduce a dark matter column density, averaged over the central
part of an object:

S =
2

r2
?

∫ r?

0

rdr

∫
dzρDM(

√
r2 + z2) . (3)

The integral over z extends to the virial boundary of a DM halo. The defini-
tion (3) implies that S is proportional to the dark matter surface density within
r? (S ∝ ρ?r?)

4. The quantity S is more general, as it is defined for any (not
necessarily cored) DM profile.

3 Several papers showed that the density profile is not universal, and how the inner slope of
density profiles depends on mass (Del Popolo 2010, 2011; Babyk et al. 2014; Del Popolo 2014b).

4 Parameters of different profiles that fit the same DM density distribution are related (for
example, rs for NFW is equal to 6.1rc for ISO profile and equals to 1.6rB for Burkert). Choosing
these values as r? in each case, one finds that the value of S for NFW and ISO differs by less
than 10% (the difference in S between NFW and Burkert is ∼ 2%).
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Fig. 1. Comparison of the dark matter density profile of our model with simulations.
Panel (a) plots the result of Stadel et al. (2009) dissipationless simulations (solid line),
and that of our model (dashed line). Panel (b) plots the result of our model (dot-dashed
line) and galaxy DG1 (solid blue line) and galaxy DG2 (solid black line) of Governato et
al. (2010) SPH simulations.

In other terms, if the profile is cored, using S we will obtain the same result for
the surface density of the Burkert’s fit, while in the case the profile is not cored, S
will give a more precise value for the surface density than that using the Burkert’s
model fit (see the following).

The previous method was used by B09, who extended the analysis of D09 to
galaxies and galaxy clusters and fitted the DM profiles by means of three differ-
ent DM profile models, namely the Burkert profile (Eq. 2), the pseudo-isothermal
profile (ISO)

ρ(r)ISO =
ρc

1 + r2/r2
c

, (4)

where rc is the ISO core radius, and NFW profile

ρ(r)NFW =
ρsrs

r(1 + r/rs)2
, (5)

where rs is the typical NFW characteristic radius. CT10 used two DM profiles for
the fit, namely the Burkert and ISO profiles.

In order to determine S, we use Eq. (3) together with the density profiles
obtained with the model given in Appendix. Before calculating S, we show some
examples of the density profiles obtained with the quoted model and a comparison
with N -body simulations.

In Fig. 1, we plot the profiles obtained with our model and those predicted by
numerical simulations. Fig. 1a shows the result of Stadel et al. (2009) dissipa-
tionless simulations (solid line), and that of our model (dashed line). In order to
make this comparison, our halo, similarly to that of Stadel et al. (2009), is con-
stituted only by DM. Fig. 1b shows the result of our model (dot-dashed line) and
the two galaxies obtained by Governato et al. (2010) SPH simulations, namely
their galaxy DG1 (solid blue line) and galaxy DG2 (solid black line). Both Fig. 1a
and Fig. 1b show a good agreement between the results of our model and those of
simulations.

With the density profile obtained with our model and using Eq. (3) we deter-
mine S. The maximum likelihood fit for the correlation logS(rs)-logM200 in our
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model is

logS(rs) =

{
0.18 log

(
M200

1010M�

)
+ 1.9, M200 ≥ 5× 1010M�

2.09, M200 . 5× 1010M� ,
(6)

while CT10 found

logS(rs) = 0.16 log

(
M200

1012M�

)
+ 2.11 .5 (7)

Similarly, B09 found

S(rs) ' 0.21 log

(
M200

1010M�

)
+ 1.79 , (8)

and B10 give S(rs) ∝M1/3, or S(rs) ∝M0.23, when taking account of deviations
from self-similarity.

The best fit concerning DM haloes in CT10 is shallower than that of B09 and
the result of the present paper, although the slope is consistent with B09 (0.21)
and the present paper within their large error bars. One has to recall that while
CT10 did explicitly take into account the correlated errors on S(rs) and M200, it is
not known if B09 did the same. Then, the difference in slope is only the outcome
of the use of different algorithms on noisy data

Fig. 2 shows S(rs) for the model of the present paper (long dash - short dash
line), B09 (short-dashed line), and B10 (dot-dashed line). The plot shows that
S(rs) depends on M200. The result of B09 and those of the present paper are
similar except at M200 . 5 × 1010M�, where our model predicts a flattening of
S(rs). The difference at this mass scale is due to the fact that our model is taking
account of baryons while that of B09 just DM. The result of B10, based on a much
simpler SIM than that used in this paper, gives just a qualitative agreement with
other results.

2.2. Comparison of theory and observation of the surface density

In order to compare our results to those of D09 and SD14, we need to find a
way to express our result in terms of µ0D = ρ0r0.

In the following, we show some examples for known profiles. Let us first write
the S(r) for them. For the pseudo-isothermal profile one obtains:

SISO(R) =
2πρcr

2
c

R2

[√
R2 + r2

c − rc

]
. (9)

For the NFW density distribution, we have

SNFW(R) =
4ρsr

3
s

R2

[
arctan

√
R2/r2

s − 1√
R2/r2

s − 1
+ log

(
R

2rs

)]
. (10)

5 The marginalized constraints on the scaling relation parameters for the correlation involving
logS(rs) and logM200 in our model is 0.18+0.05

−0.05, while in the case of CT10, assuming a fiducial

NFW+Salpeter model, is 0.14+0.15
−0.15.
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Fig. 2. S(rs) as a function halo mass M200. The long dash - short dash line, dashed
line, and the dot-dashed line represent S(rs) for the model of this paper, B09, and B10,
respectively.

An analytical relation between the parameters of several profiles can be ob-
tained fitting the same rotation curve (B09, CT10). For an ISO and NFW profile,
one can take an ISO profile, calculates the relative rotation curve and fits the
result with a NFW profile. One finds: rs ' 6.1rc, ρs ' 0.11rc. Comparing the
column densities for NFW and ISO profiles, whose parameters are related through
the relations now written, one obtains:

SNFW(rs)

SISO(6rc)
≈ 0.91 . (11)

Similarly, for the Burkert profile and NFW: rs ' 1.6r0, ρs ' 0.37ρ0 and

SNFW(rs)

SBurkert(1.6r0)
≈ 0.98 . (12)

The difference between the column densities SNFW, SBurkert and SISO turns
out to be less than 10% (CT10). Then, SNFW(rs) ≈ 0.98SBurkert(1.6 r0) ≈
0.91SISO(6 rc) ≈ 1.89 r0ρ0.

In Fig. 3, we compare the result of the present model with the D09 and SD14
results. SD14 extended the sample of CD12. The sample consists of 211 galaxies
of different types. The complete sample of galaxies with its properties can be found
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Fig. 3. The quantity ρ0r0 in units of M�/pc2 as a function of galaxy magnitude for
different galaxies and Hubble types. See explanation in the text.

online (http://mnras.oxfordjournals.org/content/ suppl/2014/10/30/stu1957.DC1
/table.txt). Since different approaches could lead to different DM parameters,
SD14 used DM parameters obtained by different approaches in order to compen-
sate for the uncertainties in each particular approach.

In Fig. 3, the thick-solid and dashed black lines represent the value of logµ0D =
2.15 ± 0.2 obtained by D09. The circles correspond to DM surface densities ob-
tained using the quoted sample and with different methods described in SD14.
The filled symbols represent the averaged estimates of logµ0D when a galaxy was
present in more than one source. The thin solid line represents the result of our
model for the surface density when considering galaxies made of only dark matter.
Differently from this case (galaxies constituted of DM only), the dashed light grey
line denotes the surface density obtained when taking into account all effects con-
sidered in DPK09. For masses lower than ' 5× 1010M� and magnitudes brighter
than MB ' −14, the surface density is constant. However, a systematic change of
the average column density ρ0r0 as a function of the object’s mass is clearly present
for larger masses, the data being well fitted as ρ0r0 ∝ Mα with α = 0.18 ± 0.05.
Such results make, therefore, us safely argue against the constancy or universality
of the surface density6 claimed by KF04 and D09.

6 Or SDM (i.e., SDM = const).
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3. IMPLICATIONS FOR MOND

The small scale problems of the ΛCDM model mentioned in the introduction
can be solved through two different approaches: (a) “cosmological solutions” and
(b) “astrophysical solutions”. One of the solutions belonging to the first group is
MOND.

In the early 1980s Milgrom (1983a,b), based on the fact that typical accel-
erations in galactic systems are many orders of magnitude smaller than those
encountered in the solar system, proposed a modified dynamics based on the ac-
celeration as the relevant system parameter. This modified dynamics, MOND,
introduces a constant with the dimensions of an acceleration, a0, and posits that
standard Newtonian dynamics is a good approximation only for accelerations that
are much larger than a0. More precisely, there are two different “interpretations”
of his idea:
(a) modification of Newton’s second law of motion, from the usual

F = ma (13)

to
F = mµ[a/a0]a, (14)

where µ(x) is an interpolating function satisfying the conditions

µ[x] =

{
1, |x| � 1
x, |x| � 1 ,

(15)

in other terms, µ[a/a0] is a function with value 1 for high values of the acceleration

and a/a0 for small accelerations, and a0 ' 10−10m/s
2

is a universal constant.
When a test particle is subject to an acceleration a� a0, one has

F = GM/r2 = µ(a/a0)aN (16)

leading to

aN =
√
GMa0/r. (17)

Newtonian dynamics holds when a� a0.
(b) DM is highly correlated to luminous matter according to a specific law.

Two consequences of Eqs. (16) and (17) are: (1) that orbital speed on a circular
orbit, far away from a mass M is independent of radius7; (2) this asymptotic
rotational speed depends only on the total mass M via V 4 = GMa0. In MOND,
this is the fact underlying the observed Tully-Fisher-type relations. Another point
in favor of MOND is that the majority of LSB galaxies observed are consistent
with the rotational curve predicted by MOND.

Milgrom (2009) showed that MOND predicts, in the Newtonian regime, a quasi-
universal value of µ0D (logµ0D = 2.14) for every different kind of internal structure
and for all masses. This value is very close to that obtained by D09, shown in Fig. 3
by a thick black line. According to Milgrom (2009), the quasi-universal value is
not shared by objects with low surface densities, so the DM surface density could

7 In reality this is not a consequence of MOND, but a guiding principle used to build up
MOND, which took asymptotic flatness of galaxy rotation curves as an axiom.

Unauthenticated
Download Date | 2/3/17 7:22 PM



204 A. Del Popolo, Xi-Guo Lee

be lower. Thus, we should expect the DM surface density to be around 2.14 or
lower. As can be seen from Fig. 3, this prediction is not confirmed by SD14 data
for high-luminosity systems and by the predictions of our model (grey dashed line).

Moreover, in Fig. 3 we show that up to a certain MB the surface density
follows a constant behavior, similar to that predicted by D09, and after that
it starts to increase. This means that the surface density is not universal, but
depends on magnitude and mass. In summary, our result shows that MOND is
working well in the case of dwarf galaxies and spirals, but going further with mass
it does not work well. This result is in agreement with what is already known,
namely, that MOND has difficulties in reproducing results connected with clusters
of galaxies, large scale structure, Cosmic Microwave Background anisotropies, the
current accelerated expansion and initial conditions for the Big Bang, gravitational
lensing.

For precision’s sake, we recall that some papers evidence problems of MOND
even in the case of dwarf galaxies and on galactic scales. After a detailed formula-
tion of the dynamical friction problem under the alternative hypothesis of MOND
dynamics and in the lack of any dark matter, Sanchez-Salcedo et al. (2006) have
shown that due to the enhanced dynamical drag of the stars the dynamical fric-
tion timescales in MOND, even in the case of dwarfs, would be extremely short.
Ferreras et al. (2008) found that strong gravitational lensing on galactic scales
requires a significant amount of dark matter, even within MOND. More recently,
Hashim et al. (2014) showed that MOND gives a bad fit to the rotation curve of
the galaxy ESO 138-G014. Moffat & Toth (2014) found that MOND predictions
do not agree with the Milky Way (MW) rotation curve data. Randriamampandry
& Carignan (2014) found that in 15 dwarfs and spirals, a0 is different from that
postulated by MOND. Similarly, Adams et al. 2014 found different values of a0

for the dwarf galaxies they studied. Iocco, Pato & Bertone (2015) found that the
previously discussed interpolating function is unable to describe at the same time
the rotation curve of the MW and that of external galaxies.

We finally recall that our result is in agreement with those of B09, NRT10,
and CT10, CD12, SD14, converging on the result that the surface density is not
constant.

4. CONCLUSIONS

Using the SIM model introduced in DPK09, we study the correlation between
the central surface density and the halo core radius of galaxy and cluster of galaxies
dark matter haloes. Differently from what claimed KF04, or D09, the column
density within the halo characteristic radius r∗ is not a universal quantity. The
surface density obtained, S ∝M0.18±0.05, leaves small room to the possibility of a
constant surface density, as claimed previously by the quoted authors.

The quoted constancy of surface density and Newtonian acceleration in r0 is
one of MOND’s predictions. Rephrasing Milgrom (2009), the surface density is
constant for objects of any internal structure and mass, if they are in the Newtonian
regime (see Milgrom 2009). This MOND prediction is not confirmed by our result.

The non self-similar behavior of the surface density and acceleration generated
by DM shows that while MOND paradigm is finely working for dwarfs and spirals
of small mass, it has increasing difficulties with increasing mass.
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APPENDIX. MODEL

The results discussed in the introduction, claiming a constancy of the surface
density (D09; G09) of DM and those claiming a mass dependence (B09, CT10),
are fundamentally based on fitting of observed properties of DM haloes. With the
exception of B10, no qualitative explanation and/or analytical derivation of the
quoted results has been proposed so far. B10 used a SIM and supposed that the
halo density profile evolves in a self-similar way. They arrived at the conclusion
that S ∝ M1/3t−4/3, qualitatively in agreement with B09 simulations and CT10
results, in the sense that S increases with mass, but the slope is much higher than
that obtained by B09 and CT10.

The quoted discrepancy could be connected to the oversimplified structure of
the SIM used. Even if they tried to use the improved SIM of Sikivie et al. (1997),
taking account of angular momentum, these effects on collapse, in reality, are not
properly taken into account.

In what follows, we give a brief description of how we implement the SIM
approach to get the density profile of the dark matter halo referring the interested
reader to DPK09 for further details.

In most popular cosmological scenarios, the density field soon after recombina-
tion can be represented by a Gaussian random field. High density contrast peaks
in the field will eventually achieve overdensities of order 1 and enter a non-linear
stage of evolution. These peaks will then collapse to form bound structures.

A model often used to study the non-linear evolution of perturbations of dark
matter is the SIM or standard spherical collapse model (SSCM) introduced by
Gunn & Gott (1972) and extended in subsequent papers (Ryden & Gunn 1987;
Del Popolo 2009; Cardone et al. 2011a,b; Del Popolo 2012a,b; Del Popolo et al.
2013b,c,d; Pace et al. 2014).

We start with one of these peaks, and, for simplicity, assume that it is spher-
ically symmetric. Following Ryden & Gunn (1987) (RG87), Ryden (1988a,b)
(R88a, R88b), and DPK09, the peak is divided into a very small central core and
many spherically symmetric concentric mass shells, each labeled by its initial co-
moving distance from the center, x. A bound mass shell of initial comoving radius
xi expands up to a maximum radius, xm (or turnaround radius xta). As successive
shells expand, they acquire angular momentum and then contract on orbits deter-
mined by the angular momentum itself, while dissipative processes and eventual
violent relaxation intervene to virialize the system converting kinetic energy into
random motions. In order to obtain the surface density, we need to obtain the
density profiles of haloes. The first step to obtain this goal is to calculate the ini-
tial density profile produced by a primordial fluctuation, δi(xi), given by Bardeen
et al. (1986, hereafter BBKS). Throughout the paper, we adopt the BBKS spec-
trum and a ΛCDM cosmology with WMAP3 parameters, Ωm = 1 − ΩΛ = 0.24,
ΩΛ = 0.76, Ωb = 0.043, and h = 0.73, where h is the Hubble constant in units of
100 km s−1 Mpc−1. In reality, the initial density peak is not smooth, but contains
many smaller scale positive and negative perturbations that originate in the same
Gaussian random field producing the main peak. These secondary perturbations
will perturb the motion of the dark matter particles from their otherwise purely
radial orbits. Therefore, in order to investigate effects such as tidal torques and
non-radial collapse, it is necessary to consider the non-spherical portion of the den-
sity distribution. To this aim, the overall initial density profile, evolved linearly
to the present day, can be written as
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ρ(x) = ρ0[1 + δ0(x)][1 + ε0(x)], (18)

where ρ0 is the present-day background density, the density excess due to the main
halo is δ0(x), and is assumed to be spherically symmetric, and ε0(x) is the density
excess caused by the random secondary perturbations (see RG87, DPK09). The
magnitude of the extra velocity imparted by secondary perturbation to a typical
dark matter particle at the time of turnaround (Eq. [48] of RG87) is

|∆vrms(x, tc/2)| = Fv(x, tc/2)∆g0[d(x, tc/2), x]t0, (19)

where tc is the collapse time, d(x, t) is the comoving displacement, ∆g0 the spatial
dependence of acceleration, and Fv the spatial dependence of acceleration (see
RG87). The tangential, vtan, and radial, vrad, components of velocity are

(∆vtan)2 =
2

3
|∆vrms(x)|2, (∆vrad)2 =

1

3
|∆vrms(x)|2. (20)

The collapse starts from the innermost shell, the one adjacent to the core.
When the first shell reaches its rm, it collapses and finds its apocenter, ra, and
pericenter, rp, within the overall halo potential, ψ(r). It is assumed that the
potential changes slowly compared to the dynamical timescales of the shells, so that
every shell conserves its adiabatic invariants, the radial and tangential momenta

jθ(x) = ∆vtan rm (21)

jr(x) =

∫ ra

rp

vrad dr (22)

throughout the collapse. This is an important assumption in the RG87, Williams
et al. (2004), and DPK09 formalism, it is crucial to the computation of dynamics
of shell crossing. At rm, the average dark matter particle in the shell acquires its
additional random velocity, given by Eq. (19) and Eq. (20).

The radial component of velocity, vrad is given by

dvr
dt

=
h2(r, ν) + j2(r, ν)

r3
−G(r)− µdr

dt
(23)

(Peebles 1993; DPK09), where h(r, ν) is the ordered specific angular momentum
generated by tidal torques, j(r, ν) is the random angular momentum (see RG87),
G(r) is the gravitational acceleration, and µ is the coefficient of dynamical friction.
In the present paper, we take into account both types of angular momentum:
random, j, and ordered, h. As described in RG87, to calculate the ordered angular
momentum, one has first to obtain the rms torque, τ(r), on a mass shell and then
calculate the total specific angular momentum, h(r, ν), acquired during expansion,
by integrating the torque over time (R88a, Eq. 35) In order to calculate µ, we recall
that, in hierarchical universes, matter is concentrated in lumps, and the lumps into
groups and so on, which act as gravitational field generators. One can calculate the
stochastic force generated by these field generators and then, following Kandrup
(1980), the dynamical friction force per unit mass:

F = −µv = −
4.44[Gmanac]1/2 log

(
1.12N2/3

)
N

v

a3/2
=

−βo
v

a3/2
, (24)
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where N = 4π
3 R

3
sysna, is the total number of field particles, ma and na are, respec-

tively, the average mass and the number density of the field particles, nac = na×a3

is the comoving number of field particles, and a is the expansion parameter, con-
nected to the proper radius of a shell by

r(ri, t) = ria(ri, t). (25)

The number and mass of the field generators is calculated using the theory of
Gaussian random fields (BBKS86).

The radial distribution of mass within a shell between apocenter and pericenter
is not uniform. The density in the radial range dr around r (or equivalently the
probability P (r)dr that the particle is in the radial range r → r+dr) is proportional
to the amount of time the particle spends there, (Eq. [53] of RG87):

P (r) dr =
v−1

rad dr∫ ra
rp
v−1

rad dr
. (26)

If Mshell is the mass of the added shell, then the total mass distribution of the
core and shell together is:

M1(r) = M(r) +Mshell

∫ r

rp

P (r′)dr′. (27)

From this mass function, the new potential ψ1(r) is calculated. The next mass
shell is added and its probability distribution is calculated in the potential ψ1(r).
However, the mass distribution of a newly added shell overlaps with shells that
have collapsed earlier; that is, the pericenter of the shell is at a smaller radius than
the apocenters of some fraction of the previously added shells. Thus, after adding
each new shell, we must recompute the orbits for each shell with which it overlaps.
Since the potential does not change violently, the adiabatic invariants of the orbits
are conserved. In this case, the adiabatic invariants are the angular momentum
jθ and the radial action jr. By repeatedly adding shells in this manner, while
adjusting the orbits so that the angular momentum and radial action of the orbits
are conserved, a self-consistent mass distribution is built up.8

The shape of the central density profile is influenced by baryonic collapse:
baryons drag dark matter in the so-called adiabatic contraction (AC) steepening
the dark matter density slope. Blumenthal et al. (1986) described an approximate
iterative analytical model to calculate the effects of AC9. More recently, Gnedin et
al. (2004) proposed a simple modification of the Blumenthal et al. model, which
describes numerical results more accurately. The adiabatic contraction was taken
into account by means of Gnedin et al.’s (2004) model. In order to calculate halo
surface density, one can fit the density profiles or rotation curves by means of DM
profile models or calculating the dark matter column density, as described in the
main text of the paper.

8 In other words, the mass particles, once position and velocities are assigned, are allowed to
follow the appropriate orbit in the gravitational potential of the previously collapsed matter. As
each mass shell is added, those previously added shells with which it overlaps have their orbits
adjusted so that the angular momentum jθ and radial moments jr integrated from pericenter to
apocenter are conserved.

9 The solutions of their equation are obtained through iterative techniques (Spedicato et al.
2003).
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