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Initial-state fluctuations from midperipheral to ultracentral collisions in an event-by-event
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We have developed a relativistic kinetic transport approach that incorporates initial-state fluctuations allowing
to study the buildup of elliptic flow v2 and high-order harmonics v3, v4, and v5 for a fluid at fixed η/s(T ). We study
the effect of the η/s ratio and its T dependence on the buildup of the vn(pT ) for two different beam energies: RHIC
for Au+Au at

√
s = 200 GeV and LHC for Pb + Pb at

√
s = 2.76 TeV. We find that for the two different beam

energies considered the suppression of the vn(pT ) due to the viscosity of the medium have different contributions
coming from the crossover or QGP phase. Our study reveals that only in ultracentral collisions (0–0.2%) the
vn(pT ) have a stronger sensitivity to the T dependence of η/s in the QGP phase and this sensitivity increases
with the order of the harmonic n. Moreover, the study of the correlations between the initial spatial anisotropies
εn and the final flow coefficients vn shows that at LHC energies there is more correlation than at RHIC energies.
The degree of correlation increases from peripheral to central collisions, but only in ultracentral collisions at
LHC, we find that the linear correlation coefficient C(n,n) ≈ 1 for n = 2,3,4, and 5. This suggests that the final
correlations in the (vn,vm) space reflect the initial correlations in the (εn,εm) space.
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I. INTRODUCTION

The experimental results accumulated in these years in
the ultrarelativistic heavy-ion collisions (uRHICs), first in the
experiments conducted at RHIC and more recently at the LHC,
has shown that the elliptic flow v2 =〈cos(2 ϕp)〉=〈(p2

x − p2
y)/

(p2
x + p2

y)〉 is the largest ever observed in HIC [1,2]. The
elliptic flow is a measurement of the momentum anisotropy
of the emitted particles and it is an observable that encodes
information about the transport properties of the matter created
in these collisions. Theoretical calculations within viscous
hydrodynamics [3,4], and in recent years also calculations
performed within transport approach [5–7], have shown that
this large value of v2 is consistent with a matter with a very
low shear viscosity to entropy density ratio η/s close to the
conjectured lower bound for a strongly interacting system,
η/s = 1/4π [8].

While early studies have been focused on elliptic flow
generated by the global almond shape of the fireball for
noncentral collisions, in recent years the possibility to measure
experimentally the event-by-event angular distribution of
emitted particle has made it possible to go beyond such
a simplified picture, accessing the fluctuating shape that
encodes higher-order harmonics generating nonzero flows
vn = 〈cos(nϕp)〉 [9–11]. Hence most of the research activity
has been now focused on the study of the effects of the
fluctuations in the initial geometry due to the fluctuations
of the position of the nucleons in the overlap region of the
collision [12–17]. Such fluctuations in the initial geometry are
sources for momentum anisotropies of any nth order harmonics
vn = 〈cos(nϕp)〉 and in particular of the triangular flow n = 3,
that especially in ultracentral collisions appears as the largest
one [11,18,19].

The comparison between event-by-event viscous hydrody-
namical calculations and the experimental results for vn seems

to confirm a finite but not too large value of 4πη/s ∼ 1 − 3
[15,16]. However, small values of η/s is not an evidence of
the creation of a QGP phase. A phenomenological estimation
of its temperature dependence could give information if the
matter created in these collisions undergoes a phase transition
[20–22]. Information about a temperature dependence of η/s
can be achieved studying the v2(pT ) and the high order
harmonic vn(pT ) in a wider range of energies. Similar studies
have been performed using a transport approach but only for
the elliptic flow in an approach not incorporating event-by-
event fluctuations [22,23]. In this paper we extend this analysis
to high order harmonics studying the role of the η/s on the
buildup of vn(pT ) using for the first time a cascade approach
with initial-state fluctuations.

There are several theoretical indications that η/s should
have a particular behavior with the temperature [20,21,24–27].
As an example in Fig. 1 it is shown a collection of theoretical
results about the temperature dependence of η/s. Figure 1
shows that in general η/s should have a typical behavior
of phase transition with a minimum close to the critical
temperature TC [20–23].

On one hand at low-temperature estimates of η/s in the
chiral perturbation theory for a meson gas [24,25], have
shown that in general η/s is a decreasing function with the
temperature, see down triangles in Fig. 1. Similar results
for η/s have been extrapolated from heavy-ion collisions at
intermediate energies, see HIC-IE diamonds in Fig. 1. On the
other hand at higher temperature T > Tc lQCD calculations
have shown that in general η/s becomes an increasing function
with the temperature [26,29], see up triangles and circles in
Fig. 1, but due to the large error bars in the lQCD results for
η/s it is not possible to infer a clear temperature dependence
in the QGP phase. The analysis at different energies of v2(pT )
and the extension to high order harmonics vn(pT ) can give
further information about the T dependence of η/s. In this
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FIG. 1. (Color online) Different parametrizations for η/s as a
function of the temperature. The orange area refers to the quasiparticle
model predictions for η/s [28]. The three different lines indicate
different possible T dependencies studied in this paper. Symbols are
as in the legend. See the text for more details.

paper we study and discuss the buildup of anisotropic flows vn

in ultrarelativistic HIC treating the system as a fluid with some
η/s(T ). This is achieved by mean of a transport approach with
initial-state fluctuations. The paper is organized as follows. In
Sec. II, we introduce the transport approach at fixed shear
viscosity to entropy density η/s. In Sec. III, we discuss
the initial conditions and in particular the implementation
of the initial-state fluctuations in the transport approach. In
Sec. IV, we study the time evolution of the anisotropic flows
〈vn〉 and the effect of the η/s(T ) on the differential vn(pT ).
Finally, in Sec. V we study the correlations between the initial
asymmetry in coordinate space measured by the coefficients
εn and the final anisotropy in momentum space measured by
the anisotropic flows 〈vn〉. In this paper we will show results
on vn(pT ) for n = 2,3,4, and 5 for the two different systems
Au + Au at

√
s = 200 GeV and Pb + Pb at

√
s = 2.76 TeV

at different centralities.

II. KINETIC APPROACH AT FIXED SHEAR VISCOSITY
TO ENTROPY DENSITY RATIO

In this work we employ the kinetic transport theory to study
the evolution of the fireball created in relativistic heavy-ion
collisions. We perform such simulations using a relativistic
transport code developed to perform studies of the dynamics
of heavy-ion collisions at both RHIC and LHC energies
[5,7,30–33]. The evolution of the phase-space distribution
function f (x,p,t) is given by solving the relativistic Boltz-
mann transport (RBT) equation:

pμ ∂μf (x,p) = C[f ] + S[f0], (1)

where C[f ] is the Boltzmann-like collision integral. In the
result shown in this paper we have considered only the
2 ↔ 2 processes and for one-component system C[f ] can be

written as,

C[f ] =
∫

2,1′,2′
(f1′f2′ − ff2)|M|2δ4(p + p2 − p1′ − p2′ ),

(2)

where
∫

2,1′,2′ = ∫
�k=2,1′,2′d3pk/2Ek(2π )3 and M denotes

the transition amplitude for the elastic processes, which
is directly linked to the differential cross section |M|2 =
16π s (s − 4M2)dσ/dt with s the Mandelstam invariant.
Numerically, we solve the RBT equation using the so-called
test particle method and the collision integral is solved by using
Monte Carlo methods based on the stochastic interpretation of
transition amplitude [5,31,34].

In the standard use of the transport theory one fixes the
microscopical details of the scatteringlike matrix element or
cross sections of the processes to study the effect of the
microscopical details on the observables. This is however
not our aim; we exploit the cross section σtot as a tool to
determine the η/s of the system. As shown in Ref. [35] in
the hydrodynamic limit observables such as v2(pT ) or spectra
don’t depend on the microscopic details encoded in |M|2, in
agreement with the implicit assumption of hydrodynamics. In
such an approach it is possible to study directly the impact of
η/s on observables such as the anisotropic flows vn(pT ), which
is the main focus of this paper. Compared with the viscous
hydrodynamic calculations, a kinetic approach at fixed η/s has
manly two advantages: first, in this approach we start from a
description in terms of f (x,p) instead of starting from T μν(x)
and it is possible to include initial nonequilibrium effects (see
Refs. [32,33]). Second, this approach is not based on an ansatz
for the viscous corrections for the phase-space distribution
function δf with the limitation in the transverse momentum
range in order to ensure that δf/f 	 1. Also this approach
provides a tool to study the effect of η/s on the observables
in a wider range of η/s and in transverse momentum pT .
Notice also that the kinetic freeze out can be determined
self-consistently with an increasing η/s(T ) that determines
a smooth switching off of the scattering rates. A more detailed
discussion can be found in previous papers, see Refs. [5,32,33].
The disadvantage of the present approach is that hadronization
has not yet been included. A more general disadvantage is that
RBT converge to viscous hydrodynamics with the relaxation
time typical of a kinetic theory. However, viscous hydrody-
namics with relaxation times of kinetic theory have been shown
to be in quite good agreement with experimental data.

In order to study the dynamical evolution of the fireball
with a certain η/s(T ) we determine locally in space and
time the total cross section σtot needed to have the wanted
local viscosity. As shown in Ref. [31] the Chapmann-Enskog
theory correctly describes the relation between η ↔ T ,σ (θ ),ρ
providing a good agreement with the results obtained using the
Green-Kubo correlator. In the Chapmann-Enskog theory and
for a pQCD inspired cross section, typically used in parton
cascade approaches [5,6,34,36–39], dσ/dt ∼ α2

s /(t − m2
D)2,

the η/s is given by the following expression:

η/s = 1

15
〈p〉 τη = 1

15

〈p〉
g(a)σtotρ

, (3)
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where a = mD/2T , with mD being the screening mass regulat-
ing the angular dependence of the cross section, while g(a) is
the proper function accounting for the pertinent relaxation time
τ−1
η = g(a)σtotρ associated to the shear transport coefficient

and it is given by:

g(a) = 1

50

∫
dyy6

[(
y2+1

3

)
K3(2y)−yK2(2y)

]
h

(
a2

y2

)
, (4)

where Kn’s are the Bessel functions and the function h
relate the transport cross section to the total cross sec-
tion σtr(s) = σtot h(m2

D/s) with h(ζ ) = 4ζ (1 + ζ )[(2ζ + 1)ln
(1 + 1/ζ ) − 2].

In order to study the role of the η/s ratio and its temperature
dependence we consider three different cases: one with a
constant 4πη/s = 1 during all the evolution of the system
dashed line in Fig. 1, another one with 4πη/s = 1 at higher
temperature in the QGP phase and an increasing η/s in the
crossover region towards the estimated value for hadronic
matter 4πη/s ≈ 6 [25,40] shown by solid line in Fig. 1. Such
an increase of η/s in the crossover region 0.8TC � T � 1.2TC

allows for a smooth realistic realization of the kinetic freeze
out. This is because at lower temperature, according to the
formula Eq. (3) σ ∝ (η/s)−1, i.e., the increase of η/s towards
the estimated value for the hadronic matter, implies the total
cross section decreases and this permits us to achieve in a
self-consistent way the kinetic freeze out. In the following
discussion the term “f.o.” means to take into account the
increase of η/s at low temperature. The third one is shown
in Fig. 1 by the dot-dashed line. In this case we consider the
increase of η/s at higher temperature with a linear temperature
dependence and a minimum close to the critical temperature
with a temperature dependence similar to that expected from
general considerations as shown in Fig. 1.

III. INITIAL CONDITIONS

The main feature in the present paper is the implementation
of initial-state fluctuations in a transport cascade approach. We
will consider two systems at different centralities: Au + Au
collisions at

√
sNN = 200 GeV produced at RHIC and Pb +

Pb collisions at
√

sNN = 2.76 TeV at LHC. In particular in
this section we discuss the implementation of the initial-state
fluctuations in the above transport approach. In order to gen-
erate an event-by-event initial profile we use the Monte Carlo
Glauber model. In this model the Woods-Saxon distribution is
used to sample randomly the positions of the nucleons in the
two colliding nuclei A and B. In this way a discrete distribution
for these nucleons is generated. We employ the geometrical
method to determine if the two nucleons one from the nucleus
A and the other one from the nucleus B are colliding. Within
this method two nucleons collide with each other if the relative
distance in the transverse plane is dT �

√
σNN/π where σNN is

the nucleon-nucleon cross section. In our calculations we have
used σNN = 4.2 fm2 for RHIC and σNN = 7.0 fm2 for LHC.
Ncoll and Npart are given by counting the number of collisions
and the number of participating nucleons for each event. The
next step is the conversion of the discrete distribution for the
nucleons into a smooth one by assuming for each nucleon a
Gaussian distribution centered in the nucleon position. In our
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FIG. 2. (Color online) In the left column it is shown the initial
transverse density ρT (x,y) at midrapidity for two typical events
for Au + Au at

√
sNN = 200 GeV (top) and Pb + Pb at

√
sNN =

2.76 TeV (bottom). In the right column is shown the corresponding
initial temperature in transverse plane. These plots are for an impact
parameter of b = 7.5 fm.

model we choose to convert the information of the nucleon
distribution into the density in the transverse plane ρT (x,y),
which is given by the following sum

ρT (x,y) = C

Npart∑
i=1

exp

[
− (x − xi)2 + (y − yi)2

2σ 2
xy

]
, (5)

where C is an overall normalization factor fixed by the
longitudinal distribution dN/dy while σxy is the Gaussian
width, which regulates the smearing of the fluctuations and in
the following calculations it has been fixed to σxy = 0.5 fm.
In our calculation we have assumed initially a longitudinal
boost invariant distribution from y = −2.5 to y = 2.5. In
the first column of Fig. 2 it is shown the contour plot of
the initial transverse density at midrapidity for a given event
with impact parameter b = 7.5 fm. The top panel refers to the
system Au + Au at

√
sNN = 200 GeV and the bottom panel

to Pb + Pb at
√

sNN = 2.76 TeV.
The transverse density ρT (x,y) fixes the initial anisotropy

in coordinate space that is quantified in terms of the following
coefficients εn:

εn =
√〈

rn
T cos (nφ)

〉2 + 〈
rn
T sin (nφ)

〉2
〈
rn
T

〉 , (6)

where rT =
√

x2 + y2 and φ = arctan(y/x) is the polar
coordinate in the transverse plane. In Fig. 3 it is shown the
initial spatial anisotropies ε2, ε3, ε4, and ε5 as a function of the
impact parameter. The second coefficient ε2 shows a stronger
dependence with the impact parameter with respect to the other
coefficients because it acquires a contribution due to the global
almond shape of the fireball while the other harmonics have
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FIG. 3. (Color online) Initial spacial anisotropies εn as a function
of the impact parameter. Different symbols are for different n. The
solid lines refer to the Monte Carlo Glauber while the dashed ones to
the optical Glauber model.

most of their origin in the fluctuations of the positions of the
nucleons. For more central collisions b � 2.5 fm the ε2 is even
smaller than the other harmonics because when the effect of
the elliptic overlap region disappears it becomes more difficult
to have fluctuations of the positions of the nucleons along only
one preferential direction.

For the initialization in momentum space at RHIC (LHC)
energies we have considered for partons with transverse mo-
mentum pT � p0 = 2 GeV (3 GeV) a thermalized spectrum
in the transverse plane. Assuming the local equilibrium the
initial local temperature in the transverse plane T (x,y) is
evaluated by using the standard thermodynamical relation
ρT (x,y) = γ T 3/π2 with γ = 2 × (N2

c − 1) + 2 × 2 × Nc ×
Nf = 40 with Nc = 3 and Nf = 2. In the right column of
Fig. 2 it is shown the corresponding initial local temperature in
transverse plane. As shown in the central region of the fireball
for midperipheral collision we can reach temperature
T ≈ 300 MeV at RHIC and T ≈ 400 MeV at LHC. While
for partons with pT > p0 we have assumed the spectrum
of nonquenched minijets according to standard NLO-pQCD
calculations with a power-law shape [41,42]. In coordinate
space the partons with pT > p0 have been distributed accord-
ing the binary collisions. The initial transverse momentum of
the particles is distributed uniformly in the azimuthal angle.
We fix the initial time of the simulation to τ0 = 0.6 fm/c for
RHIC and τ0 = 0.3 fm/c for LHC.

In the following discussion, we will consider two different
types of initial conditions. One consisting in a fixed initial
distribution by using the standard Glauber model as used
in previous works, see Refs. [5,7,22,30]. The second one
consisting of an initial profile changing event by event
according to the MC Glauber model as discussed before.

In our simulations we have used Nevent = 500 events for
each centrality class. This number is enough to get solid results
for the spectra, differential elliptic flow, and high order flow
coefficients vn(pt ). For the study of the correlations between
the initial εn and the final vn that will be shown in the next
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FIG. 4. (Color online) Results for Au + Au collisions at
√

sNN =
200 GeV for mid rapidity. Left: differential elliptic flow v2(pT ) at mid
rapidity. The solid lines refer to the case with initial-state fluctuations
the dashed lines are for the case without initial fluctuations. Thick
lines are for b = 2.5 fm while thin lines for b = 7.5 fm. Right:
differential v4(pT ) at mid rapidity with the same legend as in the
left panel.

section we have extended this analysis to 103 events. The
inclusion of the initial-state fluctuations introduces further
difficulties because in order to get stable results we need to
have a good sampling of the initial geometry event by event
and this is controlled by the total number of test particles
Ntest. Furthermore, an irregular initial profile need a good
calculation grid resolution. We have checked the convergency
of our results for v2, v3, and v4 with the lattice spacing of
the calculation grid and Ntest. We found the convergency for
a grid with a transverse area of the cell AT = 0.12 fm2 and
Ntest = 2×106 as the total number of test particles per event.

The elliptic flow v2(pT ) and the high order harmonics
v3(pt ), v4(pT ), and v5(pT ) have been calculated as

vn = 〈cos [n(φ − �n)]〉, (7)

where the momentum space angles �n are given by

�n = 1

n
arctan

〈sin (nφ)〉
〈cos (nφ)〉 . (8)

In this section first we discuss the comparison between
the Glauber model without initial fluctuations with the MC
Glauber with fluctuations. Without initial-state fluctuations
only even harmonics can be generated therefore we will
consider here only v2(pT ) and v4(pT ). In the left panel of
Fig. 4 we compare the differential elliptic flow v2(pT ) obtained
with an initial state that changes event by event according to
the MC Glauber model (solid lines) as discussed in detail
the previous section with the one obtained for the case with
an averaged initial profile (dashed lines). These results are
for Au + Au collisions at

√
s = 200 GeV and for 20–30%

centrality class. In these calculations we have considered
4πη/s = 1 at high temperature and an increasing η/s at lower
temperature as shown by the red solid line in Fig. 1. As shown
for midperipheral collision (with b = 7.5 fm) the effect of the
fluctuations in the initial geometry is to reduce the v2(pT ) of
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FIG. 5. (Color online) εn/εn(t0) as a function of the time for Au +
Au collisions at

√
sNN = 200 GeV (dashed lines) and for Pb + Pb

collisions at
√

sNN = 2.76 TeV (solid lines). Different symbols refer
to different harmonics n.

about 15%, despite the same initial eccentricity ε2 in Glauber
and Monte Carlo Glauber, see green solid and dashed lines
in Fig. 3. The reduced efficiency in building up the v2(pT )
is related to the fact that for an irregular geometry in the
transverse plane the pressure gradients generate also a small
counterflow towards the inner part of the fireball reducing the
azimuthal anisotropy in momentum space due to the global
almond shape. The introduction of the fluctuations in the
initial geometry play the role to generate the higher-order
harmonics in particular the odd harmonics, which were absent
by symmetry in the averaged initial configuration. In the
right panel of Fig. 4 we show the same comparison for the
quadrangular flow v4(pT ). We observe an opposite behavior:
the initial-state fluctuations increase the final v4(pT ) by a factor
of 3. This result is related to the fact that the fluctuations
introduce about a factor 3 larger initial ε4 as shown by the
comparison between blue solid and dashed lines in Fig. 3. In
other words for midperipheral collisions most of v2(pT ) comes
from the global almond shape while v4(pT ) comes normally
from the initial fluctuations. In fact, as shown by the black thick
solid and dashed lines in the left panel of Fig. 3 the effect of the
fluctuations is to produce a larger v2(pT ). From the comparison
between thick black solid and dashed line in the right panel
of Fig. 3 we observe a nonzero v4(pT ) that was absent in
the averaged initial profile where the initial ε4 ≈ 0 (see blue
dashed line in Fig. 3). Moreover we observe a low sensitivity
of v4(pT ) with the centrality similarly to the experimental data
at RHIC energies [10]. Such a behavior would be impossible
to explain without initial-state fluctuations.

IV. EFFECTS OF η/s(T ) ON THE vn( pT )

In the first part of this section we discuss the time evolution
of the eccentricities εn and the anisotropic flows coefficients
〈vn〉 for Au + Au collisions at

√
s = 200 GeV (solid lines) and

for Pb + Pb collisions at
√

s = 2.76 TeV. In Fig. 5 we plot the
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FIG. 6. (Color online) 〈vn〉/〈vn〉max as a function of time at
midrapidity and for (20–30)% of centrality. Dashed lines are the
results for Au + Au at

√
sNN = 200 GeV while solid lines Pb + Pb

at
√

sNN = 2.76 TeV. Different symbols correspond to different
harmonics.

time evolution of the εn normalized to the initial eccentricity
εn(t0 = 0.6 fm/c) for RHIC and εn(t0 = 0.3 fm/c) for LHC.
At very early times the small deformation of the fireball in the
transverse plane decrease linearly with time and at first order
of this deformation we have that εn ∝ εn(t0) − αn tn−2. This
gives the ordering in the time evolution of εn shown in Fig. 5.
the time evolution of εn is faster for larger n.

On contrary vn show an opposite behavior during the early
times of the expansion of the fireball. In Fig. 6 it shown the
average 〈vn〉 normalized to its maximum value at the end of
the expansion. The 〈vn〉 appear later for larger n and their
development is flatter at early times for larger n. Similar
results have been obtained in a 2 + 1D transport approach
where considerations on the early times evolution of the
fireball give that 〈vn〉 ∝ tn [43,44]. As shown in left panel
of Fig. 7 we observe that in the time evolution of the different
harmonics 〈vn〉 the ordering is present also at late times. In
right panel of Fig. 7 it is shown the production rate for the
different harmonics and as shown different harmonics have
different production rates. In particular, we observe that at
very early time the second harmonic has a nonzero value
for d〈v2〉

dt
�= 0 at variance with higher harmonics for which

d〈vn〉
dt

≈ 0. This different behavior could be the origin of the
stronger correlation between the final elliptic flow v2 and its
initial eccentricity ε2 that becomes weaker between the final
vn and the initial εn for higher harmonics (n > 2), see Sec. V.

Differential flow coefficients vn(pT ) are observables that
carry out more information about the fireball created in the
heavy ion collisions in particular because they are sensitive to
the transport properties of the medium such as the η/s ratio.
In the following discussion we will study the effect of the η/s
on the buildup of the elliptic flow v2(pT ) and on the high order
harmonics v3(pT ), v4(pT ), and v5(pT ). With vn(pT ) we mean
the root mean square

√〈v2
n〉 as it has been done in experimental

data using the event plane method. In the top panel of Fig. 8
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FIG. 7. (Color online) Left: Time evolution of 〈vn〉 at midrapidity
respectively for (20–30)% centrality collisions. Different symbols are
for different harmonics. Right: Production rate d〈vn〉

dt
as a function of

time at midrapidity and for the same centrality. These results are for
Pb + Pb collision at

√
sNN = 2.76 TeV.

it is shown the elliptic flow v2(pT ) (green thick lines) and
the v4(pT ) (blue thin lines) at midrapidity and for (20–30)%
centrality for both RHIC Au + Au at

√
s = 200 GeV (left

panel) and LHC Pb + Pb at
√

s = 2.76 TeV (right panel). In
general in agreement with what has been obtained in viscous
hydrodynamical calculations, the increase of the viscosity of
the medium has the effect to reduce both v2 and v4.

As we can see at RHIC energies comparing the thick dashed
lines with the solid ones, in the left panel of Fig. 8, the v2(pT ) is
sensitive to the increase of the η/s at lower temperature close
to the crossover region. In particular the effect is a reduction
of the elliptic flow of about 17%. A similar trend was observed
for the fourth harmonic v4(pT ) where we have a reduction due
to the increase of η/s at lower temperature but the effect in
this case is about a factor of two larger than the previous one,
i.e., about 30–40%. The different sensitivity to the η/s can
be attributed to their different formation time, tv4 > tv2 [38].
As shown in Fig. 6 each harmonics vn starts to develop at
different times. In particular v4 has its maximum development
approximatively at τ ≈ 3 fm/c while the v2 at τ ≈ 1.2 fm/c.
This means that different harmonics probe mainly different
temperatures and different value of the η/s ratio. Assuming
that the first few fm/c of the expanding fireball are dominated
by the one-dimensional (1D) longitudinal expansion [32]
where approximatively T (τ ) = T0(τ0/τ )1/3 we have that when
v4 has its maximum development at about τ ≈ 3 fm/c the
temperature is 1.3 TC at RHIC and 2 TC at LHC. In other
words, this tells us that v4 at RHIC energies mainly develops
closer to the crossover region where η/s should increase.

On the other hand, at LHC energies, left panel of Fig. 8, the
scenario is different, the elliptic flow is almost unaffected by
the increase of η/s ratio at low temperature (in the hadronic
phase) as we can see comparing the green thick dashed line
with the solid one. Instead we observe that the increase of
η/s at lower temperature has a more sensitive effect on the
v4(pT ) with a reduction of about 5–10%, see blue solid and
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FIG. 8. (Color online) Top: Differential v2(pT ) (thick lines) and
v4(pT ) (thin lines) green and blue lines respectively at midrapidity
and for (20–30)% collision centrality. The comparison is between
the two systems: Au + Au at

√
s = 200 GeV (left) and Pb + Pb at√

s = 2.76 TeV (right). The dashed lines refer to the case with a
constant η/s = (4π )−1 during all the evolution. The solid lines refer
to the case with η/s = (4π )−1 at higher temperature and with an
increasing η/s ratio at lower temperature while the dot dashed lines
refer to the case with η/s ∝ T at higher temperature and with an
increasing η/s ratio at lower temperature. Right: Differential v3(pT )
in red lines with the same legend as in the top panel.

dashed lines. Again this different sensitivity to the η/s in the
crossover region between v2 and v4 at LHC is consistent with
the results obtained at RHIC energies and depends on the
different formation time of the harmonics in relation to the
initial T of the system. The greater sensitivity at RHIC energies
of both v2 and v4 to the η/s at low temperature is related to
the different lifetime of the fireball. In fact the lifetime of
the fireball at LHC is greater than that at RHIC, 8–10 fm/c
at LHC against 4–5 fm/c at RHIC. In general this means
that at RHIC energies the vn have not enough time to fully
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develop in the QGP phase. While at LHC energies we have
that the vn develops almost completely in the QGP phase and
therefore it is less sensitive to the dynamics in the crossover and
hadronic region. This result were first found without initial-
state fluctuation in Refs. [7,30,45] but remains similar also
with fluctuations. The last, however, allows us to study for the
first time a similar effect also on v3(pT ).

In Fig. 8 is shown the effect of an η/s(T ) in the QGP
phase. In the comparison between the solid lines and the dot
dashed ones the only difference is in the linear temperature
dependence of η/s ∝ T for T > TC while at lower temperature
we have the same dependence (see dot dashed lines in Fig. 1).
As we can see the v4 at LHC is sensitive to the change of
η/s at higher temperature while at RHIC energies the v4 is
completely unaffected by this change. In the bottom panel
of Fig. 8 it is shown the triangular flow v3(pT ) (red lines)
at midrapidity for (20–30)% centrality and for both RHIC
Au + Au at

√
s = 200 GeV (left panel) and LHC Pb + Pb at√

s = 2.76 TeV (right panel). In agreement with what has been
obtained for the even harmonics v2 and v4, we observe at RHIC
energies a reduction of v3(pT ) due to the increase of the η/s at
low temperature with a reduction of about 25%, while at LHC
it is almost insensitive to the change of η/s in the crossover
region. However we observe that at LHC the third and fourth
harmonics are more sensitive to the change of η/s(T ) with
respect to the elliptic flow with a deviation of about 10% for
v3 and v4 against a less 5% for v2. Still it has be noted that
such a sensitivity is quite small to hoping a determination of
the T dependence of η/s from the vn(pT ).

Very recently it has been possible to access also experimen-
tally to the ultracentral collisions. The ultracentral collisions
are interesting because the initial εn come completely from
the fluctuations in the initial geometry rather than by global
geometric overlap region. In Fig. 9 is shown the comparison of
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FIG. 9. (Color online) Comparison between vn(pT ) for midpe-
ripheral (left) and central (right) collision. Different colors refer to
different harmonics while solid lines correspond to 4πη/s = 1 in
QGP phase and f.o. and dot dashed lines to η/s ∝ T in the QGP
phase and f.o.
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FIG. 10. (Color online) Ratio between vn(pT ) for two different
parametrizations of η/s as a function of the order of the harmonic
n and for pT = 1.5 GeV (open symbols) and pT = 2 GeV (full
symbols). Solid lines refer to midperipheral collisions while dashed
lines to ultracentral collisions.

vn(pT ) produced in Pb + Pb at
√

s = 2.76 TeV collisions for
different centralities: left panel for midperipheral collisions
and right panel for central collisions. Different colors are
for different harmonics. Solid lines refer to the case with
η/s = 1/(4π ) in the QGP phase and the increase at low
temperature as shown in Fig. 1 by red solid lines while the
dot-dashed lines refer to the case with η/s ∝ T in the QGP
phase and the increase at low temperature as shown in Fig. 1
by blue dot dashed lines. From the comparison we observe
that at low pT both centralities the vn(pT ) are much flatter
for larger n. This results is in agreement with that obtained in
hydrodynamic calculations where vn(pT ) ∝ pn

T [46]. On the
other hand at high pT for ultracentral collisions we observe
that the elliptic flow v2(pT ) shows a saturation while for
n � 3vn(pT ) increase linearly with pT . This is in qualitative
agreement with what has been observed experimentally, but
a quantitative comparison would require the inclusion of
hadronization, which, however, would not affect the sensitivity
to η/s(T ). In particular the sensitivity to the value of η/s in
the QGP phase increase with the increasing the order of the
harmonics n in agreement with the fact that viscous corrections
to vn(pT ) increase with the harmonics [35]. Furthermore we
observe that reduction of vn(pT ) due to the increase of η/s
in the QGP phase (dot dashed lines) is strongly enhanced
for ultracentral collisions. As shown in Fig. 10 for n � 3
the reduction for central collisions is about 30–35% against
a reduction of about 10% for midperipheral collisions. It is
indeed remarkable that a 30% effect is determined by a slowly
linear rising of η/s with T as the one considered and depicted
in Fig. 1. In particular, in central collisions higher harmonics
acquire a larger sensitivity to the value of the viscosity in
the QGP phase. Therefore our study suggests that to have
information about η/s(T ) one should focus on ultracentral
collisions. This point is further strengthened by the study of
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the correlations between vn and the initial eccentricities εn,
which we discuss in the next section.

V. CORRELATIONS BETWEEN vn AND εn

In recent years, the correlation between integrated v2 and
high order harmonics v3, v4 with the initial asymmetry in co-
ordinate space ε2,ε3, and ε4 have been studied in the event-by-
event ideal and viscous hydrodynamics framework [47–49].
In general it has been shown that the elliptic flow is strongly
correlated with initial eccentricity while a weaker correlation
has been found for higher harmonics v3,v4, with ε3 and ε4.
One explanation for the weak correlation observed between v4

and ε4 is that for final v4 there is also a correlation with the
initial ε2. In particular, in Ref. [47] it has been shown that it
possible to have a good linear correlation between v4 and a
linear combination of the initial ε2 and ε4.

In this section we discuss these correlations within an event-
by-event transport approach with initial-state fluctuations. A
measure of the linear correlation is given by the correlation

coefficient C(n,m) given by the following expression:

C(n,m) =
∑

i

(
εi
n − 〈εn〉

)(
vi

m − 〈vm〉)√∑
i

(
εi
n − 〈εn〉

)2 ∑
i

(
vi

m − 〈vm〉)2
, (9)

where εi
n and vi

m are the values of εn and vm corresponding
to the given event i and evaluated according Eqs. (6) and (7).
C(n,m) ≈ 1 corresponds to a strong linear correlation between
the initial εn and the final vm.

The results shown in this section have been obtained
with Nevent = 1000 events for each centrality class and a
total number of test particles per event of Ntest = 2×106.
In Fig. 11, it is shown the two-dimensional plots of the
integrated flow coefficients vn as a function of the corre-
sponding initial εn for each event. The results shown are
for Au + Au collisions at

√
sNN = 200 GeV and for three

different centralities (10–20)%, (20–30)%, and (30–40)%. The
viscosity has been fixed to 4πη/s = 1 plus a kinetic f.o.
realized by the increase in η/s(T ) as in Fig. 1. As shown
in the top panel we observe a stronger linear correlation
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FIG. 11. (Color online) εn and vn for Au + Au collisions at
√

sNN = 200 GeV and for three different centrality class. Top: ε2 and v2 for
(10–20)%, (20–30)%, and (30–40)% from left to right. Middle: ε3 and v3 for the same centralities. Finally in the bottom panel ε4 and v4. In
these calculations we have fixed η/s = 1/(4π ) for high temperature and the kinetic f.o. at lower temperature (see solid line in Fig. 1).
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FIG. 12. (Color online) εn and vn for Pb + Pb collisions at√
sNN = 2.76 TeV and for (20–30)% and (0–0.2)% centrality cut,

respectively right and left panel. In these calculations we have fixed
η/s = 1/(4π ) for high temperature and the kinetic f.o. at lower
temperature (see solid line in Fig. 1).

between ε2 and v2 for midcentral collisions with a linear
correlation coefficient that shows a monotonic behaviour with
the collision centrality from C(2,2) ≈ 0.96 for (10–20)% to
C(2,2) ≈ 0.89 for (30–40)%. Qualitatively the results are in
agreement with the one obtained within a 2+1D viscous
hydrodynamics, see Ref. [49]. In general we observe a slightly
smaller degree of correlation probably induced by the fact
that we simulate a 3+1D expansion that can be expected
to contribute to the decorrelation. In the middle and bottom
panel of Fig. 11 we have shown similar plots for the third
and fourth harmonics. We observe again a reduction of the
correlation coefficient with the centrality of the collision
similarly to v2 and ε2. We obtain that the correlation between
ε3 and v3 for all the collision centralities is weaker with
respect to that obtained for the elliptic flow. Furthermore
the fourth harmonic flow v4 shows a weak correlation
with the initial ε4 in particular for midperipheral collisions
where the linear correlation coefficient is quite weak C(4,4) <
0.3. Furthermore we observe that the 〈vn〉/εn ratio (see dashed
lines in Fig. 11) decreases when the correlation coefficient
C(n,n) decreases, i.e., for more peripheral collisions.

A similar behavior for the linear correlation coefficient
C(n,n) is observed at LHC energies for Pb + Pb collisions
at

√
sNN = 2.76 TeV. In Fig. 12 is shown the comparison

between ultracentral and midperipheral collision at LHC
energies at

√
sNN = 2.76 TeV. In ultracentral collisions the

〈vn〉 are more correlated to the initial εn than at peripheral
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FIG. 13. (Color online) Correlation coefficient C(n,n) as a func-
tion of the impact parameter b. Different symbols refer to different
harmonics n. In particular circles, triangles, squares and diamonds
refer to n = 2,3,4, and 5 respectively. The solid lines correspond to
Au + Au collisions at

√
sNN = 200 GeV while dashed lines to the

system Pb + Pb at
√

sNN = 2.76 TeV.

collisions and very interesting differences emerge looking also
at higher harmonics.

In order to better visualize and discuss such differences we
have plot in Fig. 13 the C(n,n) as a function of the impact
parameter for both RHIC (dashed lines) and LHC energies
(solid lines). As shown the linear correlation coefficient is
a decreasing function of the impact parameter for all the
harmonics. However, as we can see comparing the dashed
and solid lines show, at LHC energies there is a stronger
correlation between εn and vn for all n with respect to RHIC
energies. We observe that v2 and ε2 have the same degree
of correlation for both RHIC and LHC energies while a
lower degree of correlation it is shown for higher harmonics
n = 3, 4, and n = 5. More interesting is the fact that for
ultracentral collisions at LHC the linear correlation coefficient
C(n,n) remains above 0.9 for n = 2,3,4 and even the n = 5
shows large C(n,n) = 0.85. This can be visualized also in the
right panel of Fig. 12 where the (vn,εn) correlation plot is
shown in midperipheral (20–30%) collisions (left panel) and
in ultracentral collisions (0–0.2%) (right panels).

The strong correlation observed for ultracentral collisions
means that the value obtained for 〈vn〉 and its dependence with
the harmonics n for those collisions is strongly related to the
value of the initial asymmetry measure εn. In particular this
could imply that the structure of the vn(pT ) at LHC where
C(n,n) ≈ 1 carry out information about the initial geometry
of the fluctuations. This joined to the observation that for ul-
tracentral collisions the sensitivity of vn to η/s is increased by
about a factor of 2–3 strongly suggests to focus the experimen-
tal efforts at LHC highest energy and ultracentral collisions.

To study the effect of the viscosity and its possible
temperature dependence on the correlation we have studied
how change the correlation coefficient with the different
parametrizations for η/s. In Table I we show the results for
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TABLE I. Linear correlation coefficient C(n,n) for RHIC and
LHC energies and for different temperature parametrization of η/s.
These results are for (20–30)% centrality class.

C(n,n) n 4πη/s = 1 4πη/s = 1 + f.o. η/s ∝ T + f.o.

2 0.95 0.94 0.93
RHIC 3 0.70 0.58 0.65

4 0.30 0.28 0.31
2 0.96 0.96 0.96

LHC 3 0.78 0.78 0.74
4 0.39 0.38 0.38

C(n,n) for the two energies RHIC and LHC for (20–30)%
centrality class. In general for this centrality we observe that
at LHC energies and for all the viscosities considered the
degree of correlation between εn and vn is greater than the
one at RHIC energies. Moreover, we obtain that at LHC
the correlation coefficient is not sensitive to the change of
the viscosity both at low and high temperature. A slight
different behavior we have at RHIC energies where the effect
of the kinetic freeze out is to reduce the degree of correlation
between the initial εn and the final vn. Furthermore, we
have computed the nondiagonal components for the linear
correlation coefficient C(n,m). We found that C(2,3) ≈ 0.
and C(3,4) ≈ 0 for all the range of centralities explored
which means that there is no linear correlation between v2

and ε3 and v3 and ε4. A different behavior we observe for
C(4,2), which is seen to be an increasing function with
the centrality C(4,2) ≈ 0.02 for central collision (b = 0 fm)
and about C(4,2) ≈ 0.23 at b = 7.8 fm. This means that in
more peripheral collisions the fourth harmonic v4 has some
contamination of ε2 and it is not driven only by ε4 as already
suggested in Ref. [47].

Some interesting properties of the vn distributions can be
inferred by studying the centrality dependence of the relative
fluctuations σvn

/〈vn〉. In Fig. 14(a) it is shown the 〈Npart〉
dependence of the ratios σvn

/〈vn〉 and σεn
/〈εn〉 where σvn

and
σεn

are the standard deviation respectively for vn and εn. As
shown for n = 2 we observe a strong dependence of the relative
fluctuations with the centrality of the collision with σv2/〈v2〉 ≈
0.4 for 〈Npart〉 ≈ 130. For more central collisions this ratio
approaches the value expected for a 2D Gaussian distribution
where σvn

/〈vn〉 = √
4/π − 1 ≈ 0.523 [50], shown by the

dashed line in Fig. 14. For higher harmonic n = 3,4, and
5 as shown in Figs. 14(b)–14(d) the values of σvn

/〈vn〉 are
approximatively the same of the ones of the initial geometry
with σvn

/〈vn〉 ≈ σεn
/〈εn〉 and they are almost independent

of the collision centrality and for all the centralities studied
they are very close to the the value

√
4/π − 1 shown by

the dashed lines. These results imply that the distributions of
v3, v4, and v5 for all the centrality range studied are consistent
with the fluctuation-only scenario discussed in Ref. [50] and
these fluctuations are related to the fluctuations of the initial
geometry. On the other hand, the distribution of v2 is close to
this limit for most central collisions while for midperipheral
collisions there is a contribution coming from the global
average geometry.
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FIG. 14. (Color online) (a)–(d) σvn/〈vn〉 (full symbols) and σεn/

〈εn〉 (open symbols) as a function of 〈Npart〉 respectively for n = 2,3,4,
and 5. The dashed lines indicate the value

√
4/π − 1 expected for a

2D Gaussian distribution. These results are for Pb + Pb collisions at√
sNN = 2.76 TeV.

VI. CONCLUSIONS

Using an event-by-event transport approach we have in-
vestigated the buildup of the anisotropic flows vn(pT ) for
n = 2,3,4, and 5. In particular we have studied the effect
of η/s ratio on vn(pT ) for two different beam energies: at
RHIC for Au + Au collisions at

√
s = 200 GeV and at LHC

for Pb + Pb collisions at
√

s = 2.76 TeV. We have found that
at RHIC the vn(pT ) are more affected by the value of η/s at low
temperature (T < 1.2TC) and the sensitivity increases with the
order of the harmonics. At LHC we get a different effect, all
the vn(pT ) develop in the QGP phase and are not affected by the
value of η/s in the crossover region. However the sensitivity to
the T dependence of the η/s is quite weak, more specifically
a constant η/s = 0.08 or an η/s ∝ T induce differences in
the v2 of at most 5% and of about 10% in v3,v4,v5. The
novel result from our analysis is that such a scenario changes
for ultracentral collisions, where we found an enhancement
of the sensitivity of the vn(pT ) that for n = 3,4,5 reaches
about 30%. We have also studied the correlation between the
initial asymmetry in coordinate space, measured by εn, and
the final asymmetry in momentum space given by 〈vn〉. We
have found that the larger is the collision energy, the larger is
the degree of correlation between εn and 〈vn〉. At LHC there is
significantly more correlation than at RHIC. For both collision
energies considered and in all the range of impact parameters
studied, the v2 is strongly correlated with the ε2 with the
linear correlation coefficient C(2,2) ≈ 0.95. The degree of
correlation between εn and the corresponding 〈vn〉 decrease
for higher harmonics. Moreover, in ultracentral collisions we
found that C(n,n) > 0.9 for n = 2,3, and 4, which imply that
the vn ∝ εn and they carry out the information about the initial
geometry of the fireball. These results joined with the fact that
in ultracentral collisions the vn(pT ) have a large sensitivity to
the η/s ratio strongly suggest to focus the experimental effort
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to those collision centralities where it is possible to get better
constraint on the value of η/s in the QGP phase and gain a
new insight on the initial-state fluctuations.
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