
DOI 10.1007/s00165-016-0358-2
BCS © 2016
Formal Aspects of Computing (2016) 28: 697–722

Formal Aspects
of Computing

Reversible client/server interactions
Franco Barbanera1, Mariangiola Dezani-Ciancaglini2 and Ugo de’Liguoro2

1 Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
2 Università di Torino, Torino, Italy

Abstract. In the setting of session behaviours, we study an extension of the concept of compliance when a disci-
plined form of backtracking and of output skipping is present. After adding checkpoints to the syntax of session
behaviours, we formalise the operational semantics via an LTS, and define natural notions of checkpoint com-
pliance and sub-behaviour, which we prove to be both decidable. Then we extend the operational semantics with
skips and we show the decidability of the obtained compliance.

Keywords: Client/server interaction, Session types, Behavioural semantics, Sub-behaviour, Semantics of subtyp-
ing, Coinduction.

1. Introduction

In human as well as automatic negotiations, an interesting feature is the ability of rolling back to some previous
points of a conversation, undoing choices and possibly trying different paths. Rollbacks are familiar to the
users of web browsers, and so are also the troubles that these might cause during “undisciplined” interactions.
Clicking the “back” button, or going to some previous points in the chronology when we are in the middle of a
transaction, say the booking of a flight, can be as smart as dangerous. In any case it is surely a behaviour that
service programmers want to discipline. Also on the server’s side one has to take care: a server discovering that a
service becomes available after having started a conversation could take advantage from some kind of rollback.
However, such a server would be quite unfair if the rollbacks were completely hidden from the client. In this
scenario it is also useful to allow the skipping of already done outputs, like in the case of a logged client, who can
avoid to send again the password.

Adding rollback and skip to interaction protocols requires sophisticated concepts of client/server compli-
ance and sub-behaviour. In this paper we investigate protocols admitting a simple, though non trivial form of
reversibility and skipping in the framework of the theory of contracts introduced in [CCLP06] and developed in a
series of papers, see [CGP09] and the references there.We focus here on the scenario of client/server architectures,
where services stored in a repository are queried by clients to establish two-sided communications.

Correspondence and offprint requests to: F. Barbanera. e-mail: barba@dmi.unict.it
This work was partially supported by ICT COST Action IC1201 BETTY, MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino

University/Compagnia San Paolo Project SALT.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0358-2&domain=pdf

698 F. Barbanera et al.

More precisely, we consider the formalism of session behaviours as introduced in [BdL15] and [BH15] (where
they were referred to as session contracts). This is a formalism interpreting the session types, introduced byHonda
et al. in [HVK98], into a subset of CCS without τ . We extend the session behaviour syntax by means of markers
that we call checkpoints; these are intended as pointers to the last place where either the client or the server can
rollback at any time.We then extend the formalismby distinguishing already done outputs (by barring them): they
are outputs which do not need to be resent, i.e. they can be skipped. First we investigate which constraints must
be imposed to obtain a safe notion of client/server interaction in the scenario without skips, by defining a model
in the form of an LTS, and by characterising the resulting concepts of compliance and sub-behaviour, which we
prove to be both decidable. Thenwe add skipping andwe prove decidability of the extended notion of compliance.

Before entering into the formal development of session behaviours with checkpoints and skips, we illustrate
the basic concepts by discussing a few examples. A registeredClient logs in to an online Server and then she asks
the prices of either a bag or a belt. Let the action (input) login represent the receipt of login credentials, and the
action price the receipt of a price. Dual actions represent offers, e.g. the coaction (output) login represents the
sending of credentials. Then the client behaviour is described by the process:

Client � login.(bag.price ⊕ belt.price)

where dot is sequential composition and ⊕ is internal choice. In the standard contract formalism we say that a
client ρ is compliant with a server σ , written ρ

�

σ , if all client communication actions are matched by the dual
actions on the server side. According to this, the client will be not compliant with an online server behaving as:

Server � login.(bag.price + suitcase.price)

where + is external choice. In fact the interaction represented by the parallel composition Client ‖ Server, that
evolves by synchronising corresponding actions and coactions, might lead to:

(bag.price ⊕ belt.price) ‖ (bag.price + suitcase.price)

This means that the client cannot ask the price of a belt.
Now consider the dual behaviour of ρ, dubbed ρ, which is obtained by exchanging actions by the respective

coactions, and internal by external choices. Then the dual of Client is:

Server′ � login.(bag.price + belt.price)

and clearly we getClient

�

Server′. In fact with the standard contract formalismwe have, as expected, that ρ

�

ρ,
or equivalently that σ

�

σ , since duality is involutive.
Taking a further step, let us consider a client that, after asking the price of a bag, wants to ask the price of a

belt. This can be achieved by rolling back to the choice bag.price ⊕ belt.price. Rollback is a feature present in
some programming languages and in models of distributed computations as well, but in our context it is actually
a new feature, that cannot be easily represented by usual process algebra operations [PU07]. In particular, the
intriguing possibility of representing backtracking by means of recursion will be discussed in Remark 2.9, where
it will be shown not to hold.

To express rollback we introduce the symbol ‘�’ to mark the point where a session behaviour can backtrack
to; we call such a marker a checkpoint. We suppose that a suitable mechanism keeps memory of the past, by
recording the behaviour �σ each time the checkpoint is traversed, namely when �σ synchronises on some actions
that σ is ready to do. For simplicity we assume that only one “past” can be recorded at any time, so that a new
memorisation destroys the old one, leading to a model in which the client and the server can backtrack just to the
lastly traversed checkpoint. This restriction is partially justified by the absence of interesting examples requiring
rollbacks to other checkpoints.

Going on with our example, by adding some checkpoints to Client we get:

Client′ � �login.�(bag.price ⊕ belt.price)

The new client can undo most of the actions and choices, in order to keep the negotiation open as much as
possible. But how should the server be redesigned to properly interact with it? Unfortunately, the apparently
natural choice of taking the dual of Client′

Reversible client/server interactions with skips 699

Server′′ � �login.�(bag.price + belt.price)

fails. In fact, writing
fw−→ for the forward evolution step of a client/server system, and

rollbk−→ for the synchronous
rollback, we have, among the possible interactions between Client′ and Server′′:

�login.�(bag.price ⊕ belt.price) ‖ �login.�(bag.price + belt.price)
fw−→ synchronising on login and login

�(bag.price ⊕ belt.price) ‖ �(bag.price + belt.price)
fw−→ internal choice

bag.price ‖ �(bag.price + belt.price)
rollbk−→ rollback to the last traversed �

�(bag.price ⊕ belt.price) ‖ �login.�(bag.price + belt.price)

which is now in a stuck state.
The mismatch between external and internal choice is the effect of the asymmetry of the respective semantics

in process algebra. The selection of a branch in an external choice is just one step; on the contrary the possible
synchronisation on bag comes after the internal choice has occurred. This has consequences with respect to the
backtracking, since the checkpoint alignment fails.

In [BdL15] it has been proved that the dual of a server is the minimum client that complies with the server
with respect to a natural (and efficiently decidable) ordering, and vice versa the dual of a client is the minimum
compliant server. This is an essential feature of the theory, since it is supposed to model a scenario in which
clients look for servers through a network, querying a service of a certain shape that is easier to find if we know
its minimal form. To express this precisely, let us write ρ

��σ to denote the compliance of ρ with σ in a setting
with backtracking, where ρ

��σ if ρ is compliant with σ in the standard sense and keeps being so also after any
possible rollback. Then we put the requirement that in the new theory the following holds:

∀ ρ. ρ

��ρ compliance of duals

For this condition to hold we change the operational semantics of⊕ by gluing the choice and the synchronisation
over a coaction, that can be formalised by the rule:

a.σ1 ⊕ σ2
a−→ σ1

This has however the unpleasant consequence that a

��a ⊕ b, since a ‖ a ⊕ b only reduces to 1 ‖ 1. Notice that
a � �

a⊕ b, when the compliance

�

is defined according to the standard LTS [BdL15, BH15]. In general, we expect
the compliance of behaviours with rollback to be conservative with respect to the compliance without rollback.
More precisely we require:

∀ ρ, σ. ρ

��σ implies erase(ρ)

�

erase(σ) conservativity of erasure

where erase deletes all checkpoints. We will accomplish this by asking that any coaction has a corresponding
action in reducing the parallel of internal and external choices.

The essence of this change is that rolling back has to be a synchronous action, and therefore it cannot be the
effect of an internal choice, since the latter is unobservable. This is a general principle. Consider the interaction

�belt.price.bag.price ‖ �belt.�price.bag.price (1)

It is the pair of a client willing to know the price of a belt and the price of a bag, and a server that can succeed
by sending twice the price of the belt! The point is that the client has no way to be aware of what happened and
to react according to her own policy, which is instead the case if both are forced to backtrack at the same time.
For this to be guaranteed we require that the client and the server either both can or both cannot rollback in all
configurations. In particular we assume that in the starting configurations both session behaviours of client and
server are checkpointed.

We also observe that it is not necessarily the case that compliant behaviours show some correspondence
between the respective checkpoints. For example it holds that:

�(discount.�bag.price ⊕ bag.price)

��
�(discount.bag.price + bag.price) (2)

which makes sense, since the client �(discount.�bag.price ⊕ bag.price) is asking for the price of a bag, with or
without discount.

700 F. Barbanera et al.

Notice that, if we use the operational semantics informally described above, we must rule out terms like
�a1.σ1 ⊕ a2.σ2, where a single branch of a choice among two branches is checkpointed. The motivation can be
illustrated by an example; let us consider the following behaviour with checkpoints:

�e.(�a.b ⊕ c.d).

In the present setting we are assuming that it is possible to rollback just to the last encountered checkpoint, and
that restoring a “past” doesn’t recover older checkpoints. This implies that all the informations for a rollback
are “memorised” only until a new checkpoint is crossed. Then, after the action e, the side effect of choosing �a.b
should be that of memorising the latter as the “past”, deleting �e.(�a.b ⊕ c.d) and definitely discarding c.d ; on
the other hand the choice of the latter branch would save the past �e.(�a.b ⊕ c.d), to which we return in case of
rollback. This has the undesirable effect that the actual past depends on an internal choice, which is hidden from
the partner. Besides, the actual meaning of rolling back after the choice of �a.b is not the undo of the choice,
but to insist in doing the very same choice. This makes the rollback useless. Observe that we are not preventing
a choice to be repeated after rollback: when restoring a past of the shape �

⊕
i∈I ai .σi , there is no record of the

branch previously taken. But whenever a rollback occurs to such a past, we ask that all choices are newly allowed.
This is why we decided to rule out terms like �a1.σ1 ⊕ a2.σ2, imposing prefixes of summands of internal (and
external) choices not to be checkpointed.

We discuss now the addition of skips, inspired by some previous work reported in [BdL14]. Let us consider
the following pair of client and server:

Client′′ �� login.(bag.price ⊕ belt.price)

Server′′′ �� login.�(bag.price + belt.price)
(3)

The interaction among themgets stuckwith respect to the semantics discussed so far, since the (nonwell-designed)
client Client′′ is self-inflicting a new login whenever undoing the choice among a bag and a belt, while the server
would normally save data from the former identification, as expressed by the checkpoints in Server′′′. Such
mismatches make the compliance relation we study exceedingly demanding.

In order to avoid such restrictions we relax the requirements defining compliance, and we consider a calculus
where it is allowed to skip an already done output; for example the login in the case above. We mark by a bar the
outputs which have been already done and that may be skipped. Doing that enables Client′′ and Server′′′ to be
compliant.

On the other hand we observe that it would be unreasonable to skip outputs when the corresponding inputs
are available, as this would result into a complete loss of control. For example we would have:

Client′ ‖ Server′′ fw−→ �(bag.price ⊕ belt.price) ‖ �(bag.price + belt.price)
rollbk−→ ����login .�(bag.price ⊕ belt.price) ‖ �login.�(bag.price + belt.price)
skip−→ �(bag.price ⊕ belt.price) ‖ �login.�(bag.price + belt.price)

In order not to get stuck, we should skip the input action login but, as discussed in [BdL14], allowing to skip
inputs is unnatural.
We show how, although with some overhead, results that we establish about the calculus with rollback can be
extended to the case with rollback and skips.

Outline In Sect. 2 we introduce the calculus with checkpoints and its operational semantics. In Sect. 3 we define
compliance and we show its decidability by means of a syntax-directed formal system, which is proved to be
sound and complete. The compliance relation induces a decidable sub-behaviour relation between servers which
is the basis of query engines: this is the content of Sect. 4. In Sect. 5 and Sect. 6 we present the calculus with skips
and we prove decidabilitity of compliance in the new setting. Lastly Sect. 7 points to related works and some
future developments.

This paper is an extended and revised version of [BDdL14] where we only gave a hint to the sound-
ness and completeness proofs and we didn’t consider neither the sub-behaviour relation nor the calculus with
skips.

Reversible client/server interactions with skips 701

Fig. 1. Syntax of raw behaviour expressions with checkpoints

2. Calculus

In this section we introduce the syntax of session behaviours with checkpoints and we describe their operational
semantics by an LTS, as usual with process algebras. The calculus is obtained from session behaviours, as treated
in [BdL15, BH15], by adding checkpoints. As explained in the Introduction, we allow checkpoints to occur only
before internal or external choices, not before branches unless the sums consist of just one branch.

Definition 2.1 (Session behaviours with checkpoints)

(i) Let N (names) be some countable set of symbols and N � {a | a ∈ N } (conames), with N ∩ N � ∅.
The set BE of raw session behaviours with checkpoints is defined by the grammar of Fig. 1, where

• the set I is non-empty and finite;
• the names and the conames in choices are pairwise distinct;
• σ is not a variable in rec x .σ .

(ii) The set SB of session behaviours with checkpoints is defined as the restriction of BE to closed expressions.

Notice that the restrictions in the previous definition (namely of external and internal choices to be made of
summands with pairwise distinct prefixes, that are all input actions in external choices, and all output actions in
internal choices) are present also in [BdL15, BH15], where they are justified. They are mainly due to the aim of
using results on session behaviours in contexts where processes interactions are structured by means of session
types [HVK98].
We remark that in our theory (as well in the theory of session behaviours in general [BdL15, BH15]), only closed
terms are considered behaviours, since there is no real practical use for open terms.

When I is a singleton set, we just write a.σ and a.σ for
∑

a.σ and
⊕

a.σ ; also we omit the trailing 1whenever
possible.

Recursion in SB is guarded and hence contractive in the usual sense. We take the equi-recursive view of
recursion, by equating rec x .σ with σ [rec x .σ/x]. Hence there is no point in considering terms of the shape
�rec x .σ .

In the following the notation �σ will represent ambiguously σ and �σ .

We use α to range over N ∪ N , with the convention α �
{
a if α � a,

a if α � a.

When no ambiguity can arise, we shall refer to session behaviours with checkpoints as simply session behaviours
or behaviours.

A syntactical notion of duality on SB is easily obtained by extending the usual duality for contracts in such a
way it leaves the checkpoints unchanged. Being such a notion formally defined by induction on the structure of
(possibly open) expressions, we first define it on BE . Duality for elements in SB is then inherited by restricting it
to SB.

702 F. Barbanera et al.

Definition 2.2 (Duality)

(i) Let σ ∈ BE . The syntactic dual σ of σ is defined by the following clauses:

1 � 1 x � x rec x .σ � rec x .σ �σ � �σ

∑
i∈I ai .σi � ⊕

i∈I ai .σi

⊕
i∈I ai .σi � ∑

i∈I ai .σi

(ii) Let (·) : SB → SB be the restriction to SB of the duality function.

Notice that item (ii) in the previous definition is sound, since σ ∈ SB if and only if σ ∈ SB.
Fromnowon, to avoid cumbersomedefinitions, any time an inductive definition on elements ofSB is provided,

it will be tacitly assumed to be the restriction to SB of the corresponding inductive definition on BE .
Definition 2.2 closely mimics the duality operator on session types as defined e.g. in [HVK98]. As expected,

σ � σ for all σ . We remark that checkpoints are unaffected by the · operation.

2.1. Operational semantics

To correctly define the operational semantics of the calculus, we have to record the checkpoint-prefixed behaviour
whose checkpoint is the last one that has been crossed during the evolution of a behaviour. Thereforewe introduce
configurations, that is behaviours (σ) with pasts (γ) of the shape:

γ ≺ σ

where γ is a checkpointed internal or external choice.
In the starting configuration, or just after a rollback has occurred, there is no further point to which the

behaviour might roll back. We represent such a situation by writing ◦ ≺ σ , where ‘◦’ marks the fact that no-
rollback is possible.

Definition 2.3 (Configurations)

(i) Let SB� be the set of behaviours starting with � , then SB� ∪ {◦} is the set of the pasts, and we denote its
elements by γ, δ, possibly with superscripts.

(ii) The set SB≺ of configurations is defined by
SB≺ � {γ ≺ σ | γ ∈ SB� ∪ {◦}, σ ∈ SB}.
We are now in place to define the LTS of configurations. We do not need to consider recursive behaviours,

since they are equated to non recursive ones in the equi-recursive view.

Definition 2.4 (LTS for configurations)

γ ≺ ∑
i∈I ai .σi

ak−→ γ ≺ σk (k ∈ I) (+) γ ≺ ⊕
i∈I ai .σi

ak−→ γ ≺ σk (k ∈ I) (⊕)

γ ≺ σ
α−→ γ ≺ σ ′ α ∈ N ∪ N

γ ≺ �σ
α−→ �σ ≺ σ ′ (�) γ ≺ σ

rbk−→ ◦ ≺ γ (γ �� ◦) (rbk)

Notice that the rule for internal choice glues into just one step both the internal choice and the communication
of a coname, becoming very similar to the rule for external choice. The reduction of client/server parallel compo-
sitions (Definition 2.6 below) will be only possible when all internal choices can be matched by the corresponding
external choices, which has the effect of saving the conservativity of erasure discussed in the Introduction.
If the current behaviour has no checkpoint, the past (in either cases, ◦ or an element of SB�) is unaffected by the
choice of a branch (rules (⊕) and (+)).

Rule (�) says that, in the presence of a checkpoint, the forward reduction must update the behaviour at which
it is possible to rollback, namely the past. The rollback action is implemented by Rule (rbk) and it is enabled only
in case there is a past to roll back to, that is when γ �� ◦. The rollback action updates the past to ◦, hence no
further rollback is allowed unless after traversing a new checkpoint.

Reversible client/server interactions with skips 703

When composing in parallel clients and servers we have to consider the different nature of the reductions
for internal and external choices. To this aim it is handy to collect the sets of names and conames prefixing the
choices, as done in the following definition. Notice that the resulting sets only contain names, since each coname
is mapped to the corresponding name.

Definition 2.5 (The functions A+(·) and A⊕(·))
We define A+(·),A⊕(·) : SB → P(N) by

A+(1) � A+(
⊕

i∈I ai .σi) � ∅ A+(
∑

i∈I ai .σi) � {ai | i ∈ I } A+(�σ) � A+(σ)
and
A⊕(1) � A⊕(

∑
i∈I ai .σi) � ∅ A⊕(

⊕
i∈I ai .σi) � {ai | i ∈ I } A⊕(�σ) � A⊕(σ)

The interaction of a client with a server is modeled by the reduction of their parallel composition, that can be:

• Forward (
τ−→), consisting of CCS style synchronisations, when the set of offered outputs is included in that

of offered inputs (condition A⊕() ⊆ A+()), or

• Backward (
rbk−→), where both behaviours synchronously go back to the respective last traversed checkpointed

behaviours, if both have such.

Definition 2.6 (Reduction of client and server pairs)

δ ≺ ρ
a−→ δ′ ≺ ρ ′ γ ≺ σ

a−→ γ ′ ≺ σ ′ A⊕(σ) ⊆ A+(ρ)
(+‖⊕)

δ ≺ ρ ‖ γ ≺ σ
τ−→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′

δ ≺ ρ
a−→ δ′ ≺ ρ ′ γ ≺ σ

a−→ γ ′ ≺ σ ′ A⊕(ρ) ⊆ A+(σ)
(⊕‖+)

δ ≺ ρ ‖ γ ≺ σ
τ−→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′

δ ≺ ρ
rbk−→ ◦ ≺ ρ ′ γ ≺ σ

rbk−→ ◦ ≺ σ ′
(rbk)

δ ≺ ρ ‖ γ ≺ σ
rbk−→ ◦ ≺ ρ ′ ‖ ◦ ≺ σ ′

In the following let−→be theunionof
τ−→ and

rbk−→.Wedenote by
τ−→∗, rbk−→∗ and ∗−→ the reflexive and transitive

closure of, respectively,
τ−→,

rbk−→ and −→. We also use −→ without specifying the resulting configuration and
�−→ with the obvious meanings.

It is easy to verify that if ◦ ≺ ρ ‖ ◦ ≺ σ
τ−→∗◦ ≺ ρ ′ ‖ ◦ ≺ σ ′, then ρ ‖ σ reduces to ρ ′ ‖ σ ′ in the calculi

of [BdL15, BH15], by splitting in two steps each application of rule (⊕). If ρ ‖ σ reduces to ρ ′ ‖ σ ′ in the calculi
of [BdL15, BH15] we can find ρ ′′, σ ′′ such that both ρ ′ ‖ σ ′ reduces to ρ ′′ ‖ σ ′′ and

◦ ≺ ρ ‖ ◦ ≺ σ
τ−→∗◦ ≺ ρ ′′ ‖ ◦ ≺ σ ′′

Notice that ρ ′′ ‖ σ ′′ is different from ρ ′ ‖ σ ′ only in case the last applied rule is an internal choice, which
rule (⊕) fuses with the communication of the coname.

Starting from a parallel composition, in which one of the two conditions holds

• both pasts are ◦ and both behaviours are checkpointed,

• both pasts are checkpointed behaviours,

only parallel compositions satisfying one of the two conditions can be reached, as formalised in the following
definition and proposition. This assures that the client and the server either both can or both cannot roll back in
all configurations, an essential property as discussed in the Introduction.

704 F. Barbanera et al.

Definition 2.7 We say that the client/server parallel composition (of configurations) δ ≺ ρ ‖ γ ≺ σ is nice if:

1. either δ � γ � ◦ and ρ, σ ∈ SB�;

2. or δ, γ ∈ SB�.

Notice that the behaviours are arbitrary in a nice parallel composition in which the pasts are checkpointed
behaviours (condition (2) of previous definition).

Proposition 2.8 If δ ≺ ρ ‖ γ ≺ σ is nice and δ ≺ ρ ‖ γ ≺ σ
∗−→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′, then δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′ is nice

too.

Proof A nice parallel composition which satisfies condition (1) of Definition 2.7 can only be reduced using rules
(+‖⊕) or (⊕‖+), getting a nice parallel composition which satisfies condition (2) of Definition 2.7. �

A nice parallel composition which satisfies condition (2) of Definition 2.7 can be reduced using rules (+‖⊕)
or (⊕‖+), getting a nice parallel composition which satisfies again the same condition. It can also be reduced
using rule (rbk), getting a nice parallel composition which satisfies condition (1) of Definition 2.7.

Thanks to the previous proposition from now on we will only consider nice parallel compositions.

Remark 2.9 By looking at the operational semantics of behaviours one can notice that checkpoints and arbitrary
rollbacks influence the evolution of behaviours in away similar to the effect of recursion. For instance, the possible
evolution of the behaviour �a.�b can be mimicked by the following recursive expression without checkpoints:

rec x .(a.x ⊕ a.rec y .b.y)

However observe that the same name as prefix of distinct branches of an internal choice is not allowed, so this
expression is not a behaviour.

As a further example, let us consider the behaviour �a.�b. In order to use recursion to mimic the way it could
evolve, we should use an expression like

rec x .(a.x ⊕ a.rec y .b.y)

This expression, besides having two branches with the same prefix, does not comply with the other syntax
constraint on session behaviours, which imposes only input prefixes in internal choices.

Even by relaxing the syntax, the notion of compliance could not be faithfully represented using recursion
instead of checkpoints and arbitrary rollbacks. For example �a

��
�a.�b, while

rec x .a.x � �

rec x .(a.x ⊕ a.rec y .b.y)

since as soon as the server chooses the right branch, no client’s request can be satisfied.
Lastly observe that representing checkpoints by internal choices and recursion would make impossible to

distinguish between an evolution depending on an internal choice and an evolution depending on a rollback.
Another question that naturally arises is whether recursion itself could be avoided and represented in terms

of checkpoints and rollbacks. The answer is negative, since the evolution of rec x .(a.b.x) cannot be mimicked by
a checkpointed expression. In fact

�a.b

produces also the sequence of outputs a a a . . ., that the recursive expression cannot produce.

3. Compliance

The compliance relation on standard session behaviours requires that for any sequence of interactions among
a client ρ and a server σ , whenever a state is reached where no further communication (namely τ -reduction) is
possible, all client’s requests and offers are satisfied, that is the client ρ has evolved to 1 [BdL15, BH15]. Keeping
the same definition in the case of session behaviours with rollbacks leads to the following:

Reversible client/server interactions with skips 705

Definition 3.1 (Checkpoint Compliance Relation

��)
(i) Let δ ≺ ρ, γ ≺ σ ∈ SB≺. We say that δ ≺ ρ is checkpoint compliant with γ ≺ σ , written δ ≺ ρ

��γ ≺ σ ,
when for all δ′ ≺ ρ ′ and γ ′ ≺ σ ′:

if δ ≺ ρ ‖ γ ≺ σ
∗−→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′ � τ−→ then ρ ′ � 1.

(ii) Let ρ, σ ∈ SB�. We say that ρ is checkpoint compliant with σ (notation ρ

��σ) if ◦ ≺ ρ

��◦ ≺ σ .

Roughly, when δ ≺ ρ

��γ ≺ σ holds, ρ and σ are compliant in the standard sense. Our definition is more
demanding in case ρ and σ include checkpoints, asking that they keep on being compliant after any possible
synchronous rollback. Therefore, if both δ and γ are different from ◦, then it must be ◦ ≺ δ

��◦ ≺ γ . Moreover,
it can never be the case that one of them can perform a rollback and the other one cannot, even when ρ is in the
success configuration. Notice that, by Lemma 2.8, we can safely restrict the technical treatment to nice parallel
compositions, where either both δ and γ are equal to ◦ (no rollback is possible) or they are both checkpointed
behaviours (the rollback is allowed).

It is easy to verify that Definition 3.1(ii) satisfies the compliance of duals and the conservativity of
erasure discussed in the Introduction.Namely, each session behaviour is checkpoint compliant with its dual, and
if a client and a server are checkpoint compliant, then the client and the server obtained by erasing the checkpoints
are compliant. The last property follows from the observation that all forward reductions are preserved when no
rollback is allowed. More formally, let erase(σ) be the result of removing all checkpoints from σ :

Proposition 3.2 (Compliance of duals and conservativity of erasure) For any ρ, σ ∈ SB�:

1. ρ

��ρ.
2. If ρ

��σ , then erase(ρ)

�

erase(σ).

Instead erase(ρ)

�

erase(σ) does not imply ρ

��σ , take for example ρ � �a.b and σ � �a.�b.
In the following, when ambiguity cannot arise, we shall simply say compliance/compliant instead of checkpoint

compliance/compliant.
We define a function p denoting the effect of traversing a checkpoint on the “past” of a configuration.

Definition 3.3 (The function p) The function p : SB� ∪ {◦} × SB → SB� ∪ {◦} is defined by

p(γ, �σ) �
{

�σ if � � �
γ otherwise.

Forward reduction in Definition 2.4 can be shortly written in terms of the function p:

Lemma 3.4 Let k ∈ I .

γ ≺ �(
∑

i∈I ai .σi)
ak−→ p(γ, �(

∑
i∈I ai .σi)) ≺ σk

γ ≺ �(
⊕

i∈I ai .σi)
ak−→ p(γ, �(

⊕
i∈I ai .σi)) ≺ σk

Proof By cases, according to whether the �’s are �or not, using Definition 3.3. �

As a first step in the study of compliance, we provide a coinductive definition of

��. Let us define a new
relation

��
co as follows.

Definition 3.5 Let { ��
k | k ∈ N} be the family of relations over SB≺ such that

��
0 � SB≺ × SB≺ and

δ ≺ ρ

��
k+1 γ ≺ σ if either:

1. ρ � 1 and δ � γ � ◦; or
2. ρ � 1 and δ, γ �� ◦ and ◦ ≺ δ

��
k ◦ ≺ γ ; or

3. ρ �� 1 and δ ≺ ρ ‖ γ ≺ σ
τ−→ and

[δ ≺ ρ ‖ γ ≺ σ −→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′] implies δ′ ≺ ρ ′ ��
k γ ′ ≺ σ ′ for all δ′ ≺ ρ ′, γ ′ ≺ σ ′.

Then we define

��
co � ⋂

k∈N

��
k .

706 F. Barbanera et al.

Lemma 3.6 The relation

��
co and the compliance relation

�� coincide.

Proof The inclusion

��
co ⊆ �� is immediate. Vice versa let k be the minimal natural number such that

δ ≺ ρ

���
k γ ≺ σ . Then there is a reduction

δ ≺ ρ ‖ γ ≺ σ −→ δ1 ≺ ρ1 ‖ γ1 ≺ σ1 −→ · · · −→ δk−1 ≺ ρk−1 ‖ γk−1 ≺ σk−1

of length k − 1 such that δi ≺ ρi ‖ γi ≺ σi
τ−→ for all i < k − 1 (but note that not necessar-

ily δi ≺ ρi ‖ γi ≺ σi
τ−→ δi+1 ≺ ρi+1 ‖ γi+1 ≺ σi+1) and δk−1 ≺ ρk−1

���
1 γk−1 ≺ σk−1. Therefore ρk−1 �� 1 and

δk−1 ≺ ρk−1 ‖ γk−1 ≺ σk−1 � τ−→, which implies δ ≺ ρ

���
γ ≺ σ . �

Next we define a formal system that we shall prove to axiomatically characterise the checkpoint compliance
relation. The system is inspired by the coinductive axiomatisation of subtyping of the arrow and recursive-types
in [BH98].

Definition 3.7 (The formal system �) The judgment of the formal system � are expressions of the form
� � δ ≺ ρ �� γ ≺ σ , where � is an environment, i.e. a finite set � � {δi ≺ ρi �� γi ≺ σi }i∈I .
The rules of the formal system are given in Fig. 2, where in writing γ ≺ δ we assume δ ∈ SB (hence δ �� ◦). The
symbol �� is used to denote the formal counterpart of

��.
As usual we write � δ ≺ ρ �� γ ≺ σ for ∅ � δ ≺ ρ �� γ ≺ σ . In Fig. 2 �, δ ≺ ρ �� γ ≺ σ is short for
� ∪ {δ ≺ ρ �� γ ≺ σ }. Moreover all rules but (Hyp) are in fact two, for example in case of rule (Ax) we have:

(Ax1)
� � ◦ ≺ 1 �� ◦ ≺ σ

� � ◦ ≺ δ �� ◦ ≺ γ
(Ax2)

� � δ ≺ 1 �� γ ≺ σ

Observe that, in case of rule (Ax1), no rollback is possible on both sides, so ρ � 1 suffices to conclude that ρ
is compliant with σ . On the contrary in case of rule (Ax2) we have also to check that the “pasts” δ and γ are
compliant, since a rollback might occur. Note that, by restricting to nice parallel compositions, if δ �� ◦, then
also γ �� ◦ and vice versa. A similar remark applies to the other rules, where the use of the notation with p helps
to treat shortly the various cases with either checkpointed or non checkpointed behaviours.

Example 3.8 The following is a derivation of the judgment � �a.�b �� �(a.b + b), where
�1 � {◦ ≺ �a.�b �� ◦ ≺ �(a.b + b)},
�2 � �1, �a.�b ≺ �b �� �(a.b + b) ≺ b,
�3 � �2, ◦ ≺ �b �� ◦ ≺ �(a.b + b).

(Hyp)
�3 � ◦ ≺ �b �� ◦ ≺ �(a.b + b)

(Ax)
�3 � �b ≺ 1 ��

�(a.b + b) ≺ 1
(⊕ · +)

�2 � ◦ ≺ �b �� ◦ ≺ �(a.b + b)
(Ax)

�2 � �b ≺ 1 ��
�(a.b + b) ≺ 1

(Hyp)
�2 � ◦ ≺ �a.�b �� ◦ ≺ �(a.b + b)

(⊕ · +)
�1 � �a.�b ≺ �b ��

�(a.b + b) ≺ b
(⊕ · +)

� ◦ ≺ �a.�b �� ◦ ≺ �(a.b + b)

By the Soundness property we shall prove below, such a derivation implies that �a.�b

��
�(a.b + b).

Remark 3.9 In case of derivations with checkpointed behaviours in the conclusions (as it is our case, since the
behaviours we consider result from reducing nice parallel compositions), the axiom (Ax) with δ � γ � ◦, that is
(Ax1), is actually never applied, and the leaves of a derivation are always instances of the axiom (Hyp). In fact in
any derivation with height greater than 0 with a (Ax1) leaf, the judgments in the path from the (Ax1) leaf to the
conclusion have all the pasts equal to ◦ and the behaviours in the conclusions are not checkpointed.

The intuition is that recursive behaviours show an evolution that somewhat resembles that of checkpointed
behaviours, even if, as discussed in Remark 2.9, the former ones cannot actually been defined in terms of the
latter ones, and vice versa. In the formal systems for behaviour compliance, as those in [BdL15, BDLdL16], and
those dealing with recursive types in general [BH98], axioms like (Hyp) are used to deal with recursion only.

Reversible client/server interactions with skips 707

Fig. 2. The formal system � for checkpoint compliance

We do not show this property, since it does not affect in any way the formalism and the related proofs,
and consider rule (Ax1) instead, showing that the system is sound and complete even with respect to non nice
compositions.

3.1. Soundness and completeness

It is handy to extend the compliance relation to judgments.

Definition 3.10 (Judgment semantics) We write

• |� � if δ′ ≺ ρ ′ ��γ ′ ≺ σ ′ for all δ′ ≺ ρ ′ �� γ ′ ≺ σ ′ ∈ �;
• � |� δ ≺ ρ �� γ ≺ σ if |� � implies δ ≺ ρ

��γ ≺ σ .

To facilitate the proofs below, it is convenient to consider a stratified version of Definition 3.10.

Definition 3.11 (Stratified judgment semantics) We write

• |�k � if δ′ ≺ ρ ′ ��
k γ ′ ≺ σ ′ for all δ′ ≺ ρ ′ �� γ ′ ≺ σ ′ ∈ �;

• � |�k δ ≺ ρ �� γ ≺ σ if |�k � implies δ ≺ ρ

��
kγ ≺ σ ,

where k ≥ 0.

Observing that

��
k+1 ⊆ ��

k , we have that |�k+1 � implies |�k �. Also it is immediate to verify that the
following holds:

Fact 3.12 If � |�k δ ≺ ρ �� γ ≺ σ for all k , then � |� δ ≺ ρ �� γ ≺ σ .

The opposite implication of Fact 3.12 does not hold, as shown in the following example.
Consider � � {◦ ≺ �a.c �� ◦ ≺ �a} and ◦ ≺ �b �� ◦ ≺ �c. Clearly ◦ ≺ �b

���◦ ≺ �c, moreover it is easy to check
that �|� �. However, |�1 �. In fact ◦ ≺ �a.c

��
1◦ ≺ �a (since, trivially, c

��
01). So, � |� ◦ ≺ �b �� ◦ ≺ �c holds

simply because �|� �, whereas � |�k ◦ ≺ �b �� ◦ ≺ �c for all k does not hold, since |�1 � but (◦ ≺ �b)

���
1 (◦ ≺ �c).

708 F. Barbanera et al.

As a matter of fact the best we can say is that if � |� δ ≺ ρ �� γ ≺ σ , then � |�k δ ≺ ρ �� γ ≺ σ for all but
finitely many k . However we don’t have to bother about this, because in the the next proofs we need only Fact
3.12 and the fact that δ ≺ ρ

��
kγ ≺ σ for all k if and only if δ ≺ ρ

��γ ≺ σ (which is true by Lemma 3.6).
We can now show that the formal system is sound with respect to the judgment semantics.

Theorem 3.13 (Soundness) If � � δ ≺ ρ �� γ ≺ σ , then � |� δ ≺ ρ

��γ ≺ σ.

Proof By Fact 3.12 it suffices to prove that:
� � δ ≺ ρ �� γ ≺ σ implies � |�k δ ≺ ρ �� γ ≺ σ for all k .

We proceed by simultaneous induction over the derivation D of � � δ ≺ ρ �� γ ≺ σ and over k . Since
� |�0 δ ≺ ρ �� γ ≺ σ trivially holds, we shall keep implicit the case k � 0. We distinguish the possible cases of
the last rule in D.

Case (Ax). Then either D consists of the inference:

(Ax1)
� � ◦ ≺ 1 �� ◦ ≺ σ

and the thesis is immediate since ◦ ≺ 1

��
k ◦ ≺ σ for all k ; or D ends by:

� � ◦ ≺ δ �� ◦ ≺ γ
(Ax2)

� � δ ≺ 1 �� γ ≺ σ

For k > 0, let |�k �; then |�k−1 � and, by induction over D, � |�k−1 ◦ ≺ δ �� ◦ ≺ γ . Hence we have
◦ ≺ δ

��
k−1 ◦ ≺ γ , that implies δ ≺ 1

��
kγ ≺ σ by definition, and lastly � |�k δ ≺ 1 �� γ ≺ σ as required.

Case (Hyp). Then D consists of the inference:

(Hyp)
�, δ ≺ ρ �� γ ≺ σ � δ ≺ ρ �� γ ≺ σ

where �, δ ≺ ρ �� γ ≺ σ |�k δ ≺ ρ �� γ ≺ σ holds trivially for all k .
Case (+ · ⊕). If δ � γ � ◦, then D ends by:

∀ j ∈ J . �′ � p(◦, ρ) ≺ ρj �� p(◦, σ) ≺ σj
(+ · ⊕)

� � ◦ ≺ ρ �� ◦ ≺ σ

where �′ � �, δ ≺ ρ �� γ ≺ σ and ρ � �1(
∑

i∈I∪J ai .ρi) and σ � �2(
⊕

j∈J aj .σj).
We have to prove that � |�k ◦ ≺ ρ �� ◦ ≺ σ for all k .
Let k > 0; let us assume, by induction over k , � |�k−1 ◦ ≺ ρ �� ◦ ≺ σ . If |�k �, then |�k−1 �, which

implies ◦ ≺ ρ

��
k−1◦ ≺ σ and hence |�k−1 �′, since �′ � �, ◦ ≺ ρ �� ◦ ≺ σ . By induction over D we know that

�′ |�h p(◦, ρ) ≺ ρj �� p(◦, σ) ≺ σj for all j ∈ J and for all h, hence �′ |�k−1 p(◦, ρ) ≺ ρj �� p(◦, σ) ≺ σj .
Combining this with |�k−1 �′ we get p(◦, ρ) ≺ ρj

��
k−1p(◦, σ) ≺ σj for all j ∈ J . The one step reducts of

◦ ≺ ρ ‖ ◦ ≺ σ are exactly

◦ ≺ �1(
∑

i∈I∪Jai .ρi) ‖ ◦ ≺ �2(
⊕

j∈Jaj .σj)
τ−→ p(δ, ρ) ≺ ρj ‖ p(γ, σ) ≺ σj

for all j ∈ J . So we conclude ◦ ≺ ρ

��
k◦ ≺ σ as desired.

Otherwise D ends by:

∀ j ∈ J . �′ � p(δ, ρ) ≺ ρj �� p(γ, σ) ≺ σj �′ � ◦ ≺ δ �� ◦ ≺ γ
(+ · ⊕)

� � δ ≺ ρ �� γ ≺ σ

where �′, ρ and σ are as in the previous case, and both δ, γ �� ◦. Reasoning as before, if |�k �, then |�k−1 �′ and
hence p(δ, ρ) ≺ ρj

��
k−1p(γ, σ) ≺ σj for all j ∈ J . We get �′ |�k−1 ◦ ≺ δ �� ◦ ≺ γ by induction over D, which

implies ◦ ≺ δ

��
k−1 ◦ ≺ γ . Since p(δ, ρ) ≺ ρj ‖ p(γ, σ) ≺ σj for j ∈ J and ◦ ≺ δ ‖ ◦ ≺ γ are all the one step

reducts of δ ≺ ρ ‖ γ ≺ σ , we conclude δ ≺ ρ

��
k γ ≺ σ by definition of

��
k .

The proof for the remaining cases of rule (⊕ · +) are similar. �

Reversible client/server interactions with skips 709

Fig. 3. The algorithm Prove

We now establish the completeness of the axiomatic system and decidability of derivability (and therefore of
compliance) by means of the proof reconstruction algorithm Prove of Fig. 3.

Given a judgment � � δ ≺ ρ �� γ ≺ σ , if the algorithm Prove terminates, then it either returns a derivation
D with conclusion � � δ ≺ ρ �� γ ≺ σ , or it returns fail. As a matter of fact we prove in Lemma 3.21 that Prove
always terminates.

The Prove algorithm tries to construct a proof for a given judgment by recursively proceeding bottom-up,
each time applying the only possible rule that has the given judgment as conclusion, once it has been checked
that rule (Hyp) does not apply. The algorithm fails as soon as the current judgment cannot be the conclusion of
any rule.

Recall that, as discussed in Remark 3.9, due to the presence of rollbacks and how they affect the operational
semantics of behaviours, rule (Hyp) can apply also in absence of recursion.

We put the algorithm Prove at work on the compliant client and server defined by (2) in the Introduction.
In this example, as well as in the following ones, we use bg,bt,dsc,pr as short for bag, belt, discount, price,
respectively.

710 F. Barbanera et al.

Example 3.14 Let ρ � �(dsc.�bg.pr ⊕ bg.pr) and σ � �(dsc.bg.pr + bg.pr).
The following is the result of Prove(δ ≺ ρ �� γ ≺ σ), where

�1 � {◦ ≺ ρ �� ◦ ≺ σ }, �2 � �1, ρ ≺ �bg.pr �� σ ≺ bg.pr, �3 � �2, �bg.pr ≺ pr �� σ ≺ pr,
�4 � �3, ◦ ≺ �bg.pr �� ◦ ≺ σ , �5 � �1, ρ ≺ pr �� σ ≺ pr.

(Hyp)
�4 � �bg.pr ≺ pr �� σ ≺ pr

�3 � ◦ ≺ �bg.pr �� ◦ ≺ σ
(Ax)

�3 � �bg.pr ≺ 1 �� σ ≺ 1 D3
(+ · ⊕)

�2 � �bg.pr ≺ pr �� σ ≺ pr D2
(⊕ · +)

�1 � ρ ≺ �bg.pr �� σ ≺ bg.pr

(Hyp)
�5 � ◦ ≺ ρ �� ◦ ≺ σ

(Ax)
�5 � ρ ≺ 1 �� σ ≺ 1 D5

(+ · ⊕)
�1 � ρ ≺ pr �� σ ≺ pr

(⊕ · +)
� ◦ ≺ ρ �� ◦ ≺ σ

where Di (i � 2, 5) is the derivation (Hyp)
�i � ◦ ≺ ρ �� ◦ ≺ σ

and D3 is the derivation
(Hyp)

�4 � �bg.pr ≺ pr �� σ ≺ pr
(⊕ · +)

�3 � ◦ ≺ �bg.pr �� ◦ ≺ σ

It is not difficult to show that the algorithm Prove builds a derivation every time it does not fail.

Lemma 3.15 If Prove (� � δ ≺ ρ �� γ ≺ σ) � D �� fail, then D is a derivation of � � δ ≺ ρ �� γ ≺ σ .

Proof By construction and by induction over the tree of the recursive calls of Prove, which is finite if the execution
terminates. �

The following example shows that the algorithm Prove fails on the client/server parallel composition (1) of the
Introduction. For sake of readability, we omit the part “� �” in the arguments of Prove.

Example 3.16 According to the algorithm of Fig. 3, in order to get the result of

Prove (◦ ≺ �bt.pr.bg.pr �� ◦ ≺ �bt.�pr.bg.pr)

we recursively proceed to look for the result of

Prove (�bt.pr.bg.pr ≺ pr.bg.pr ��
�bt.�pr.bg.pr ≺ �pr.bg.pr)

which immediately calls

Prove (�bt.pr.bg.pr ≺ bg.pr ��
�pr.bg.pr ≺ bg.pr)

Notice how the system takes care that the second checkpoint of the server has been traversed, by updating its
past. The algorithm then proceeds by calling

Prove (�bt.pr.bg.pr ≺ pr ��
�pr.bg.pr ≺ pr)

This last call produces, in turn, the call of

Prove (�bt.pr.bg.pr ≺ 1 ��
�pr.bg.pr ≺ 1),

that results in the following failing call (giving the overall failure of the algorithm)

Prove (◦ ≺ �bt.pr.bg.pr �� ◦ ≺ �pr.bg.pr) � fail

since A⊕(�bt.pr.bg.pr) ∩ A+(�pr.bg.pr) � ∅.

Reversible client/server interactions with skips 711

Notice that the algorithm detects the failure that occurs after a rollback that takes place after the synchro-
nisations on the names bt,pr,bg,pr. As a matter of fact, a failure would occur also in case of a rollback taking
place just after the synchronisations on the names bg,pr. In order to detect the latter synchronisation failure
instead of the former one, in the main clauses of the algorithm Prove the recursive calls when δ and γ are not ◦
should be such that the derivation D is computed before the derivations Dj s (or Dis).

The following lemma assures that a failure of the algorithm Prove can only happen if the configurations are
not compliant.

Lemma 3.17 If Prove(� � δ ≺ ρ �� γ ≺ σ) � fail, then δ ≺ ρ

���
γ ≺ σ .

Proof Observe that if Prove(� � δ ≺ ρ �� γ ≺ σ) � fail, then δ ≺ ρ �� γ ≺ σ �∈ �. This will be tacitly assumed
in all cases below.

Let k be the maximum number of recursive calls of the terminating execution of
Prove (� � δ ≺ ρ �� γ ≺ σ)

returning fail. Then we prove by induction over k , that there exists h (actually greater than k) such that
δ ≺ ρ

���
h γ ≺ σ . This suffices since

�� � ⋂
k∈N

��
k by Lemma 3.6.

If k � 0, then Prove(� � δ ≺ ρ �� γ ≺ σ) � fail implies ρ �� 1 (otherwise either Prove succeeds or there is at
least one recursive call) and σ � 1 (again because otherwise there would be at least one recursive call of Prove).
But then δ ≺ ρ ‖ γ ≺ 1 � τ−→ which implies δ ≺ ρ

���
hγ ≺ 1 � τ−→ for any h > 0.

Let k > 0. If ρ �� 1 and σ � 1, then we reason as in the base case. Otherwise the negative result
of the computation depends on the failure of some recursive calls. Since all cases are similar, we consider
for example the case when ρ � �1(

∑
i∈I∪J ai .ρi) and σ � �2(

⊕
j∈J aj .σj), and δ, γ �� ◦. Then either

Prove (�′ � p(δ, ρ) ≺ ρj �� p(γ, σ) ≺ σj) � fail for some j ∈ J , or Prove (�′ � ◦ ≺ δ �� ◦ ≺ γ) � fail,
where �′ � �, δ ≺ ρ �� γ ≺ σ . The maximum number of recursive calls in these computations is ≤ k − 1. By
induction hypothesis there exists h such that either p(δ, ρ) ≺ ρj

���
h p(γ, σ) ≺ σj or ◦ ≺ δ

���
h◦ ≺ γ . In both

cases we have δ ≺ ρ
���

h+1 γ ≺ σ . �

The following example illustrates how recursive terms are treated in our formal system. Recall that we identify
rec x .σ with σ [rec x .σ/x].

Example 3.18 The following is the result of Prove(� ◦ ≺ �a.rec x .b.x �� ◦ ≺ rec x .�(a.x + b.x)).

(Hyp)
�2 � �a.rec x .b.x ≺ rec x .b.x �� rec x .�(a.x + b.x) ≺ rec x .�(a.x + b.x) D

(⊕ · +)
�1 � �a.rec x .b.x ≺ rec x .b.x �� rec x .�(a.x + b.x) ≺ rec x .�(a.x + b.x)

(⊕ · +)
� ◦ ≺ �a.rec x .b.x �� ◦ ≺ rec x .�(a.x + b.x)

where D is (Hyp)
�2 � ◦ ≺ �a.rec x .b.x �� ◦ ≺ rec x .�(a.x + b.x)

and where

�1 � {◦ ≺ �a.rec x .b.x �� ◦ ≺ rec x .�(a.x + b.x)}
�2 � �1, �a.rec x .b.x ≺ rec x .b.x �� rec x .�(a.x + b.x) ≺ rec x .�(a.x + b.x)

We show now the termination ofProve. This proof is inspired by the decidability proof for subtyping recursive
types in the π -calculus [PS96].

We define the set of sub-behaviours of a behaviour as expected.

Definition 3.19 The function Sub : SB → P(SB) is coinductively given by:

Sub(1) � {1}
Sub(

∑
i∈I ai .σi) � {∑i∈I ai .σi } ∪ ⋃

i∈I Sub(σi)

Sub(
⊕

i∈I ai .σi) � {⊕i∈I ai .σi } ∪ ⋃
i∈I Sub(σi).

712 F. Barbanera et al.

Since we assume rec x . σ � σ{rec x . σ/x }, behaviours containing recursive subterms are infinite terms, hence
the coinductive character of Sub; in particular we have that Sub(rec x . σ) � Sub(σ{rec x . σ/x }). On the other
hand, being recursion guarded, σ is always a regular tree. Hence:

Fact 3.20 For any σ , the set Sub(σ) is well defined and finite.

Lemma 3.21 For all judgments � � δ ≺ ρ �� γ ≺ σ the execution of Prove (� � δ ≺ ρ �� γ ≺ σ) terminates.

Proof Let Sub(◦) � {◦}, extending Sub to SB ∪ {◦}. Then given a judgment δ ≺ ρ �� γ ≺ σ we set:

Sub(δ ≺ ρ �� γ ≺ σ) � {δ′ ≺ ρ ′ �� γ ′ ≺ σ ′ | δ′ ∈ Sub(δ) ∪ Sub(ρ) ∪ {◦}, ρ ′ ∈ Sub(ρ) ∪ Sub(δ),
γ ′ ∈ Sub(γ) ∪ Sub(σ) ∪ {◦}, σ ′ ∈ Sub(σ) ∪ Sub(γ)}.

Fact 3.20 implies that Sub(δ ≺ ρ �� γ ≺ σ) is finite. On the other hand, by direct inspection of the rules of
the system in Fig. 2, we find that all δ′ ≺ ρ ′ �� γ ′ ≺ σ ′ occurring in the premises of a derivation showing
δ ≺ ρ �� γ ≺ σ belong to the set Sub(δ ≺ ρ �� γ ≺ σ).

Now, if Prove (� � δ ≺ ρ �� γ ≺ σ) would not terminate, then there would be an infinite sequence of nested
calls Prove(�0 � δ0 ≺ ρ0 �� γ0 ≺ σ0),Prove(�1 � δ1 ≺ ρ1 �� γ1 ≺ σ1), . . ., where �0 � δ0 ≺ ρ0 �� γ0 ≺ σ0 is
just � � δ ≺ ρ �� γ ≺ σ , and the sequence �0, �1, . . . is such that �i+1 � �i ∪ {δi ≺ ρi �� γi ≺ σi } for all i .
Since Prove begins by checking δ ≺ ρ �� γ ≺ σ ∈ � and it returns in the positive case, non termination would
only be possible if �i ⊂ �i+1 for infinitely many i , contradicting the fact that each �i is a subset of the union of
� and Sub(δ ≺ ρ �� γ ≺ σ), which are both finite sets. �

Theorem 3.22 (Completeness) If δ ≺ ρ

��γ ≺ σ , then � δ ≺ ρ �� γ ≺ σ is derivable.

Proof The hypothesis δ ≺ ρ

��γ ≺ σ implies that Prove(� δ ≺ ρ �� γ ≺ σ) �� fail, by Lemma 3.17. Since the
execution of Prove(� δ ≺ ρ �� γ ≺ σ) terminates by Lemma 3.21, we conclude by Lemma 3.15 that it produces
a derivation with conclusion � δ ≺ ρ �� γ ≺ σ . �

Corollary 3.23 The relation
�� is decidable.

Proof By definition ρ

��σ is equivalent to ◦ ≺ ρ

��◦ ≺ σ . By Theorems 3.13 and 3.22 ◦ ≺ ρ

��◦ ≺ σ is
equivalent to the derivability of � ◦ ≺ ρ �� ◦ ≺ σ , which is decidable by means of Prove. �

4. The sub-behaviour relation

In the theory of session behaviours (and contracts in general) the compliance relation induces a preorder �
formalising the notion of (server) substitutivity. The relation σ � σ ′ holds whenever, for any client ρ, if ρ

�

σ ,
then ρ

�

σ ′. Here we adapt the definition of the sub-behaviour relation to the behaviours with checkpoints and
to the �-compliance relation, obtaining a relation that we call �-sub-behaviour and dub ≤�

.

Definition 4.1 (�-Sub-behaviour) The binary relation σ ≤�
σ ′ over SB� is defined by

σ ≤�
σ ′ if ρ

��σ implies ρ

��σ ′ for all ρ ∈ SB�.

As in the case of behaviours without checkpoints, a behaviour with more external choices and fewer internal
choices is “bigger than” a behaviour with fewer external choices and more internal choices. Formally

�
∑

i∈I ai .σi ≤�
�
∑

i∈I∪J ai .σ ′
i

�
⊕

i∈I∪J ai .σi ≤�
�
⊕

i∈I ai .σ
′
i

where we assume σi ≤�
σ ′
i for all i ∈ I . A simple example is �a.(b ⊕ c) ≤�

�(a.b + d).
The addition of checkpoints produces behaviours which are incomparable in general, even in case their

erasures be identical. For example �a.b is compliant with �a.b, but not with �a.�b, while �a.�b is compliant with
�a.�b, but not with �a.b.

Nevertheless we can show decidability of the �-sub-behaviour relation. This proof will be obtained as a
corollary of the property that the dual of a session-behaviour is actually the minimum among its servers with

Reversible client/server interactions with skips 713

respect to ≤�
. For any theory of subcontracts this duals as minima result is quite relevant, since the possibility of

implementing contract-based query engines relies on it (see the Introduction of [Pad10] for a detailed description
of the use of subcontract relations in search engines).

Lemma 4.2 For all ρ, σ, ω ∈ SB�:

[ρ

��ω and ω

��σ] imply ρ

��σ.

Proof
It is easy to verify that an alternative definition of

�� is the following one.
Let δ ≺ ρ

��γ ≺ σ if

(1) δ ≺ ρ ‖ γ ≺ σ � τ−→ implies ρ � 1;

(2) δ ≺ ρ ‖ γ ≺ σ
β−→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′ implies δ′ ≺ ρ ′ �� γ ′ ≺ σ ′, where β ∈ {τ, rbk}.

Therefore it is enough to show that

{(δ ≺ ρ, γ ≺ σ) ∈ SB≺×SB≺ | ∃ω.ϑ. δ ≺ ρ

��ϑ ≺ ω & ϑ ≺ ω

��γ ≺ σ }
satisfies the above conditions (extending the duality operation to ◦ � ◦).
(1) δ ≺ ρ ‖ γ ≺ σ � τ−→ implies ρ � 1. If we had, by contradiction, ρ �� 1, let δ ≺ ρ

a−→ for some a (the case

in which δ ≺ ρ
a−→ can be treated similarly). From δ ≺ ρ

��ϑ ≺ ω we then get ϑ ≺ ω
a−→ and hence

ϑ ≺ ω
a−→. So from ϑ ≺ ω

��γ ≺ σ , we get γ ≺ σ
a−→. Notice that we have A+(ρ) ⊇ A⊕(σ), since

A+(ρ) ⊇ A⊕(ω) and A+(ω) ⊇ A⊕(σ). So we could conclude δ ≺ ρ ‖ γ ≺ σ
τ−→.

(2) δ ≺ ρ ‖ γ ≺ σ
β−→ δ′ ≺ ρ ′ ‖ γ ′ ≺ σ ′ with β ∈ {τ, rbk} implies δ′ ≺ ρ ′ ��ϑ ′ ≺ ω′ and ϑ ′ ≺ ω′ ��γ ′ ≺ σ ′ for

some ω′, ϑ ′.
If β � rbk we have actually to show that

δ ≺ ρ ‖ γ ≺ σ
rbk−→ ◦ ≺ δ ‖ ◦ ≺ γ implies ◦ ≺ δ

��◦ ≺ ω′ and ◦ ≺ ω′ ��◦ ≺ γ for some ω′.
From δ ≺ ρ ‖ γ ≺ σ

rbk−→ ◦ ≺ δ ‖ ◦ ≺ γ we can infer that δ, γ ∈ SB�. Being δ ≺ ρ

��ϑ ≺ ω also ϑ ∈ SB�.

Therefore δ ≺ ρ ‖ ϑ ≺ ω
rbk−→ ◦ ≺ δ ‖ ◦ ≺ ϑ and ϑ ≺ ω ‖ γ ≺ σ

rbk−→ ◦ ≺ ϑ ‖ ◦ ≺ γ . This implies
◦ ≺ δ

��◦ ≺ ϑ and ◦ ≺ ϑ

��◦ ≺ γ . We can then choose ω′ � ϑ in order to get what we need.
If β � τ we have actually to show that
δ ≺ ρ ‖ γ ≺ σ

τ−→ δ ≺ ρ ′ ‖ γ ≺ σ ′ implies
δ ≺ ρ ′ ��ϑ ′ ≺ ω′ and ϑ ′ ≺ ω′ ��γ ≺ σ ′ for some ω′, ϑ ′. We proceed by cases, according to the form of ρ.
Let ρ ��1

∑
i∈I ai .ρi and ρ ′ � ρk and δ′ � p(δ, ρ). Then σ ��2

⊕
j∈J aj .σj and σ ′ � σk and γ ′ � p(γ, σ).

Now, from δ ≺ ρ

��ϑ ≺ ω and ϑ ≺ ω

��γ ≺ σ , we can infer that ω �� 3
⊕

l∈L al .ωl and J ⊆ L ⊆ I .
Notice that by construction p(ϑ,ω) � p(ϑ,ω). So in order to obtain what we need we can simply choose
ϑ ′ � p(ϑ,ω) and ω′ � ωk .
The case ρ ��

⊕
i∈I ai .ρi can be treated similarly.

�

Proposition 4.3 Let ω ∈ SB�. Then ω is the minimum server of ω, i.e.

ω

��σ implies ω ≤�
σ for all σ ∈ SB�.

Proof We observe that ω

��ω. Hence it remains to show the minimality property with respect to ≤�
.

Let σ be a server ω is compliant with, i.e. ω

��σ . Now, in order to show ω ≤�
σ , let ρ be a client compliant with

ω, i.e. ρ

��ω. Then we have ρ

��ω and ω

��σ . By Lemma 4.2 and being duality an involution we get what we
need, that is the compliance of ρ with σ . �

We are finally in place to establish the expected relation between subtyping, compliance and duality.

Theorem 4.4 σ ≤�
σ ′ if and only if σ

��σ ′.

Proof (⇒) Let σ

���
σ ′. Since we have σ

��σ , we get σ �≤�
σ ′.

(⇐) Let σ

��σ ′. Then, by Proposition 4.3, we get σ � σ ≤�
σ ′. �

714 F. Barbanera et al.

By Theorem 4.4 and the decidability of

�� we can now conclude:

Corollary 4.5 The relation ≤�
is decidable.

5. Calculus with skips

In this section we modify the calculus of behaviours to allow the skip of certain outputs occurring after a
rollback, in particular those already done and which have no corresponding input anymore. To represent the fact
that already done outputs can be skipped, we bar them as in �a. Then we define session behaviours as in Figure 1
adding barred outputs. In the following −a stands for either a or �a. We use SBskp to denote the set of session
behaviours with checkpoints and skips. From now on we call just behaviours the expressions in SBskp.

In the operational semantics of the calculus we have to record not only the last encountered behaviour that
was prefixed by a checkpoint in the interaction leading to the current behaviour (as before), but also the sequence
of executed inputs and outputs (trace). As usual a trace μ is a finite sequence of actions and coactions, where

the outputs can be either barred or not. We say that μ is a trace of σ if σ
μ−→, according to the LTS of ordinary

behaviours. Therefore we will consider configurations of the shape:

(σ,μ) ≺ σ ′

where σ is a checkpointed internal or external choice, and σ
μ−→ σ ′ if σ becomes σ ′ after performing all the

actions in μ and in the given order. Let SB�
skp

be the set of behaviours starting with � and TR be the set of traces.
Then (SB�

skp
×TR)∪ {◦} is the set of the “pasts with skips”, and we denote by χ, ζ , possibly with superscripts, its

elements.
To formalise the LTS of clients and servers we record the outputs that can be skipped by means of a function

which, applied to a behaviour and to a trace of it, returns the behaviour where all the executed coactions have
been barred. Given a pair (σ,μ) such that μ is a trace of σ , we define the function b(σ,μ) by induction on μ,
using ε to denote the empty trace:

b(σ, ε) � σ
b(�σ,μ) � �b(σ,μ)
b(

∑
i∈I ai .σi , ak μ) � ∑

i∈I \k ai .σi + ak .b(σk , μ)
b(

⊕
i∈I −a i .σi , ak μ) � ⊕

i∈I \k −ai .σi ⊕ �ak .b(σk , μ)

where, if μ is a trace of σ , then k ∈ I in both cases; also k is unique such, by definition of behaviours. The equi-
recursive treatment of rec x .σ implies b(rec x .σ, μ) � b(σ [rec x .σ/x], μ) if μ �� ε, and b(rec x .σ, μ) � rec x .σ ,
otherwise.

We define �?σ �
{

σ if σ �� σ ′,
�σ otherwise.

We are now ready to give the LTS of clients and servers.

Definition 5.1 (Reduction of session behaviours with skips) Let k ∈ I .

◦ ≺ ∑
i∈I ai .σi

ak−→ ◦ ≺ σk (◦+) ◦ ≺ ⊕
i∈I −ai .σi

ak−→ ◦ ≺ σk (◦⊕)

(σ,μ) ≺ ∑
i∈I ai .σi

ak−→ (σ,μ ak) ≺ σk (+) (σ,μ) ≺ ⊕
i∈I −ai .σi

ak−→ (σ,μ −ak) ≺ σk (⊕)

χ ≺ �
∑

i∈I ai .σi
ak−→ (�

∑
i∈I ai .σi , ak) ≺ σk (�+) χ ≺ �

⊕
i∈I −ai .σi

ak−→ (�
⊕

i∈I −ai .σi ,−ak) ≺ σk (�⊕)

◦ ≺ �(
⊕

i∈I −ai .σi ⊕ �a.σ)
skp−→ ◦ ≺ �?σ (skp) (σ,μ) ≺ ρ

rbk−→ ◦ ≺ b(σ,μ) (rbk)

Since we only allow to skip barred outputs, the starting configuration of the first application of rule (skp) must
be the result of a rollback. This implies that the past must be ◦ and the current behaviour must be checkpointed.
In the new configuration we preserve the past and the checkpoint. This choice can be illustrated by looking at
reduction rules of client/server pairs and so we will discuss it after defining them.

Reversible client/server interactions with skips 715

We extend the functionA+(·) of Definition 2.5 just by ignoring bars. The interaction of a client with a server is
modelled by the reduction of their parallel composition, that can also involve barred outputs in synchronisations
andbe forward, skipping an alreadydoneoutputwhenno synchronisation is possible (conditionA⊕()∩A+() � ∅
in rules (skp‖) and (‖skp)). Therefore we allow barred outputs in rules (+‖⊕) and (⊕‖+) of Definition 2.6 and
we add the following rules:

◦ ≺ ρ
skp−→ ◦ ≺ ρ ′ A⊕(ρ) ∩ A+(σ) � ∅

(skp‖)
◦ ≺ ρ ‖ ◦ ≺ σ

skp−→ ◦ ≺ ρ ′ ‖ ◦ ≺ σ

◦ ≺ σ
skp−→ ◦ ≺ σ ′ A⊕(σ) ∩ A+(ρ) � ∅

(‖skp)
◦ ≺ ρ ‖ ◦ ≺ σ

skp−→ ◦ ≺ ρ ‖ ◦ ≺ σ ′

In the following we will use −→ for the union of
τ−→,

rbk−→ and
skp−→ and similarly of the other arrows denoting

reductions.
Without skips, starting from nice client/server parallel compositions, only nice client/server parallel composi-

tions can be reached (Proposition 2.8). This assures that the client and the server either both can or both cannot
roll back in all configurations, an essential property as discussed in the Introduction. So we designed rule (skp)
preserving this property.

Let us extend Definition 2.7 to the present calculus just replacing SB� with SB�
skp
. Then rules (‖skp) and

(skp‖) can only be applied to nice parallel compositions which satisfy condition (1) of Definition 2.7 producing
parallel compositions which satisfy the same condition. Therefore we can consider only nice client/server parallel
compositions also when dealing with skips.

Example 5.2 We show a possible reduction sequence of the client server pair defined in example (3) of the
Introduction.

◦ ≺ Client′′ ‖ ◦ ≺ Server′′′ τ−→ (Client′′, lg) ≺ (bg.pr ⊕ bt.pr) ‖ (Server′′′, lg) ≺ �(bg.pr + bt.pr)
τ−→ (Client′′, lg bg) ≺ pr ‖ (�(bg.pr + bt.pr), lg bg) ≺ pr
rbk−→ ◦ ≺ ���lg.(�bg.pr ⊕ bt.pr) ‖ ◦ ≺ �(bg.pr + bt.pr)
skp−→ ◦ ≺ �(�bg.pr ⊕ bt.pr) ‖ ◦ ≺ �(bg.pr + bt.pr)
τ−→ (�(�bg.pr ⊕ bg.pr), �bt) ≺ pr ‖ (�(bg.pr + bt.pr),bg) ≺ pr
τ−→ (�(�bg.pr ⊕ bt.pr), �bg pr) ≺ 1 ‖ (�(bg.pr + bt.pr),bg pr) ≺ 1

Notice how, after the skipping of ��lg, the subsequent barred output �bg performed by the client is not skipped,
since there is a corresponding input in the server. Of course the above reduction could go on by means a further
rollback (this time, however, without causing any subsequent skip reduction).

For what concerns implementation issues related to the (skp) transition of processes, we recall that we are
in a context with synchronous communications, which necessarily requires a sort of handshaking protocol. In
presence of rollbacks and skips, the communication protocol must take care of the possibility that an output
action has been previously “barred”. In such a case the output will be skipped if no corresponding input action
is found.

716 F. Barbanera et al.

6. Compliance with skips

We denote the set of configurations by SB≺
skp, i.e. SB

≺
skp � {χ ≺ σ | χ ∈ (SB�

skp
× TR) ∪ {◦}, σ ∈ SB}.

Definition 6.1 (�
skp
-Compliance Relation

��skp) (i) Let ζ ≺ ρ, χ ≺ σ ∈ SB≺
skp. We say that ζ ≺ ρ is �

skp
-compliant

with χ ≺ σ , written ζ ≺ ρ

��skpχ ≺ σ , when for all ζ ′ ≺ ρ ′ and χ ′ ≺ σ ′:

if ζ ≺ ρ ‖ χ ≺ σ
∗−→ ζ ′ ≺ ρ ′ ‖ χ ′ ≺ σ ′ �τ,skp−→ then ρ ′ � 1,

where
τ,skp−→ � τ−→ ∪ skp−→.

(ii) Let ρ, σ ∈ SB�
skp
. We say that ρ is �

skp
- compliant with σ (notation ρ

��skpσ) if ◦ ≺ ρ

��skp◦ ≺ σ .

Also �
skp
-compliance satisfies the conservativity of erasure discussed in the Introduction. So similarly to

Proposition 3.2 we get

Proposition 6.2 ρ

��skpσ implies erase(ρ)

�

erase(σ) for all ρ, σ .

The example given after Proposition 3.2 shows that the vice versa does not hold. Moreover

��skp does not imply��; take for example ρ �� a.b and σ �� a�b. Instead

�� implies

��skp, since rules (skp‖) and (‖skp) apply only
when the parallel composition of client and server is stuck with the reduction of Definition 2.6.

With skips we did not manage to find a suitable notion of duality. In fact duality requires involution, and
therefore we need to extend the syntax in order to distinguish inputs which are duals of barred outputs from
inputs which are duals of non barred outputs. In absence of duality we cannot characterise subtyping as done in
Sect. 4 for the calculus without skips.

In order to give a formal system characterising �
skp
-compliance it is handy to define a function

s : ((SB�
skp

× TR) ∪ {◦}) × SB × (N ∪ N) → (SB�
skp

× TR) ∪ {◦} which returns:

• the pair of the second and the third argument, when the second argument is checkpointed,
• the first argument modified using the third, when the second argument is not checkpointed, and the first
argument is pair,

• ◦ otherwise.

More precisely:

s(χ, �σ , α) �
⎧
⎨

⎩

(�σ, α) if � � �
(ρ,μ α) if � �� � and χ � (ρ,μ)
◦ otherwise.

The first six reduction rules in Definition 5.1 can be shortly written in terms of the function s:

Lemma 6.3 Let k ∈ I .

χ ≺ �(
∑

i∈I ai .σi)
ak−→ s(χ, �(

∑
i∈I ai .σi), ak) ≺ σk

χ ≺ �(
⊕

i∈I −a i .σi)
ak−→ s(χ, �(

⊕
i∈I ai .σi), ak) ≺ σk

We now axiomatically characterise the �
skp
-compliance relation by means of a formal system, whose judgments

are of the form � � ζ ≺ ρ ��
skp χ ≺ σ , where � is an environment, i.e. a finite set � � {ζi ≺ ρi ��

skp χi ≺ σi }i∈I .
The rules of the formal system are given in Figure 4, where in writing bζ we assume that ζ ∈ SB�

skp
× TR. We

denote by ��
skp the formal counterpart of

��skp.
The following example shows �

skp
-compliance of the client and the server defined by (3) in the Introduction.

Example 6.4 Let ρ � �lg.(bg.pr ⊕ bt.pr) and σ � �lg.�(bg.pr + bt.pr) and
� � {◦ ≺ ρ ��

skp ◦ ≺ σ },
�1 � �, (ρ, lg) ≺ bg.pr ⊕ bt.pr ��

skp (σ, lg) ≺ �(bg.pr + bt.pr),
�2 � �1, (ρ, lg bg) ≺ pr ��

skp (�(bg.pr + bt.pr),bg) ≺ pr,
�′
2 � �1, (ρ, lg bt) ≺ pr ��

skp (�(bg.pr + bt.pr),bt) ≺ pr,

Reversible client/server interactions with skips 717

Fig. 4. The formal system for �
skp-compliance

�3 � �2, ◦ ≺ ���lg.(��bg .pr ⊕ bt.pr) ��
skp ◦ ≺ �(bg.��pr + bt.pr),

�4 � �3, ◦ ≺ �(��bg .pr ⊕ bt.pr) ��
skp ◦ ≺ �(bg.��pr + bt.pr),

�5 � �4, (�(��bg .pr ⊕ bt.pr), bg) ≺ pr ��
skp (�(bg.��pr + bt.pr),bg) ≺ ��pr,

�6 � �4, (�(��bg .pr ⊕ bt.pr), bt) ≺ pr ��
skp (�(bg.��pr + bt.pr),bt) ≺ ��pr.

D
(Ax)

�2 � (ρ, lg bg pr) ≺ 1 ��
skp (�(bg.pr + bt.pr),bg pr) ≺ 1 D′

(+ · ⊕)
�1 � (ρ, lg bg) ≺ pr ��

skp (�(bg.pr + bt.pr),bg) ≺ pr D1 D2
(⊕ · +)

� � (ρ, lg) ≺ bg.pr ⊕ bt.pr ��
skp (σ, lg) ≺ �(bg.pr + bt.pr)

(⊕ · +)
� ◦ ≺ ρ ��

skp ◦ ≺ σ

where:
D is the derivation

(Hyp)
�5 � ◦ ≺ �(��bg .pr ⊕ bt.pr) ��

skp ◦ ≺ �(bg.��pr + bt.pr)
(Ax)

�5 � (�(��bg .pr ⊕ bt.pr), bgpr) ≺ 1 ��
skp (�(bg.��pr + bt.pr),bg pr) ≺ 1 D4

(+ · ⊕)
�4 � (�(��bg .pr ⊕ bt.pr), bg) ≺ pr ��

skp (�(bg.��pr + bt.pr),bg) ≺ ��pr D3
(⊕ · +)

�3 � ◦ ≺ �(��bg .pr ⊕ bt.pr) ��
skp ◦ ≺ �(bg.��pr + bt.pr)

(skp·)
�2 � ◦ ≺ ���lg.(��bg .pr ⊕ bt.pr) ��

skp ◦ ≺ �(bg.��pr + bt.pr)

718 F. Barbanera et al.

D1 is the derivation

D0
(Ax)

�′
2 � (ρ, lg bt pr) ≺ 1 ��

skp (�(bg.pr + bt.pr),bt pr) ≺ 1 D′
0

(+ · ⊕)
�1 � (ρ, lg bt) ≺ pr ��

skp (�(bg.pr + bt.pr),bt) ≺ pr

D2 is the derivation

...
�1 � ◦ ≺ ���lg.(bg.pr ⊕ bt.pr) ��

skp ◦ ≺ �lg.�(bg.pr + bt.pr)

D4 is the derivation

(Hyp)
�5 � ◦ ≺ �(��bg .pr ⊕ bt.pr) ��

skp ◦ ≺ �(bg.��pr + bt.pr)

D3 is the derivation

...
�6 � ◦ ≺ �(��bg .pr ⊕ ��bt.pr) ��

skp ◦ ≺ �(bg.��pr + bt.��pr)
(Ax)

�6 � (�(��bg .pr ⊕ bt.pr), bt pr) ≺ 1 ��
skp (�(bg.��pr + bt.pr),bt pr) ≺ 1 D5

(+ · ⊕)
�4 � (�(��bg .pr ⊕ bt.pr), bt) ≺ pr ��

skp (�(bg.��pr + bt.pr),bt) ≺ pr

D5 is the derivation

...
�6 � ◦ ≺ �(��bg .pr ⊕ ��bt.pr) ��

skp ◦ ≺ �(bg.��pr + bt.pr)

We omit writing D′, D0 and D′
0. Derivation D0 is obtained from derivation D by swapping the bt and bg choices.

Derivations D′ and D′
0 are obtained from derivation D and D0, respectively, by erasing the barring of pr.

The derivations with vertical dots are shown incomplete for the sake of readability. Actually one could wonder
why the judgments right below the vertical dots are not derived by means of rule (Hyp). As a matter of fact, the
subjects of such judgments are present in the respective environments only modulo some bars. In the omitted
derivations these judgments go into the environments and become the subjects of instances of rule (Hyp).

The remaining of this section is devoted to the proof of the soundness and completeness of the formal system
in Fig. 4.

6.1. Soundness and completeness

As for the calculus without skips we start by providing a coinductive definition of �
skp
-compliance.

Definition 6.5 Let { ��skp

k | k ∈ N} be the family of relations over SB≺
skp such that

��skp

0 � SB≺ × SB≺ and
ζ ≺ ρ

��skp

k+1 χ ≺ σ if either conditions (1), (2) and (3) of Definition 3.5 (with ζ , χ and

�� in place of δ, γ and��skp, respectively) hold, or if

ρ �� 1 and ζ ≺ ρ ‖ χ ≺ σ
skp−→ and

ζ ≺ ρ ‖ χ ≺ σ −→ ζ ′ ≺ ρ ′ ‖ χ ′ ≺ σ ′ implies ζ ′ ≺ ρ ′ ��
k χ ′ ≺ σ ′ for all ζ ′ ≺ ρ ′, χ ′ ≺ σ ′.

Then we define

��skp

co � ⋂
k∈N

��skp

k .

Lemma 6.6 The relations

��skp and

��skp

co coincide.

Toward the axiomatic characterisation of the �
skp
-compliance we define the semantic counterparts of the judg-

ments in the formal system. The following definitions are the analogous of Definitions 3.10 and 3.11, respectively.

Reversible client/server interactions with skips 719

Fig. 5. The algorithm Proveskp

Definition 6.7 We write

• |�skp � if ζ ′ ≺ ρ ′ ��skpχ ′ ≺ σ ′ for all ζ ′ ≺ ρ ′ ��
skp χ ′ ≺ σ ′ ∈ �;

• � |�skp ζ ≺ ρ ��
skp χ ≺ σ if |�skp � implies ζ ≺ ρ

��skpχ ≺ σ .

Definition 6.8 Let k ≥ 0. We write

• |�skp
k � if ζ ′ ≺ ρ ′ ��skp

k χ ′ ≺ σ ′ for all ζ ′ ≺ ρ ′ �� χ ′ ≺ σ ′ ∈ �,

• � |�skp
k ζ ≺ ρ �� χ ≺ σ if |�skp

k � implies ζ ≺ ρ

��skp

k χ ≺ σ ,

720 F. Barbanera et al.

Theorem 6.9 (Soundness) If � � ζ ≺ ρ ��
skp χ ≺ σ , then � |� ζ ≺ ρ ��

skp χ ≺ σ .

Proof Again we have � |�skp
k ζ ≺ ρ ��

skp χ ≺ σ for all k implies � |� ζ ≺ ρ ��
skp χ ≺ σ , so that it suffices to

prove that � � ζ ≺ ρ ��
skp χ ≺ σ implies � |�skp

k ζ ≺ ρ ��
skp χ ≺ σ for all k , by simultaneous induction over

the derivation D of � � ζ ≺ ρ ��
skp χ ≺ σ and over k .

The argument is similar to the proof of Theorem 3.13 but in case the derivation ends by rules (·skp) or (skp·).
We show only the first case, since the second one is similar.

Now suppose that D ends by the inference:

∀ j ∈ J . �′ � ◦ ≺ ρ ��
skp ◦ ≺ �?σj A⊕(σ) ∩ A+(ρ) � ∅

(·skp)
� � ◦ ≺ ρ ��

skp ◦ ≺ σ

where �′ � �, ◦ ≺ ρ ��
skp ◦ ≺ σ and ρ � �(

∑
i∈I ai .ρi) and σ �� (

⊕
j∈J �aj .σj ⊕ ⊕

l∈L a l .σl). If |�skp
k � for

some k > 0, then |�skp
k−1 �. By induction we have � |�skp

k−1 ◦ ≺ ρ ��
skp ◦ ≺ σ , and hence ◦ ≺ ρ

��skp

k−1◦ ≺ σ , that is
|�skp

k−1 �′. From this and the induction hypothesis over D, i.e. �′ |�k−1 ◦ ≺ ρ ��
skp ◦ ≺ �?σj for all j ∈ J , we get

◦ ≺ ρ

��skp

k−1◦ ≺ �?σj . Notice that A⊕(σ) ∩ A+(ρ) � ∅, and ◦ ≺ ρ ‖ ◦ ≺ �?σj for all j ∈ J are exactly the one step
reducts of ◦ ≺ ρ ‖ ◦ ≺ σ . Then we conclude ◦ ≺ ρ

��skp

k ◦ ≺ σ , as required. �

Theorem 6.10 (Completeness) If ζ ≺ ρ

��skpχ ≺ σ , then � ζ ≺ ρ ��
skp χ ≺ σ is derivable.

Proof As in the case of the calculus without skip the completeness can be shown by using an algorithm Proveskp

which builds a derivation in the formal system of Fig. 4 if possible, and it fails otherwise. Figure 5 shows this
algorithm. The main difference between Prove (Fig. 3) and Proveskp are the last two cases, which correspond to
the application of the rules (skp·) and (·skp). Clearly these cases do not destroy termination and just build the
derivations which can be obtained using these rules. �

The main result of this section is that the formal system provides a complete axiomatic characterisation of
the �

skp
-compliance, which leads to an decision procedure for �

skp
-compliance:

Theorem 6.11 The formal system of Fig. 5 characterises �
skp
-compliance, i.e.

ρ

��skpσ if and only if � ◦ ≺ ρ ��
skp ◦ ≺ σ.

7. Related work and conclusion

Since the pioneering work by Danos and Krivine [DK04], reversible computations in process algebras have been
widely studied. The calculus of [DK04] adds a distributed monitoring system to CCS [Mil89] allowing to rewind
computations. Phillips andUlidowski [PU07] propose amethod for reversing process operators that are definable
by SOS rules in a general format, using keys to bind synchronised actions together. A reversible variant of the
higher-order π -calculus is defined in [LMS10], using name tags for identifying threads and explicit memory
processes. In [LMSS11] Lanese et al. enrich the calculus of [LMS10] with a fine-grained rollback primitive.
To the best of our knowledge the first works dealing with rollback of communicating systems are [dVKH10a,
dVKH10b, KSH14]. In these papers an extension of CCS models the combination of rollback recovery and
coordinated checkpoints.

As pointed out in [PU07], reversibility in process calculi is challenging, sincewe cannot distinguish between the
processes a‖a and a.a by simply recording the past actions. For this reason both histories and unique identifiers
for threads have been used to track information. A key requirement, dubbed causal consistency in [DK04], is
that of undoing only actions if no other action depending on them has been executed (and not undone). Session
behaviours overcome all these problems: in fact both the client and the server reduce in a sequential way. This
justifies the relative simplicity of our calculus.

A work close to ours has been carried on by Tiezzi and Yoshida in [TY14, TY15], where they study the
interplay between reverse computations and session-based interactions (for a comparison between session types
and contracts see, e.g., [LP08]). Their calculus uses tags and memories as previous proposals in the literature on
reversibility. In particular, they define the semantics for reversible sessions by adapting the approach in [LMS10],
but they do not consider compliance. Compliance in a setting with rollback has been first studied in [BDdL14].

Reversible client/server interactions with skips 721

The version with skips of our system has been inspired by [BdL14], where the notion of standard compliance
on session behaviours has been loosened, by allowing a server to skip outputs not needed by its client. In the
present context both the client and the server are allowed to skip an output, but here this can be done with a
different motivation, since the outputs that can be skipped have actually already been received.

Notice that a process whose behaviour is described by a session-behaviourwith checkpoints is assumed to have
the possibility, after a rollback, of resuming the computation following the very same branch of the computation
on which the rollback has been performed. In our formalism no assumption is in fact made about the point and
themotivation for a rollback. This makes our session behaviours suitable as a basis of reversible session-structured
computations where rollbacks depends intrinsically on the single interacting processes.

From a different point of view, instead, rollbacks could be used as a strategy to get compliance. For instance
assuming the interacting processes to roll back whenever the current branch of the computation cannot proceed
and a different branch could work instead. This approach has been investigated in [BDLdL16], where compliance
does not enjoy conservativity of erasure but the inverse property: if behaviours without checkpoints are
compliant, then an arbitrary addition of checkpoints preserves the compliance between them.More precisely the
calculus of [BDLdL16] does not have checkpoints, but external choices of conames. Two external choices can be
viewed as agreement points to which processes can roll back. So the previous property can be rephrased as: if
behaviours without checkpoints are compliant, then the behaviours obtained by replacing some internal choices
by external ones are compliant too.

Natural extensions of the present work consist in allowing to possibly perform several consecutive rollbacks
and having sequences of checkpointed behaviours as pasts. It is easy to see that both extensions, even if they
would not lead to great difficulties from a technical point of view, will lead instead to notions of compliance
which are more demanding and less applicable in a general setting than the current one.

We plan to investigate whether our approach can be extended to multi-party sessions [HYC08], the rational
being that the parallelism is limited since the interactions must follow the communication protocols prescribed
by global types.

Acknowledgements

We are grateful to the anonymous reviewers of BEAT’14 and of the present submission for their useful remarks.

References

[BDdL14] Barbanera F, Dezani-Ciancaglini M, de’ Liguoro U (2014) Compliance for reversible client/server interactions. In BEAT 162
of EPTCS, Open Publishing Association, pp 35–42

[BdL14] Barbanera F, de’ Liguoro U (2014) Loosening the notions of compliance and sub-behaviour in client/server systems. In ICE
166 of EPTCS, Open Publishing Association, pp 94–110

[BdL15] Barbanera F, de’ Liguoro U (2015) Sub-behaviour relations for session-based client/server systems. Math Struct Comp Sci
25(9):1339–1381

[BDLdL16] Barbanera F, Dezani-Ciancaglini M, Lanese I, de’ Liguoro U (2016) Retractable contracts. In PLACES, 203 of EPTCS, Open
Publishing Association, pp 61–72

[BH98] BrandtM,Henglein F (1998) Coinductive axiomatization of recursive type equality and subtyping. Fundamenta Informaticae
33(4):309–338

[BH15] Bernardi G, Hennessy M (2015) Modelling session types using contracts. Math Struct Comp Sci FirstView (9):1–51
[CCLP06] Carpineti S, Castagna G, Laneve C, Padovani L (2006) A formal account of contracts for Web Services. In WS-FM, number

4184 in LNCS. Springer, pp 148–162
[CGP09] Castagna G, Gesbert N, Padovani L (2009) A theory of contracts for web services. ACM Trans Program Lang Systems

31(5):19:1–19:61
[DK04] Danos V, Krivine J (2004) Reversible communicating systems. In CONCUR volume 3170 of LNCS. Springer, pp 292–307
[dVKH10a] de Vries E, Koutavas V, Hennessy M (2010) Communicating transactions - (extended abstract). In CONCUR, volume 6269

of LNCS. Springer, pp 569–583
[dVKH10b] de Vries E, Koutavas V,HennessyM (2010) Liveness of communicating transactions—(extended abstract). InAPLAS, volume

6461 of LNCS. Springer, pp 392–407
[HVK98] Honda K, Vasconcelos VT, Kubo M (1998) Language primitives and type disciplines for structured communication-based

programming. In ESOP, volume 1381 of LNCS. Springer, pp 22–138
[HYC08] Honda K, Yoshida N, Carbone M (2008) Multiparty asynchronous session types. In POPL. ACM Press, pp 273–284
[KSH14] Koutavas V, Spaccasassi C, Hennessy M (2014) Bisimulations for communicating transactions—(extended abstract). In FOS-

SACS, volume 8412 of LNCS. Springer, pp 320–334
[LMS10] Lanese I, Mezzina CA, Stefani J-B (2010) Reversing higher-order pi. In CONCUR, volume 6269 of LNCS. Springer, pp

478–493

722 F. Barbanera et al.

[LMSS11] Lanese I, Mezzina CA, Schmitt A, Stefani J-B (2011) Controlling reversibility in higher-order pi. In CONCUR, volume 6901
of LNCS. Springer, pp 297–311

[LP08] Laneve C, Padovani L (2008) The pairing of contracts and session types. In Concurrency, Graphs and Models 5065 of LNCS.
Springer, pp 681–700

[Mil89] Milner R (1989) Communication and concurrency. PHI Series in computer science, Prentice Hall
[Pad10] Padovani L (2010) Contract-based discovery of web services modulo simple orchestrators. Theor Comp Sci 411:3328–3347
[PS96] Pierce BC, Sangiorgi D (1996) Typing and subtyping for mobile processes. Math Struct Comp Sci 6(5):409–453
[PU07] Iain CC (2007) Phillips and Irek Ulidowski. Reversing algebraic process calculi. J Logic Algeb Program 73(1-2):70–96
[TY14] Tiezzi F, Yoshida N (2014) Towards reversible sessions. In PLACES, volume 155 of EPTCS. Open Publishing Association,

pp 17–24
[TY15] Tiezzi F, Yoshida N (2015) Reversible session-based pi-calculus. J Logic Algeb Methods Program 84(5):684–707

Received 1 March 2015
Accepted in revised form 22 January 2016 by Thomas Hildebrandt, Joachim Parrow, Matthias Weidlich, and Marco Carbone
Published online 24 February 2016

	Reversible client/server interactions
	Abstract
	1 Introduction
	2 Calculus
	2.1 Operational semantics

	3 Compliance
	3.1 Soundness and completeness

	4 The sub-behaviour relation
	5 Calculus with skips
	6 Compliance with skips
	6.1 Soundness and completeness

	7 Related work and conclusion
	Acknowledgements
	References

