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Abstract 29 

 Klinefelter syndrome (KS) is the most common sex-chromosome disorder in men. It is characterized 30 

by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of 31 

Y(SRY)-BOX 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet 32 

cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 33 

diabetes mellitus (DM) and primary biliary cirrhosis. SOX13 expression has never been investigated in 34 

patients with KS. In this age-matched case-control study performed in 10 patients with KS and 10 controls, 35 

we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with 36 

KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with 37 

KS. However, the role of SOX13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients 38 

with KS deserves to be further explored. 39 

 40 
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1.1 Introduction 48 

Klinefelter syndrome (KS) is the most common sex-chromosome disorder in men, with an estimated 49 

prevalence of 1:500 to 1:1000 newborns [1]. The most widespread karyotype in men with KS is 47,XXY 50 

(the so-called “classic” nonmosaic karyotype). Classic nonmosaic karyotype occurs in approximately 80-51 

90% of men with KS [2] and is due to paternal meiotic nondisjunction in 50% of cases [3]. Otherwise, 52 

mosaic KS (e.g., 47,XXY/46,XY) and other nonmosaic forms, such as complex karyotype or other numeric 53 

sex chromosome abnormalities (e.g., 48,XXXY, 48,XXYY and 49,XXXXY), can be found in the remaining 54 

patients [2,4]. 55 

The abnormal karyotype leads to progressive germ cell degeneration starting from mid-puberty, 56 

impaired Sertoli cell (SC) function [5], total tubular atrophy or hyalinizing fibrosis and relative hyperplasia 57 

of Leydig cells [6]. Occasionally, foci of spermatogenesis have been observed in the testes of men with KS 58 

[6]. Clinically, azoospermia occurs in the majority of patients with nonmosaic KS. In addition, sperm has 59 

been found in 7.7-8.4% of patients with (apparently) nonmosaic KS [2]. 60 

Several other clinical manifestations can be associated with the syndrome, such as learning and 61 

developmental disability, personality disorder and behavioral problems, intelligence quotient (IQ) lower by 62 

10-15 points but not in the intellectual disability range, increased risk for mitral valve prolapse, lower-63 

extremity varicose veins, venous stasis ulcers, deep vein thrombosis, pulmonary embolism, autoimmune 64 

diseases, 20-fold-higher risk of developing breast cancer, type 2 diabetes mellitus (T2DM), metabolic 65 

syndrome, extragonadal germ cell tumors and non-Hodgkin lymphoma [1,7-9]. 66 

Despite an increasing number of studies investigating the gene expression profile in both peripheral 67 

blood mononuclear cells (PBMCs) and, when available, in the testicular tissue of patients with KS [10-20], 68 

the molecular mechanisms responsible for germ cell degeneration remain elusive. It has been hypothesized 69 

that the escape of inactivation of genes on the supernumerary X chromosome might affect germ cell 70 

development and/or meiosis [21]. However, transcriptome analysis of testicular tissue of men with KS 71 

resulted in normal expression of X-linked genes [20]. By contrast, deregulation of gene mapping on 72 

autosomes has been shown in men with KS, and therefore, the supernumerary X chromosome has been 73 

suggested to influence the regulation of these genes [14]. 74 

The sex-determining region of Y(SRY)-BOX 13 (SOX13) maps to the 1q32.1 chromosome. It belongs 75 

to the family of SRY-related high mobility group (HMG)-BOX genes, which, in turn, encode a group of 76 
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transcription factors with an HMG-type DNA-binding domain. The latter consists of three α-helixes whose 77 

binding to specific DNA sequences influences DNA structure and transcription [22,23]. In mice, members of 78 

the Sox transcription factor family play a role in fetal development in multiple tissues, including the testis 79 

[24]. Accordingly, SRY, required for male sex determination in both humans and mice, targets sex-80 

determining region of Y(SRY)-BOX 9 (Sox9) expression, which initiates Sertoli cell differentiation [25,26]. 81 

Recently, Sox13 has been found to be expressed in mouse type A and B spermatogonia [24]. 82 

Interestingly, SOX13 is also a diabetes autoantigen expressed in pancreatic cells [27]. No data are currently 83 

available on its expression in men with KS. Therefore, this study was undertaken to evaluate whether 84 

differential SOX13 gene expression occurs in peripheral blood mononuclear cells (PBMCs) of men with KS 85 

compared with healthy controls. 86 

 87 

2. Materials and Methods 88 

2.1 Patients, controls and RNA extraction 89 

 Ten men with KS with the nonmosaic KS karyotype 47,XXY (as confirmed by cytogenetic 90 

investigation performed on at least 50 metaphases) and ten healthy age-matched controls with 46,XY 91 

karyotype, no clinical history of genetic diseases, normal testicular volume and normal reproductive 92 

hormone (gonadotropins and total testosterone) serum levels were recruited. Patients and controls were 93 

Italians. They were evaluated for gonadotropins, total testosterone (TT) levels, body mass index (BMI), 94 

glycemia and serum insulin levels. Insulin resistance was calculated using the homeostasis model assessment 95 

index (HOMA-IR). 96 

Fitting with the diagnosis, all patients with KS had azoospermia, increased follicle stimulating 97 

hormone (FSH) serum levels and low testicular volumes. The clinical and biochemical parameters of each 98 

man with KS and control have already been reported [14]. Patients and controls were age-matched (32.4±8.1 99 

vs. 33.1±7.9 years, p>0.1) and did not differ in BMI, glycemia, insulin or HOMA-IR. As expected, serum 100 

gonadotropins and TT levels were significantly different in patients with KS compared to controls (p<0.05) 101 

(Table 1). Among patients with KS, 5 were on testosterone replacement therapy (TRT). No KS or control 102 

was diabetic. An increased HOMA index, consistent with insulin resistance, was found in 42.9% (3/7) of 103 

men with KS and 20.0% (1/5) of controls (p>0.1). 104 
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Two blood samples were withdrawn from each patient and control, the first for next-generation 105 

sequencing (NGS) analysis and the second to validate the results obtained. PBMCs were separated from each 106 

blood sample using Ficoll-Paque (Ficoll Plaque PLUS – GE Healthcare Life Sciences, Piscataway, New 107 

Jersey, USA), and RNA was extracted using TRIzol reagent (TRIzol Reagent, Invitrogen Life Technologies, 108 

Carlsbad, CA, USA) according to the manufacturer’s instructions. The RNA concentration in each sample 109 

was assayed with an ND-1000 spectrophotometer (NanoDrop, Thermo Fisher, Waltham, MA, USA), and its 110 

quality was assessed with a TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA). All RNA had 111 

an RNA Integrity Number (RIN) >8 on Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, 112 

USA). 113 

 114 

2.2 Ethical statement 115 

The present study belongs to a broad project designed to evaluate any difference in the transcriptome of men 116 

with KS compared with healthy controls [13,14,28]. This project has been approved by the Ethical 117 

Committee of the University Teaching Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy: trial 118 

registration number 49/2015/PO (Register of the Ethics Committee opinions). All the participants in the 119 

study signed an informed consent form to participate and to publish. 120 

 121 

2.3 RNA sequencing and data analysis 122 

Indexed libraries were prepared from 1 µg of purified RNA with the TruSeq Stranded Total RNA 123 

(Illumina, Eindhoven, The Netherlands) Library Prep Kit according to the manufacturer’s instructions. 124 

Libraries were quantified using the Agilent 2100 Bioanalyzer (Agilent Technologies) and pooled such that 125 

each index-tagged sample was present in equimolar amounts, with a final concentration of the pooled 126 

samples of 2 nM. The pooled samples were subjected to cluster generation and sequencing using an Illumina 127 

HiSeq 2500 System (Illumina) in a 2x100 paired-end format. The raw sequence files generated (.fastq files) 128 

underwent quality control analysis using FastQC 129 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  130 

Bioinformatics analysis was performed by Genomix4Life Srl (“Schola Medica Salernitana”, 131 

Baronissi, SA, Italy). The quality checked reads were trimmed with cutadapt v.1.10 132 

(https://cutadapt.readthedocs.io/en/v1.10/changes.html#v1-10) and then aligned to the human genome (hg19 133 
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assembly) using STAR v.2.5.2 [29] with standard parameters. Differentially expressed mRNAs were 134 

identified using DESeq2 v.1.12 [30]. 135 

Gene annotation, as provided by Ensembl (GRCh37) (https://grch37.ensembl.org/index.html), was 136 

obtained for all known genes in the human genome. We calculated the number of reads mapping to each 137 

transcript with HTSeq-count v.0.6.1. These raw read counts were then used as input to DESeq2 for 138 

calculation of normalized signal for each transcript in the sample, and differential expression was reported as 139 

the fold change along with associated adjusted p-values (computed according to Benjamini-Hochberg). 140 

Differential expression data were further confirmed using Cuffdiff36). 141 

 142 

2.4 Validation with Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-143 

PCR) 144 

To validate the results obtained by NGS analysis, we compared the RT-PCR results from 10 patients 145 

with KS and 10 normal subjects. qRT-PCR was performed as described elsewhere [14]. 146 

cDNA reverse transcription was carried out for each sample using a cDNA synthesis kit (Thermo 147 

Scientific Maxima First Strand cDNA Synthesis Kit for RT-qPCR, Waltham, MA, USA) according to the 148 

manufacturer’s instructions. Real‑time PCR analysis for SOX13 was performed using TaqMan Gene 149 

Expression Assay primers. Briefly, total RNA was extracted from samples using TRIzol reagent 150 

(Sigma‑Aldrich, Milan, Italy) and quantified by reading the optical density at 260 nm. In particular, 2.5 μg of 151 

total RNA was subjected to reverse transcription (RT, Thermo Scientific, Waltham, MA, USA) in a final 152 

volume of 20 μl. qPCR was performed using 25 ng of cDNA prepared by RT and SYBR Green Master Mix 153 

(Stratagene, Amsterdam, The Netherlands – Agilent Technology). This was performed in an Mx3000P 154 

cycler (Stratagene), using FAM for detection and ROX as the reference dye. The mRNA level of each 155 

sample was normalized against GAPDH mRNA and expressed as the fold change versus the level in the 156 

control samples. The SOX13 and the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 157 

primers were obtained from Applied Biosystems (Carlsbad, CA, USA) (catalog number ID Hs00232193_m1 158 

and ID Hs99999905_m1, respectively). The mean was obtained with the Software Version 1.5 supplied with 159 

the LightCycler 480, as previously reported [31]. 160 

Distribution analysis of measured gene transcript levels was performed using the Shapiro–Wilk test, 161 

and statistical analysis of the results was carried out using paired two-tailed t-test and bivariate linear 162 
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regression analysis. Graph Pad Prism 5 software (https://www.graphpad.com/scientific-software/prism/) was 163 

used for statistical analysis. A p value <0.05 was accepted as significant. 164 

Differential expression data were further confirmed using Cuffdiff36. Raw data are available in the 165 

ArrayExpress database repository (https://www.ebi.ac.uk/arrayexpress/) with accession number E-MTAB-166 

6107. 167 

 168 

3. Results 169 

Integrative Genomics Viewer for SOX13 in three KS patients and three controls (Fig. 1, panel a), 170 

revealed a quantitatively reduced expression of SOX3 in patients than controls, as confirmed by the analysis 171 

of expression of the 20 consecutive samples (Fig. 1, panel b). Overall, NGS transcriptome analysis revealed 172 

that the SOX13 gene (locus 1:204042242-204096863) was downregulated in patients with KS by -3.701-fold 173 

(q-value<0.05) compared with controls. (Fig. 1, panel c). 174 

The raw data of this research project are available in the ArrayExpress database repository 175 

(https://www.ebi.ac.uk/arrayexpress/) with accession number E-MTAB-6107. 176 

In our case–control study with qRT-PCR, we used all KS cases and controls, and specifically, we 177 

obtained a mean ± standard deviation FC of cases of 0.48±0.25 (Fig. 2). Statistical analysis revealed a 178 

significant difference between the control and KS groups (p<0.05). The mean of KS cases was obtained with 179 

the Software Version 1.5 supplied with the LightCycler 480. We can conclude that the results confirmed the 180 

data obtained by NGS analysis, and differences in values reflect the diversity of the methods. 181 

 182 

4. Discussion 183 

 Impaired spermatogenesis with total tubular atrophy or hyalinizing fibrosis is the most common 184 

histological testicular feature of men with KS [1]. Although a number of transcriptome studies have been 185 

performed both in PBMCs and in testicular tissue from patients with KS, the molecular mechanism 186 

responsible for germ cell degeneration in KS is not yet understood. Its acknowledgment would be of great 187 

interest to address future target gene therapies. 188 

In the present study, we report, for the first time, that the SOX13 gene is downregulated in PBMCs 189 

from patients with KS compared to controls. The SOX13 gene belongs to the SOX family, whose members 190 

are involved in testicular differentiation in most vertebrates. In mice, the Sox gene family encodes a group of 191 
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transcription factors with an HMG-box DNA-binding domain that is similar to that of the sex-determining 192 

region of the Y (Sry) protein. Sox genes are classified into 8 groups, named from A to H. In particular, the 193 

SoxD group includes Sox5, Sox6 and Sox13 in most vertebrates [32]. Sox proteins are known to be involved 194 

in testicular differentiation. In particular, Sox9 is tightly associated with SC differentiation [33-35] and might 195 

also influence testosterone production by Leydig cells. Furthermore, Sox4, Sox11 and Sox12 protein 196 

expression has been found in the mouse testis during development [36], while Sox9, Sox5 and Sox13 have 197 

been found in the seminiferous tubules of the postnatal mouse testis [24]. Sox proteins are likely involved in 198 

spermatogenesis. Accordingly, Sox4, Sox8, Sox9 and Sox12 proteins are highly expressed in SCs and Sox5, 199 

Sox6 and Sox30 in spermatocytes and spermatids, whereas Sox3, Sox4, Sox12 and Sox13 have been 200 

detected in spermatogonia of both mice and rats [37]. 201 

The role that Sox proteins display in spermatogenesis has been proven by knockout studies. 202 

Accordingly, Sox30 knockout mice show infertility due to arrested spermatogenesis at the spermatid phase. 203 

This protein seems to address haploid gene transcription in the late meiosis and spermiogenesis phases. In 204 

contrast, this role has not been observed in mouse female gametogenesis [38-40]. Additionally, Sox4, which 205 

is known to be involved in gonadal morphogenesis, is involved in germ cell differentiation in male mice. 206 

Indeed, Sox4 deficiency results in the reduction in mouse germ cell differentiation markers, such as Nanos 207 

c2hc-type zinc finger 2 (Nanos2) and DNA methyltrasferase 2-like protein (Dnmt3l), and increased 208 

pluripotency gene expression. Instead, female germ cells normally enter meiosis [41]. 209 

 SoxD proteins have two conserved functional domains: the family-specific HMG box DNA-binding 210 

domain in the C-terminal part and the group-specific coiled coil in the N-terminal region of the protein. In 211 

mouse proteins, these domains share 87% and 76% homology with the N-terminal and C-terminal domains 212 

of the human SOXD proteins, respectively [32]. This likely supports that Sox proteins may have a conserved 213 

function among vertebrates, including humans, where their role in spermatogenesis cannot be excluded. 214 

SoxD proteins are involved in transcriptional activation and repression. In particular, Sox13 has been 215 

shown to modulate canonical Wingless-type MMTV integration site family (Wnt) signaling [42,43]. 216 

Interestingly, FSH enhances type A undifferentiated spermatogonia (Aund) proliferation via Leydig cell-217 

derived Wingless-type MMTV integration site family, member 5a (Wnt5a) production [44]. Accordingly, an 218 

in vitro study reported that Wnt5a maintains the number of murine spermatogonial stem cells (SSCs) by 219 

activating the c-Jun N-terminal kinases (JNK) pathway [45]. In addition, FSH-induced secretion of insulin-220 
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like growth factor 3 (Igf3) in Sertoli cells from zebrafish induces Aund differentiation into type A 221 

spermatogonia (Adiff) via β-catenin, which is a component of Wnt signaling [46]. Therefore, by modulating 222 

the Wnt signaling pathway, Sox13 might be involved in the maintenance of the SSC number and in Aund 223 

differentiation. 224 

Overall, these data point to a role for Sox13 in mouse and rat spermatogenesis [37]. The homology 225 

of Sox domains with the human SOX proteins [32] indicates that, being highly conserved in vertebrates, they 226 

might likely display similar functions among species. Furthermore, the strong similarity between mice and 227 

human spermatogenesis has led to a rapid increase in the list of genes recently discovered to be involved in 228 

human spermatogenetic failure, mainly based on mouse and rat studies [47]. Although no data have been 229 

provided on the role of the SOX13 gene in human spermatogenesis, it may likely be involved in human 230 

spermatogenesis due to its expression in mouse and rat spermatogonia [37]. 231 

We found SOX13 downregulation in PBMCs from patients with KS. Some studies have recently 232 

addressed a diagnostic role of NGS analysis in PBMCs of patients with apparently idiopathic nonobstructive 233 

azoospermia, since the mutation of genes involved in spermatogenesis can be detected in the blood [47,48]. 234 

It cannot be excluded that SOX13 downregulation found in PBMCs may also occur in KS germ cells, 235 

leading to their apoptosis. Recent research has highlighted the role of SOX13 in cell proliferation. In greater 236 

detail, it has been found to enhance Paired box gene 8 (PAX8) protein expression, in turn promoting the 237 

proliferation of gastric carcinoma cells [49]. In addition, SOX13 upregulates angiogenesis in gliomas [50]. 238 

Taken together, these findings may suggest a role for SOX13 in cell proliferation. In view of its expression at 239 

the spermatogonial level [37], SOX13 may also be involved in germ cell proliferation. 240 

The evidence suggests a role for SOX13 dysregulation in the development of autoimmune diseases. 241 

By modulating the Wnt signaling pathway, Sox13 protein is involved in the emergence of gamma-delta T-242 

cells in the thymus, opposing alpha-beta T cell differentiation, as the analysis of fetuses with Sox13 gene 243 

gain-of-function and loss-of-function mutations suggests [32]. Accordingly, SOX13 has been identified as 244 

islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including 245 

type 1 DM and primary biliary cirrhosis [32]. It is noteworthy that endocrine organ-specific humoral 246 

autoimmunity is not rare in patients with KS. Data from 61 patients with KS and 122 controls indicate that it 247 

is more frequently directed against type 1 diabetes-related autoantigens [insulin, glutamate decarboxylase 248 

(GAD), Islet Antigen 2 (IA-2) and Zinc transporter 8 (Znt8) antibodies] [51], although the prevalence of type 249 

Commento [AJA34]: Please define the 
abbreviation. 

Commento [AJA35]: Please define the 
abbreviations. 



10 

 

1 DM is low in these patients (few cases have been reported so far) [52,53]. Therefore, the possible role of 250 

SOX13 downregulation in the pathogenesis of autoimmune disorders in patients with KS deserves to be 251 

examined. 252 

Our results must be taken with care since no data from testicular tissue was available in the present 253 

study. Accordingly, none of the patients gave his consent to proceed with testicular biopsy. We are aware 254 

that this represents a limit for understanding the role of SOX13 in spermatogenesis. However, the vast 255 

majority of transcriptome studies on KS patients have analyzed the transcriptome from the blood [10,12-15, 256 

54] due to the limitation in having testicular tissue. This is particularly true nowadays when the testicular 257 

biopsy is used to retrieve spermatozoa for assisted reproductive techniques (ART). We think that the results 258 

of the present study may prompt to develop further focused analysis in centers (or Countries) where 259 

testicular biopsy of KS patients is readily available.  260 

On the other hand, it could be speculated that the study of SOX13 expression in testicular tissue from 261 

adults with KS would not be effective in finding SOX13 downregulation since this tissue already lacks of 262 

germ cells. Therefore, testicular SOX13 expression would reflect germ cell loss in KS patients. By contrast, 263 

blood downregulation might hypothetically reveal a molecular dysfunction possibly occurring in germ cells, 264 

prior to and, maybe, favoring, their loss. However, further studies should be performed in aborted fetuses 265 

with KS with the aim of assessing SOX13 expression in KS germ cells.   266 

Another reason to take with care our results is that, unfortunately, no data on testicular histology 267 

could be provided as patients did not give their consensus. Indeed, total testicular volume is low in patients 268 

with KS. Testicular fine needle biopsy would further reduce this volume, thus reducing the success rate of 269 

ART in patients willing to undergo to this procedure later in life. However, the most typical histologic 270 

feature of KS patients is Sertoli Cell Only Syndrome (SCOS) and, since all the enrolled patients were 271 

azoospermic, it could be supposed that they had SCOS.   272 

 273 

5. Conclusions 274 

 In conclusion, the present study reports, for the first time, a downregulation of the SOX13 gene in the 275 

PBMCs of patients with KS compared to controls. Data from animal studies indicate a role for Sox13 in SSC 276 

maintenance and in immune system regulation. Further studies are needed to establish whether SOX13 is 277 
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involved in the pathogenesis of germ cell loss and in endocrine organ-specific humoral autoimmunity in 278 

patients with KS. 279 
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Table 1. Clinical and biochemical parameters of men with nonmosaic Klinefelter syndrome and age-434 
matched controls. 435 

Parameters Patients 

(mean ± SD) 

Controls 

(mean ± SD) 

Age (years) 32.4±8.1 33.1±7.9 

BMI (kg/m
2
)  26.0±6.7 25.1±2.7 

Glycemia (mg/dl) 81.2±14.7 87.8±8.3 

Insulin (µIU/ml)  29.7±44.1 15.2±13.7 

HOMA-IR 6.2±9.3 3.6±3.5 

LH (mIU/mL) 20.9±7.6* 5.0±2.1 

FSH (mIU/mL) 32.7±16.9* 3.5±0.6 

TT (ng/mL) 3.8±2.4* 5.9±1.8 

Total sperm count (mil/ejaculate) 0 270.6±132.6 

Abbreviations: BMI: Body mass index; HOMA-IR: Homeostasis Model Assessment of insulin resistance; LH: 436 
Luteinizing hormone; FSH: Follicle-stimulating hormone; TT: Total testosterone. Normal ranges: Glycemia: 60-100 437 
mg/dl; Insulin: 1.9-23 µIU/ml; LH: 1.14–8.75 IU/l; FSH: 0.95–11.95 IU/l; TT: 2.5–9.8 ng/ml. *p<0.05 vs. Controls 438 
(Student’s t test). 439 
Note: Age, BMI, LH, FSH, TT and testicular volume values for each patient and control are detailed in the study of 440 
Cimino et al. 441 

442 
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Figure Legends 443 
 444 

Figure 1. NGS analysis. Panel A. Screenshot from IGV - Integrative Genomics Viewer for SOX13. Three 445 
control samples and three Klinefelter samples among the ten samples are displayed. Panel B. Istograms 446 
showing the expression (FPKM) in the 20 sequenced samples. In red are shown the Control samples while in 447 
blue are shown the  Klinefelter samples. Panel C. Boxplot showing the SOX13 expression (FPKM) in 448 
Control samples (in red) and in Klinefelter samples (in blue). SOX13 expression is lower in Klinefelter 449 
samples. *indicates p-value<0.05. FPKM, Fragments Per Kilobase of transcript per Million; IGV, Integrative 450 
Genomics Viewer; SOX13, sex-determining region of Y(SRY)-BOX 13. 451 
 452 
 453 
Figure 2: Mean fold-change expression of SOX13 in men with Klinefelter syndrome (KS) and normal 454 
controls (NC). *indicates p-value<0.05. 455 
 456 
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