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  Abstract
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Over the last decades, the adverse effects of human exposure to the so-called “endocrine disruptors” have been the subject of
scientific debate and media interest, with great concern for the toxicity on reproductive function. Bisphenols are synthetic
chemicals, widely used in the manufacture of hard plastic products. Bisphenol A (BPA) is among the best known environmental
toxicants proven to be related to the impairment of male reproductive function and other health problems. BPA is known to
migrate from packaging materials into foodstuffs and liquids. Consumer concern resulted in “BPA free” products and in the gradual
development of a number of bisphenol analogs (BPA-A) to replace BPA in several applications. However, these other bisphenols
derivatives seem to have effects similar to those of BPA. BPA can exhibit weak estrogenic and antiandrogenic proprieties. It
interferes with the hypothalamic-pituitary-testicular axis and modulates the gene expressions and enzyme activities involved in
steroidogenesis. In addition, it also appears to be involved in DNA methylation. The antiandrogenic properties of BPA have been
described in various experimental animal studies. However, the evidence on humans remains ambiguous. Contradictory outcomes
may depend on several factors including experimental design, BPA dose, timing and route of exposure and other confounding
factors. The effects of BPA appear to be most relevant during development. BPA has been proposed to influence fetal testis
development and predispose to testicular dysgenesis syndrome. This includes anatomical abnormalities identified at birth, such as
cryptorchidism and hypospadias, but also disorders that occur in adulthood, including testicular tumors, hypogonadism and/or
infertility. This review aims to summarize the evidence on the relationship between BPA and testicular function, focusing on its
effects on testicular steroidogenesis.

   

  Contribution to the field

Bisphenols are synthetic chemicals, widely used in the manufacture of hard plastic products. Bisphenol A (BPA) is among the best
known environmental toxicants proven to be related to the impairment of male reproductive function and other health problems.
BPA can exhibit weak estrogenic and antiandrogenic proprieties. However, the evidence on humans remains ambiguous.
Contradictory outcomes may depend on several factors including experimental design, BPA dose, timing and route of exposure and
other confounding factors. This review aims to summarize the evidence on the relationship between BPA and testicular function,
focusing on its effects on testicular steroidogenesis.
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Abstract  30 

Over the last decades, the adverse effects of human exposure to the so-called “endocrine disruptors” 31 

have been matter of scientific debate and public attention. Bisphenols are synthetic chemicals, widely used in 32 

the manufacture of hard plastic products. Bisphenol A (BPA) is one of the best known environmental toxicants 33 

proven to alter the reproductive function in men and to cause other health problems. Consumer concern resulted 34 

in “BPA free” products and in the development of bisphenol analogs (BPA-A) to replace BPA in many 35 

applications. However, these other bisphenol derivatives seem to have effects similar to those of BPA. 36 

Although a number of review have summarized the effects of BPA on human reproduction, the purpose of this 37 

article is to review the effects of bisphenols on testicular steroidogenesis and to explore their mechanisms of 38 

action. Testicular steroidogenesis is a fine-regulated process and its main product, testosterone (T), has a 39 

crucial role in fetal development and maturation and in adulthood for the maintenance of secondary sexual 40 

function and spermatogenesis. Contradictory outcomes of both human and animal studies on the effects of 41 

BPA on steroid hormone levels may related to various factors that include study design, dosage of BPA used 42 

in in-vitro studies, timing and route of exposure, and other confounding factors. We described the main 43 

possible molecular target of bisphenols on this complex pathway. We report that Leydig cells (LCs), the 44 

steroidogenic testicular component, are highly sensitivity to BPA and several mechanisms concur to the 45 

functional impairment of these cells.  46 
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1. Introduction 47 

Over the last decades, the adverse effects of human exposure to the so-called “endocrine disruptors” 48 

have been matter of deep debate by the scientific community and the layman. Particular attention has been 49 

paid to their toxicity on the reproductive function. Bisphenol A (2,2-bis(4-hydroxyphenyl) propane) (BPA) is 50 

among the most well-known endocrine disruptors proven capable of impairing the male reproductive function 51 

and to cause other health problems. BPA is an organic synthetic compound, including to the group of 52 

dyphenylmenthane derivatives and bisphenols, widely used in the manufacture of hard plastic products. BPA 53 

has been used since the 1950s, in food packaging, industrial materials, dental sealants, personal hygiene 54 

products, and thermal receipts (Rochester et al., 2013; Huo et al., 2015). A significant exposure to BPA for 55 

children is given by toys, books, and feeding bottles (Brede et al., 2003; Sajiki et al., 2010). BPA penetrates 56 

the body through the skin, inhalation and the digestive system (Kang et al., 2006). Once adsorbed, BPA is then 57 

metabolized by the liver and excreted with the urine in 24 hours (Huo et al., 2015). Despite the rapid 58 

metabolism, BPA can accumulate in different tissues (Komarowska et al., 2015). Consumer concern for BPA 59 

effects on health, resulted in “BPA free” products and in the development of bisphenol analogs  to replace 60 

BPA in many applications. However, these compounds seem to have endocrine disrupting capabilities similar 61 

to BPA and their impact on reproduction has been little investigated (Roelofs et al., 2015; Rochester & Bolden, 62 

2015; Siracusa et al., 2018).  63 

BPA seems to influence fetal testis development and predispose to the testicular dysgenesis syndrome 64 

(TDS). This syndrome may manifest itself not only at birth with cryptorchidism and hypospadias, but also in 65 

adulthood when it shows up with testicular tumors, hypogonadism and/or infertility (Matuszczak et al., 2019). 66 

Current evidence suggest that BPA can cause testicular histological abnormalities which encompass 67 

dysregulated proliferation and apoptosis of Leydig cells (LCs) and alteration of steroidogenesis (Williams et 68 

al., 2014). In mice, pubertal exposure to high doses of BPA causes LC and germ cells apoptosis, resulting in 69 

underdeveloped testis with histopathological changes including atrophied seminiferous tubules, decreased 70 

number of late spermatids and increased karyopyknotic cells (Li et al., 2009). The reduction of testicular weight 71 

and the alteration of spermatogenesis persist till adulthood, long after the period of BPA exposure (Li et al., 72 

2009). The gestational period is a sensitive window of exposure to BPA. Male rats maternally exposed to BPA 73 

from gestation to the postnatal period have low testicular weight and testosterone (T) levels in the testicular 74 
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interstitial fluid in adulthood (Akingbemi et al., 2004). These effects may involve different molecular pathways 75 

discussed in the section 3b. 76 

Many studies have investigated the effects of BPA on human reproduction and extensive reviews have 77 

addressed the strength of the evidence on BPA toxicity (Vom Saal et al., 2007; Perets et al., 2014; Siracusa et 78 

al., 2018; Matuszczak et al., 2019). Contradictory outcomes may depend on several factors including study 79 

design, BPA dose, timing and route of exposure and other confounding factors (Peretz et al., 2014). Several 80 

mechanisms of action have been described. First of all, BPA exhibits weak estrogenic and antiandrogenic 81 

proprieties. It binds to both estrogen receptors (ERs), ERα and ERβ (Rochester et al., 2013; Matuszczak et al., 82 

2019) and. at high concentrations, BPA binds to the androgen receptor (AR) on which it acts as an antagonist 83 

(Hejmej et al., 2011). In addition to binding to the ARs, it disturbs the hypothalamic-pituitary-testicular axis 84 

and modulates gene expression and the enzymatic activity of testicular steroidogenesis (Hejmej et al., 2011). 85 

Furthermore, exposure to BPA is also associated with a decrease in the activity of the antioxidant system, 86 

resulting in increased oxidative stress, the most common cause of sperm damage (Wang et al., 2014; 87 

Lanzafame et al., 2009). Although several studies have supported the harmful effects of BPA on testicular 88 

function, its mechanism(s) remains not fully understood. 89 

 The purpose of this article is to review the evidence on the relationship between bisphenols and 90 

testicular steroidogenesis, focusing on their mechanism(s) of action on LCs function. 91 

 92 

2. Testicular steroidogenesis 93 

The testis is a complex endocrine organ regulated by intra- and extra-testicular pathways that interact 94 

synergistically (Tena-Sempere et al., 2002). Leydig cells (LCs) have a crucial role in the regulation of 95 

steroidogenesis and spermatogenesis. LCs produce testosterone (T), which has a main role in fetal development 96 

and maturation. During the masculinization programming window, the fetal testes begin to produce T, which 97 

allows male gonadal differentiation and development (Scott et al., 2009). Hence, T is necessary for the 98 

maintenance of secondary sexual function and spermatogenesis (Mathur & D'Cruz, 2011). Intratesticular T 99 

levels are approximately one hundred times higher than the levels found in systemic circulation (Ochsenkuhn 100 

and De Kretser, 2003). The high local production rate of T implies the need for its intratesticular transport 101 

from LCs to Sertoli cells which nourish and support the development of the germinal cells during the various 102 

stages of spermatogenesis (Dankers et al., 2013). LCs derive from mesenchymal cells located in the interstitial 103 
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compartment of the testis. Their development occurs through three different stages during which they are called 104 

progenitor, immature and adult LCs. Apoptosis seems to have a main role in maintaining a constant population 105 

of LCs, although other mechanisms may be involved (Siracusa et al., 2018). 106 

LCs produce T in response to the luteinizing hormone (LH). LH binding to the LH receptors (LHR) 107 

on LCs activates Gs protein and adenylyl cyclase, increasing cAMP levels. cAMP acts as a key second 108 

messenger and up-regulates the expression of genes related to the steroidogenesis (Dufao et al., 1988). The 109 

steroidogenesis consists in a complex multi-enzyme process by which precursor cholesterol is converted to 110 

biologically active steroid hormones in a tissue specific manner (Figure 1). Cholesterol can be synthesized in 111 

the endoplasmic reticulum but the first source of this precursor for steroidogenesis is via uptake of cholesteryl 112 

esters from high-density lipoprotein by the scavenger receptor SR-B1 (Shen et al., 2016).  Therefore, SR-B1 113 

has a key role for the maintenance of cholesterol balance. The first step in steroidogenesis takes place within 114 

mitochondria. The steroidogenic acute regulatory protein (StAR) mediate the transport of cholesterol from the 115 

outer to the inner mitochondrial membrane (Devoto et al., 2002). The StAR-mediated transport of cholesterol 116 

is a crucial step for steroidogenesis (Stocco et al., 1996; Hasegawa et al., 2000) and appropriate concentrations 117 

of cAMP are necessary for the regulation of StAR expression (Stocco et al., 1997). However, cAMP/PKA is 118 

not the only pathway that regulates StAR expression. Other factors such as steroidogenic factor, activator 119 

protein and cAMP-response element-binding protein are also associated with StAR regulation (Stocco et al., 120 

2005). Then, cholesterol is metabolized to pregnenolone into the smooth endoplasmic reticulum through a 121 

cascade of reactions that are catalyzed by the cytochrome P-450 proteins. Pregnenolone then is converted to T 122 

by 3β-hydroxysteroid dehydrogenase (3β-HSD), 17α-hydroxylase/17,20 lyase (CYP17A1) and 17β-123 

hydroxysteroid dehydrogenase (17β-HSD). This complex process of steroidogenesis itself can be responsible 124 

for the increase of reactive oxygen species (ROS) (Hanukoglu, 2006). Thus, the normal products of 125 

steroidogenesis can act as pseudosubstrates and interact with P-450 enzymes, resulting in a pseudosubstrate–126 

P-450–O2 complex, which is a source of dangerous free radicals (Quinn & Payne, 1985).  127 

 128 

3. Bisphenols and testicular steroidogenesis 129 

3.a. Effects of bisphenol A on steroid hormone levels 130 

Experimental studies in male animals have shown that exposure to BPA is associated with altered hormone 131 

levels suggesting direct effects of BPA on LCs. However, these data are discordant. Low-dose BPA decreased 132 
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T levels in CD-1 mice exposed during perinatal and postnatal periods (Xi et al., 2011), but not in adult C57BL/6 133 

mice exposed in utero (LaRocca et al., 2011). In addition, low-dose BPA lowered T levels in Holtzman rats 134 

exposed during gestation or in the neonatal age (Salian et al., 2009a; Salian et al., 2009b) and albino (El 135 

Beshbishy et al., 2012) and Wistar (D’Cruz et al., 2012a) rats exposed in adulthood. In contrast, by examining 136 

the gestational and neonatal exposure of low-dose BPA in Long Evans (Howdeshell et al., 2008) or Sprague-137 

Dawley (SD) rats (Kobayashi et al., 2012, Qiu et al., 2013), the levels of T did not change. Treatment with 138 

increasing concentrations of BPA (1 to 1000 nM) did not significantly lower basal or hCG-stimulated T 139 

secretion by primary culture of LCs of young adult male rats (Muromo et al., 2001). However, although 140 

Sánchez and colleagues reported that low-dose BPA did not decrease T levels in Wistar rats, 141 

dihydrotestosterone levels decreased (Sánchez et al. 2013). Gamez and colleagues reported that exposure to 142 

low-doses BPA led to an increase in serum LH and FSH levels in young Wistar rats (Gamez et al., 2014). 143 

Nevertheless, another study in adult Wistar rats showed that exposure to BPA decreased serum T, LH and FSH 144 

levels, but increased the levels of 17ß-estradiol (E2) (Wisniewski et al., 2015). In two studies in SD rats, 145 

postnatal exposure to low-dose BPA decreased serum T and E2 levels (Guurmet et al., 2014). BPA exposure 146 

lowered T levels in Swiss albino and C57BL/6 mice, but at variable dosage between 0.5 μg/kg and 100 mg/kg 147 

(Chouhan et al., 2015; Zang et al., 2016). Sadowski and colleagues described a decrease in FSH concentrations 148 

in Long-Evans rats at weaning, after exposure to BPA at both 4 and 400 μg/kg/day (Sadowski et al., 2014). 149 

An in-vitro study conducted on fetal testes explanted from mice, rats and humans demonstrated that exposure 150 

to 10 nM of BPA was enough to decrease basal T secretion in human fetal testes, but higher concentrations 151 

were required in rats and mice (10 μM and 1 μM, respectively) (N'Tumba-Byn et al., 2012).  152 

The epidemiological studies evaluating the effects of BPA exposure on serum hormone levels in men 153 

have also shown conflicting results. In the INChianti adult population study, Galloway and colleagues found 154 

a correlation between higher urinary BPA concentrations and higher serum T, but not E2 levels in 307 Italian 155 

men living in Chianti, Italy (Galloway et al., 2010). Another study, conducted on 308 young men from 156 

Denmark’s general population, reported that higher urinary BPA concentration was associated with a 157 

significant increase of LH, T and E2 levels (Lassen et al., 2014). In contrast, in a cross-sectional study of 290 158 

men, Zhou and colleagues found that increased serum BPA concentrations were statistically significantly 159 

associated with the reduction of androstenedione, free T and free androgen index (FAI) levels and with the 160 

increase of sex hormone-binding globulin (SHBG) levels (Zhou et al., 2013). Two cross-sectional studies, 161 
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respectively  of 167 and 302 men, did not report any associations between BPA and T concentrations (Meeker 162 

et al., 2010; Mendiola et al., 2010). According to Meeker and colleagues, men with elevated urinary BPA 163 

concentrations had higher FSH and lower inhibin B levels with a higher FSH/inhibin B ratio and a lower E2/T 164 

ratio (Meeker et al., 2010). Mendiola and colleagues found that higher urinary BPA levels were associated 165 

with lower FAI and FAI/LH and free T/LH ratios in fertile men (Mendiola et al., 2010). Two cross-sectional 166 

studies reported that urinary BPA levels were associated with higher SHBG in men occupationally exposed to 167 

BPA (Liu et al., 2015; Zhuangh et al., 2015). The NHANES 2011-2012 study showed an inverse correlation 168 

between urinary BPA levels and serum T concentrations in male adolescents (Scinicariello & Buser, 2016). 169 

However, a retrospective cohort study did not find any effects on hormone levels in boys aged 8 to 14 years 170 

after prenatal or childhood exposure to BPA (Ferguson et al., 2014). 171 

Although these results are controversial, they suggest that BPA alters steroid hormones pathways in 172 

men.  173 

 174 

3.b. Bisphenol A molecular mechanisms of action on testicular steroidogenesis 175 

  Although both animal and human studies support the harmful effects of BPA on steroid hormones, the 176 

mechanism of action of BPA in negatively interfering with testicular steroidogenesis still remains unclear. 177 

Since LCs are the site of testicular steroidogenesis, several studies have been conducted on these cells to 178 

investigate the effects of BPA. In Wistar/ST pubertal rats, continuous exposure to BPA at high doses reduced 179 

the number of LCs and the expression of steroidogenic enzymes in these cells (Nakamura et al. 2010). In 180 

contrast, Long-Evans rats exposed to low dose of BPA during gestation and at birth had an increase in the 181 

number of LCs in adulthood through the up-regulation of mitogen factors. However, although low-dose of 182 

BPA increased LC proliferation, the expression of steroidogenic enzymes and T biosynthesis decreased 183 

(Nanjappa et al. 2012). Chen and colleagues reported that BPA did not stimulate staminal LC proliferation but 184 

it induced the differentiation of stem LCs into more mature LCs. They used an in-vivo ethane dimethane 185 

sulfonate (EDS)-induced LC regeneration model to mimic the pubertal development of LCs. They treated rats 186 

with EDS to eliminate LCs and then, they injected BPA within the testis. The intratesticular injection of BPA 187 

avoided possible interference of hypothalamus and pituitary. The results of this study showed that BPA 188 

significantly increased the number of 11β-HSD1 positive cells, which is a biomarker for LCs at an advanced 189 

stage. Thus, BPA promoted the differentiation of staminal LCs, increasing T production and upregulating LC 190 
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specific genes (LHCGR, StAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and HSD11B1). These findings 191 

suggest a possible role of BPA in sexual precocious puberty in males (Chen et al., 2018). Exposure to high-192 

doses of BPA (480 and 960 mg/kg/day at postnatal days 31-44) has been reported to induce apoptosis in Leydig 193 

and germ cells via the upregulation of Fas, FasL and caspase-3 (Li et al., 2009). The apoptosis of LCs was 194 

associated with a decreased testicular testis weight and histopathological changes, which persisted into 195 

adulthood (Li et al., 2009). In another study, Thuillier and colleagues reported that SD rats exposed in-utero 196 

to BPA had an increase number of LCs but did not present significant change in serum T levels (Thuillier et 197 

al., 2009). Moreover, BPA can also induce Nur77 gene expression, an orphan nuclear receptor which plays an 198 

important role in the regulation of LH-mediated steroidogenesis, altering LC steroidogenesis (Song et al., 199 

2002). BPA induced Nur77 gene expression via PKA and MAPK signaling pathways in a time- and dose- 200 

dependent manner. BPA-mediated Nur77 expression resulted in the upregulation of steroidogenesis both in-201 

vitro and in-vivo, with a significant increase of T synthesis (2-fold) (Song et al., 2002).  202 

The inhibition of testicular steroidogenesis by BPA can be also associated with a decreased LH 203 

secretion. Akingbemi and colleagues reported that Long-Evans rats exposed to low doses of BPA (2.4 204 

µg/kg*d) from postnatal days 21-35, decreased both serum LH and T levels, downregulating pituitary LHβ 205 

expression but increasing ERβ pituitary mRNA levels (Akingbemi et al., 2004).  206 

The expression of LH and FSH receptors may also be altered by BPA. Li and colleagues showed that 207 

treatment of adult male zebrafish (Danio rerio) by 500 ng/L BPA for 7 weeks down-regulated the expressions 208 

of FSHr and LHCGr (Li et al., 2017). For the first time, Roelofs and colleagues demonstrated that BPA, BPF, 209 

and TBBPA showed clear glucocorticoid receptor antagonism, other than AR antagonism. They also found 210 

that bisphenol analogues up-regulated the 5αRed1 gene expression suggesting a redirection of steroidogenesis, 211 

which may have significant consequences for fetal testis development and function (Roelofs et al., 2015). 212 

Within the steroid hormone biosynthetic pathway, steroidogenic enzymes are recognized as important 213 

targets for the actions of endocrine-disrupting chemicals. Several studies showed that BPA decreases the 214 

expression of steroidogenic enzymes (Nakamura et al. 2010; Xi et al. 2011; Horstman et al. 2012; Naijappa et 215 

al., 2012; Qiu et al. 2013; Samova et al., 2018). Moreover, some compounds, including BPA, seem to disturb 216 

steroidogenesis by inhibiting the cAMP pathway. Nikula and colleagues analyzed the effects of BPA at 217 

micromolar concentration in cultured mouse Leydig tumor cells (mLTC-1). BPA did not have any effects on 218 

hCG binding to LH receptors but it inhibited LH-receptor mediated signal transduction by decreasing hCG-219 
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stimulated cAMP. Specifically, they found that after preincubation of mLTC-1 cells for 48 h with different 220 

doses of BPA, hCG-stimulated cAMP and progesterone production was inhibited. Whereas preincubation with 221 

17ß-estradiol inhibited progesterone production but had no effect on cAMP. Thus, the effects of BPA did not 222 

seem to be estrogen-related (Nikula et al., 1999). Moreover, the inhibitory effect of BPA could not be seen 223 

when cAMP formation was directly stimulated by forskolin (Fk) or through Gs protein by cholera toxin (CT), 224 

and when steroidogenesis was directly activated by 8-Br-cAMP which can penetrate the plasma membranes 225 

and directly activate the protein kinase A. These results suggested that the negative effect of BPA is exerted 226 

between the LH receptor and the adenylate cyclase. Accordingly, Feng and colleagues found that BPA 227 

exposure inhibited progesterone secretion in hCG-stimulated mouse Leydig tumor cell line (mLTC-1) by 228 

decreasing SR-B1 and P450scc expression due to the adverse effects on cAMP. Moreover, lower SR-B1 levels 229 

cause a reduction in cholesterol levels within LCs that alters steroidogenesis (Feng et al., 2018). The role of 230 

StAR is instead controversial. According to Feng and colleagues (2018), StAR seem not be the molecular 231 

target of BPA. Similarly, male rats exposed to BPA showed decreased T levels but did not exhibit significant 232 

changes in StAR expression (Nanjiappa et al., 2012). However, other previous studies have reported that BPA 233 

decreased StAR expression in cell culture in-vitro (Peretz et al., 2011; Xi et al., 2011; Chouhan et al., 2014), 234 

but, in contrast, other studies have shown that StAR expression is upregulated (Qiu et al., 2013; Li et al., 2017). 235 

Takamiya and colleagues reported that StAR gene expression increased in presence of both hCG (10 µg/l) plus 236 

BPA (10-5 M) or by hCG alone, but was not influenced by BPA alone. They found that BPA had only a weak 237 

modulating effect on gene expression of hCG-stimulated mLTC-1 cells (Takamiya et al., 2007). Li and 238 

colleagues showed that the exposure of adult male zebrafish to low doses (0.22 nM-2.2 nM) of BPA for 7-239 

weeks resulted in abnormal expression of genes involved in testicular steroidogenesis, specifically of 3β-240 

HSD1, CYP17A1 and CYP11C1 (Li et al., 2017). Samova and colleagues found that BPA significantly and 241 

dose-dependently affected the functions of 3β-HSD and 17β-HSD in the testis of inbred Swiss strain male 242 

albino mice (Samova et al., 2018). Ye and colleagues reported that BPA significantly inhibited 3β-HSD, 243 

CYP17A1 and 17β-HSD3 activities in both human and rat testis. However, the inhibition of 17β-HSD3 activity 244 

was much weaker compared with that on the other two enzymes. They also found that human enzymes were 245 

more sensitive to BPA (Ye et al., 2011). Specifically, their results suggested that BPA did not exert a 246 

competitive inhibition of 3β-HSD against its substrate (pregnenolone), but it competed with the cofactor 247 

NAD+ in the cofactor binding site of the enzyme. Whereas BPA inhibition of CYP17A1 was mixed-type for 248 
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enzyme substrate progesterone, indicating a combination of two different types of reversible enzyme 249 

inhibition, both competitive and uncompetitive (Ye et al., 2011). Additionally, not only BPA, but also 250 

bisphenol S (BPS) and bisphenol F (BPF) exposure decreased T production in fetal mouse testis by inhibiting 251 

mRNA expression of StAR, 3β-HSD and cytochrome P45017A1 (CYP17A1), but not of P450scc (Eladak et 252 

al., 2015). Moreover, Dankers and colleagues suggested that the changes in T secretion after BPA or TBBPA 253 

exposure were only partly due to alterations of steroidogenic enzyme expression. These authors hypothesized 254 

that the inhibition of ATP-binding cassette (ABC) transporters, expressed in the blood-testis barrier (BTB), 255 

may play a role in this process. The BTB divides the seminiferous epithelium into a basal and an apical 256 

compartment and provides structural and protective support for the differentiation of spermatogonia into 257 

spermatocytes. It consists of tight junctions, testis-specific atypical adherent junctions, desmosomes and gap 258 

junctions. In the active part of BTB, ABC transporters are present to allow the passage of endogenous 259 

molecules involved in cellular signaling and to block the passage of dangerous compounds within the testes 260 

and to protect germ cells. The cellular membranes of LCs, Sertoli cells and capillary endothelial cells are 261 

provided of these transporters. For this reason, the association between endocrine disruptors and ABC 262 

transporters has a strong toxicological impact (Dankers et al., 2013). The breast cancer resistance protein 263 

(BCRP/ABCG2), the P-glycoprotein (P-gp/ABCB1) and the multidrug resistance proteins 1 and 4 264 

(MRP1,4/ABCC1,4) are the major efflux transporters in the BTB with a differential expression in the various 265 

parts of the BTB (Dankers et al., 2013). LCs express P-gp, MRP1 and MRP4, but not BCRP in adult human 266 

testis (Bart et al., 2004; Morgan et al., 2012). Dankers and colleagues investigated the effects of BPA and of 267 

TBBPA (tetrabromobisphenol A) on BCRP, MRP1, MRP4 and P-gp. They found that TBBPA inhibited all 268 

these transporters; thus, it is considered a noncompetitive transporter inhibitor; whereas BPA inhibited only 269 

BCRP activity. They also showed that BPA, but not TBBPA, is transported by BCRP (Dankers et al., 2013). 270 

Interestingly, they found that, although exposure to BPA and TBBPA significantly increased T level in MA-271 

10 cells, the effects on steroidogenic genes were not so significant. Thus, these authors hypothesized that the 272 

changes in T levels upon BPA or TBBPA exposure were associated to the inhibition of efflux of T precursors. 273 

Increased availability of these precursors, such as androstenedione or DHEA, could be responsible of the 274 

increased T levels found.  275 

Moreover, many compounds increase the levels of ROS in the testis, altering steroidogenesis. 276 

Oxidative stress has also been found to induce apoptosis in LCs and germ cells (Song et al.,2008). Recent 277 
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studies have reported an inverse relationship between NOS activity and StAR expression (Srivastava et al., 278 

2007). Srivastava and colleagues exposed Swiss albino mice to BPA at concentrations of 0.5, 50 and 100μg/kg 279 

body weight/day intraperitoneally for 60 days. They showed that BPA upregulated the expression of iNOS, 280 

downregulating the expression of StAR in mouse testis (Srivastava et al., 2007).  It was also supposed that 281 

BPA impaired steroidogenesis by decreasing testicular glucose levels (D’Cruz et al., 2012). Glucose 282 

homeostasis is crucial for testicular spermatogenesis and steroidogenesis. D’Cruz and colleagues reported that 283 

low dose BPA exposure impaired insulin signaling interacting with GLUT-2 and GLUT-8 and inhibiting the 284 

uptake in the testis (D’Cruz et al., 2012). 285 

Recently, a number of studies suggest epigenetic effects of BPA, including DNA methylation, histone 286 

modifications and non-coding RNAs. Epigenetic mechanisms can have long-term effects and may be 287 

transmitted across several generations (Kundakovic & Champagne, 2011). Specifically, Gao and colleagues 288 

(Gao et al., 2018) have recently investigated the epigenetic effects of BPA on the expression of non-coding 289 

RNAs (e.g. microRNAs) in the regulation of testicular steroidogenesis. They used both cell culture and in-vivo 290 

mouse models and showed that miR-146a-5p was expressed only in LCs and this expression was significantly 291 

induced by BPA. Consequently, the high miR-146a-5p expression intensifies the negative effects of BPA on 292 

testicular steroidogenesis by directly targeting the 3’ UTR of Mta3 gene (Gao et al., 2018). Mta3 is a subunit 293 

of the Mi-2/nucleosome remodelling and deacetylase (NuRD) protein complex that is exclusively expressed 294 

in LCs (He et al., 2016). Specifically, Mta3 role in the control of testicular steroidogenic function is proven by 295 

its negative regulation by the high levels of circulated insulin (He et al., 2016). He and colleagues showed that 296 

a deficiency of Mta3 in LCs of diabetic mice was associated with low serum T level, indicating that Mta3 297 

expression in LCs may be associated with androgen deficiency (He et al., 2016). Thus, the downregulation of 298 

mir-146a-5p/Mta3 cascade seems to be involved in steroidogenic alterations caused by BPA (Gao et al., 2018). 299 

DNA methylation is one of the best characterized epigenetic mechanisms. Liu and colleagues 300 

investigated the effects of BPA on DNA methylation in rare minnow Gobiocypris rarus. DNA 301 

hypermethylation consists of an addition of a methyl group to the cytosine bases of DNA to form 5-302 

methylcytosine and it may be associated with changes in gene expression. In their study, Liu and colleagues 303 

found that the global DNA methylation level was significantly increased in testis of male Gobiocypris rarus 304 

exposed to BPA for 7 days. Then, they specifically analyzed the change in DNA methylation in the 5’ flanking 305 

region of the cytochrome P450 aromatase (CYP19A1A) gene. After 35-day exposure, the DNA methylation 306 
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levels of CYP19A1A did not have significant change in the testis, whereas they significantly increased in the 307 

ovary (Liu et al.,2014).   308 

 309 

Conclusions 310 

This review summarizes the current evidences on the association between BPA and testicular 311 

steroidogenesis. Altogether, these results show that LCs are very sensitive to BPA and that several mechanisms 312 

concur to the functional impairment of these cells. Testicular steroidogenesis is a complex and fine regulated 313 

process and each component of this pathway may be the molecular target of BPA. The main possible sites of 314 

BPA action are summarized in the Figure 2. The conflicting results of both human and animal studies may be 315 

related to various factors that include study design, dose of BPA, timing and route of exposure and other 316 

confounding factors. This review confirms that the widespread use of bisphenols is certainly dangerous for 317 

testicular development and function, and that a reduction of its use is necessary to preserve male sexual and 318 

reproductive health.  319 
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Legends to figures 556 

Figure 1. Leydig cell steroidogenesis. LH binds to its receptors (LHR) on the Leydig cell (LC) membrane. 557 

This results in activation of Gs protein and adenylyl cyclase and increased concentration of intracellular cAMP. 558 

cAMP stimulates the mobilization and transport of cholesterol within the mitochondria in part by activating 559 

PKA and MAPK signaling. The first source of cholesterol for steroidogenesis is via uptake of cholesteryl esters 560 

from high-density lipoprotein (HDL) by the scavenger receptor SR-B1. Steroidogenic acute regulatory 561 

enzymes (StARs) regulate cholesterol transport from the outer to the inner mitochondrial membrane. At the 562 

inner mitochondrial membrane cholesterol is converted into pregnenolone by CYP11A1 and pregnenolone is 563 

converted into testosterone by enzymes in the smooth endoplasmic reticulum (3β-HSD, CYP17A1 and 17β-564 

HSD).  565 

Figure 2. Mechanisms of action of bisphenol A on testicular steroidogenesis. Testicular steroidogenesis is 566 

a complex and fine-regulated process that bisphenol A (BPA) can perturb by acting with several mechanisms 567 

represented in this figure (circled in red). 568 

In review



Figure 1.JPEG

In review



Figure 2.JPEG

In review


