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Doria 6, 95125 Catania, Italy

2 INFN sezione di Catania, via S. Sofia, 95123 Catania, Italy
3 International Institute of Physics, Universidade Federal do Rio Grande do

Norte, 59012-970 Natal, Brazil
4 Institute of Modern Physics, Chinese Academy of Sciences, Post Office Box 31,

Lanzhou 730000, Peoples Republic of China

Abstract. We study, by means of a spherical collapse model, the effect of
shear, rotation, and baryons on a generalized Chaplygin gas (gCg) dominated
universe. We show that shear, rotation, and the presence of baryons slow down
the collapse compared to the simple spherical collapse model. The slowing down
in the growth of density perturbation is able to solve the instability of the unified
dark matter (UDM) models described in previous papers (e.g. Sandvik et al.
2004) at the linear perturbation level, as also shown by a direct comparison of
our model with previous results.
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1. INTRODUCTION

In recent years, analyses of data coming from Supernovae Type Ia (Amanullah
et al. 2010), clusters of galaxies (Allen et al. 2008), and CMB (Spergel et al. 2007)
lead to conclude that the geometry of our universe is flat, and that it is expand-
ing at an accelerating rate due to an important but as yet not well understood
component of the Universe, dubbed Dark Energy (DE).

In order to explain the quoted issues, several possibilities have been proposed.
The simplest one is based on a non-zero value of the cosmological constant Λ
(for reviews, see Frieman et al. 2008; Li et al. 2011), usually interpreted as the
vacuum energy density (ρv) which acts on the Friedmanns equations as a perfect
fluid with negative pressure (pv = −ρv). The universe is then constituted not only
of a material component whose existence is deduced from its gravitational effects,
dubbed dark matter (DM), but also of a second dark component, namely DE.
The resulting double dark cosmological model is the successful ΛCDM model, in
which the overall cosmic fluid is constituted of non-relativistic matter (baryons +
cold dark matter, Ωnr = 0.274) plus a vacuum energy density (ΩΛ = 0.726) fitting
accurately the current observational data (Komatsu et al. 2011; Del Popolo 2007,
2013, 2014).

In the previous picture, one of the most challenging problems of ΛCDM cos-
mology is to understand the role played by the quoted cosmic components during
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the non-linear regime of gravitational clustering, and how they produce structures
of different total mass such as galaxies and galaxy clusters (Del Popolo & Gambera
1996, 2000; Del Popolo 1999, 2002; Hiotelis & Del Popolo 2006, 2013)1.

Extensions of the ΛCDM model are based on the idea that DE is not related
to the cosmological constant but, for example, related to a scalar field weakly
interacting with matter (quintessence models) (Copeland et al. 2006) or known
as K-essence, phantom models, or unified dark models (UDM) (e.g., Bertacca et
al. 2010). In UDMs, DM and DE are described by the same physical entity.
One peculiar case is the so-called generalized Chaplygin gas (gCg), introduced by
Kamenshchik et al. (2001) and then developed in other studies.

The equation of state (EoS) describing the gCg is

p = − C

ρα
, (1)

where C and α are positive constants, ρ is the density, and p is the pressure. When
α = 1, the gCg corresponds to the standard Chaplygin gas (sCg).2.

The gCg background density evolution is

ρ = ρ0

[
C̄ + (1− C̄)a−3(α+1)

] 1
1+α

, (2)

where a is the cosmic scale factor, related to the cosmological redshift by 1 + z =
a0/a, ρ0 is the density at the present epoch, and C̄ = C/ρ1+α

0 .
The EoS parameter, w, is given by

w = −C̄
[
C̄ + (1− C̄)a−3(α+1)

]−1

. (3)

It is important to stress that Eq. (3) shows that the gCg behaves as DM at early
time (a→ 0), and at later times w → −1, approaching a DE behavior.

In the literature, several theoretical (Balakin et al. 2003) and observational
consequences of the Chaplygin gas were studied. Cosmological tests were per-
formed using CMB measurements (Amendola et al. 2003), measurements of X-ray
luminosity of galaxy clusters (Zhu 2004), SNe Ia data (Bertolami et al. 2004), and
lensing statistics (Dev et al. 2004).

In the context of UDMs with α 6= 0, observations of large-scale structure
(Avelino et al. 2004) and comparison of the linear theory with observations have
put in evidence some problems of the gCg UDM. Avelino et al. (2004) studied the
onset of the non-linear regime in gCg UDMs, showing that the transition from the
DM behavior to the DE one is not smooth, and showed that, in gCg UDM, non-
linear effects generate a non-trivial backreaction in the background dynamics. This

1 Despite its success the ΛCDM model is plagued by a series of problems: (a) the small-scale
problems, such as, e.g., the cusp/core problem (Cardone & Del Popolo 2012; Del Popolo et al.
2013a; Del Popolo & Hiotelis 2014), the missing satellite problem, and the too-big-to-fail problem
(Del Popolo & Gambera 1997; Del Popolo et al. 2014); (b) the cosmological constant problem
(Weinberg 1989; Astashenok & Del Popolo 2012), and the cosmic coincidence problem; (c) the
debate on the universal nature of dark matter density profiles forming in the ΛCDM cosmology
(Navarro et al. 2010; Del Popolo 2010, 2011).

2 The sCg takes his name after Sergey A. Chaplygin, the Russian physicist who studied it in
a hydrodynamical context (Chaplygin 1901).
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implies a breakdown of the linear theory at late times (even on large scales), for
all α 6= 0 models. They also pointed out the need to take into account non-linear
effects when comparing with cosmological observations.

Sandvik et al. (2004), for example, found oscillations or exponential blowup of
the dark matter power spectrum inconsistent with observations.

In order to have a clearer idea of the importance of the gCg as an alternative
to the ΛCDM, it is necessary to study the nonlinear evolution of DM and DE
in the Chaplygin gas cosmology (Bilic et al. 2004). Moreover, a fully non-linear
analysis would require SPH simulations (see Li et al. 2011). An alternative analyt-
ical approach to perform the quoted non-linear analysis and study the non-linear
evolution of perturbations of DM and DE, is the popular spherical collapse model
(SCM) introduced in the seminal paper of Gunn & Gott (1972).

Fernandes et al. (2012) used the SCM to perform the quoted non-linear analy-
sis. Their Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe was endowed
with two components: gCg and baryons3. An interesting feature of Fernandes
et al.’s treatment is the fact that, differently from other works (e.g., Bilic et al.
2004; Pace et al. 2010), they considered the collapse of both gCg and baryons.
Moreover, they assumed, for the background and the collapsing region, a time-
dependent equation-of-state parameter w, and derived a more accurate expression
for the effective sound speed, c2eff , with respect to previous studies (e.g., Abramo
et al. 2007). However, their study did not consider two important factors, namely,
rotation (vorticity), ω, and shear, σ. Nevertheless, in any proper extension of the
SCM, the contraction effect produced by shear and the expansion one produced
by vorticity should be considered, as done by Engineer et al. (2000). The previous
authors studied the effect of shear and vorticity only in DM dominated universe,
and only in Del Popolo, Pace & Lima (2013b,c) shear and vorticity effects were
considered in the case of DM and DE dominated universes.

In the present paper, we study how the shear, σ, and the vorticity, ω, change
the results obtained by Fernandes et al. (2012). The paper is organized as follows.
Section 2 summarizes the model used. It reviews the derivation of the equation
of the SCM in the presence of shear and vorticity, the effective sound speed used,
and the way the equations were integrated. Section 3 presents the results and
Section 4 summarizes the conclusions.

2. MODEL

A popular analytical approach to study the non-linear evolution of perturba-
tions of dark matter (in the presence of a non-clustered DE) is the standard SCM
proposed in the seminal paper of Gunn & Gott (1972) and extended in subsequent
papers (Ryden & Gunn 1987; Le Delliou & Henriksen 2003; Basilakos et al. 2010;
Del Popolo & Kroupa 2009; Cardone et al. 2011a,b; Del Popolo 2012a,b.).

In the model, the overdensity is divided into mass shells, each one expanding
with the Hubble flow from an initial comoving radius, xi, to a maximum radius, xm

(usually named turn-around radius xta), and eventually collapses to a singularity
(for details how the singularity can be eliminated, see Engineer et al. 2000; Shaw
& Mota 2008). A collapse to a point will never occur in practice, since dissipative
physics and the process of violent relaxation will convert the kinetic energy of

3Radiation was neglected since the study considered only the post-recombination epoch.
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collapse into random motions, giving rise to a ”virialized” structure (virialization
occurs at t ≈ 2 tmax). Once a non-linear object is formed, it will continue to attract
matter in its neighborhood and its mass will grow by accretion of new material,
in the process of “secondary infall”.

In the paper of Gunn & Gott (1972), the authors were interested in the for-
mulation of a theory of infall of matter into clusters of galaxies. The equations
of dynamics of the structure written by them are relativistic (Eq. 7 of Gunn &
Gott 1972), but they continued the treatment in terms of Newtonian mechan-
ics. In their treatment it was supposed that the structure collapsed radially and
that non-radial motions were not present. Several following papers showed how
to introduce non-radial motions, and angular momentum, L, (Ryden & Gunn
1987; Hiotelis 2002; Le Delliou & Henriksen 2003; Del Popolo 2009; Del Popolo
& Kroupa 2009; Zukin & Bertshinger 2010) preserving spherical symmetry4. The
equations of the SCM with angular momentum can be written as (e.g., Peebles
1993; Zukin & Bertshinger 2010)

d2R

dt2
= −GM

R2
+

L2

M2R3
. (4)

The SCM equations can be written in terms of the overdensity δ, using General
Relativity (Gatzanaga & Lobo 2001) or in the Pseudo-Newtonian (PN) approach
to cosmology (Lima et al. 1997). In the PN approach, the evolution equations
of δ in the non-linear regime have been obtained and used in the framework of
the spherical and ellipsoidal collapse and structure formation by several authors
(Ohta et al. 2003; Ohta et al. 2004; Abramo et al. 2007).

In order to obtain the quoted equations, we assume that the fluid satisfies the
equation-of-state P = wρ (here, we set the velocity of light c = 1), and we use in
the calculation the generalizations of the continuity equation, of Euler’s equation
(both valid for each fluid species j), and of Poisson’s equation (which is valid for
the sum of all fluids) given as (Lima et al. 1997; Abramo et al. 2007)

∂ρj
∂t

+ ~∇~r · (~ujρj) + pj ~∇~r · ~uj = 0 , (5)

∂~uj
∂t

+
(
~uj · ~∇~r

)
~uj = −~∇~rΦ−

~∇~rpj
ρj + pj

, (6)

∇2
~rΦ = 4πG

∑
k

(ρk + 3pk) , (7)

where ρj , pj , ~uj and Φ denote, respectively, the density, pressure, velocity and the
Newtonian gravitational potential of the cosmic fluid.

This set of equations is valid only for subhorizon scales and they do not take
into account possible effects at scales larger than the horizon. Despite their limita-
tions, they proved to be very useful to describe structure formation in quintessence
models, and their predictions were in agreement with the results of N -body simula-
tions (see, for example, the appendix in Pace et al. (2010) and references therein).
The equations, as presented here, are not simply a generalization of Newtonian

4 Spherical symmetry is preserved if one assumes that the distribution of angular momenta
of particles is random, implying a net null mean angular momentum.
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hydrodynamical equations, but they have a well defined theoretical justification.
As detailed in Pace et al. (2010), to which we refer for more details, the PN
equations can be derived directly from General Relativity, by assuming the stress-
energy tensor of a perfect fluid characterized by density and pressure. Given the
stress-energy tensor Tµν , one computes its four-divergence (∇µTµν = 0) and its
contraction with the projection tensor hαµ = gαµ + uαuµ. The first, contracted
with the four-velocity, gives the general relativistic continuity equation, the sec-
ond the Euler equation. Specifying the usual Newtonian metric and under the
assumption of weak field and small velocities (v � c) we obtain the PN equations.

We would like to recall that in this work we want to generalize the work of
Fernandes et al. (2012) taking into account the contribution of the shear and
rotation terms. We therefore closely follow the derivation of their equations.

As is customary, all quantities of interest are separated into a static component
and a perturbation, as follows:

ρ(~x, t) = ρ̄(1 + δ(~x, t)) , (8)

P (~x, t) = wρ(~x, t)c2 , (9)

Φ(~x, t) = Φ0(~x, t) + φ(~x, t) , (10)

~u(~x, t) = a[H(a)~x+ ~v(~x, t)] , (11)

where ~v(~x, t) is the comoving peculiar velocity, and H(a) is the Hubble function.
Inserting Eqs. (8)–(11) into Eqs. (5)–(7) (see also Pace 2010), using comoving
coordinates −→x = −→r /a, and considering that the equation of state wj and the
effective sound speed c2eff,j are functions of time only, the perturbed equations for

the density contrast, δj = δρj/ρj , those for the peculiar velocity υj of fluid j, and
that for the potential are given by

δ̇j + 3H
(
c2eff,j − wj

)
δj =

−
[
1 + wj +

(
1 + c2eff,j

)
δj
] ~∇ · ~vj

a
− ~vj · ~∇δj

a
, (12)

~̇vj +H~vj +
~vj · ~∇
a

~vj = −
~∇φ
a
−

c2eff,j
~∇δ

a
[
1 + wj + (1 + c2eff,j)δj

] , (13)

∇2φ

a2
= 4πG

∑
k

ρ0kδk
(
1 + 3c2eff,k

)
, (14)

where c2eff,j ≡ δpj/δρj is the effective sound speed of each fluid.5

The previous equations can be simplified as in Abramo et al. (2007) and
Fernandes et al. (2012),

δ′j = −3

a
(c2eff,j − wj)δj

−[1 + wj + (1 + c2eff,j)δj ]
θ

a2H
, (15)

5 Note that in the previous equations, ~∇ refers to gradient with respect to comoving coordi-
nates ~x.
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θ′ = −θ
a
− θ2

3a2H

−3H

2

∑
j

Ωjδj(1 + 3c2eff,j)−
σ2 − ω2

a2H
, (16)

where the prime denotes the derivative with respect to a, Ωj = (8πG/3H2)ρj , and
where θj ≡ ∇ · ~vj and ~vj is the peculiar velocity field. As previously reported, in
the former derivation it was assumed that wj and c2eff,j are functions of time only

(see Fernandes et al. 2012; Abramo et al. 2007).
We remind the reader that shear and vorticity are present already in Eq. (13),

via the term (~v · ~∇)~v. To obtain σ and ω, one simply needs to take the divergence
of Eq. (13), and recall the decomposition

∇ · [( ~uj · ∇) ~uj ] =
1

3
θ2
j + σ2 − ω2 , (17)

where the expansion term, θj , is given by θ = ∇~x · ~u, the shear tensor, σ, is given
by σ2 = σijσ

ij and the rotation tensor is given by ω2 = ωijω
ij .

At this point we want to stress that combining Eqs. (15) and (16) will lead
to a quite complicated second order ordinary differential equation that generalizes
the usual evolution of the perturbations. An easy way to recover it, instead of
combining Eqs. (15) and (16), is the following.

As a first step, one takes the divergence of Euler’s equation (Eq. 13), and using
the decomposition given in Eq. (17), taking the time derivative of Eq. (12), and
combining the previous three equations one gets

δ̈j +

(
2H − ẇj

1 + wj

)
δ̇j −

4 + 3wj
3(1 + wj)

δ̇j
2

1 + δj
− (18)

4πGρ̄(1 + wj)(1 + δj)
∑
k

ρkδk(1 + 3wk)− (19)

(1 + wj)(1 + δj)(σ
2 − ω2) = 0 , (20)

or, in terms of the scale factor,

δ′′j +

(
3

a
+
E′

E
−

w′j
1 + wj

)
δ′j −

4 + 3wj
3(1 + wj)

δ′2j
1 + δj

−3

2

1

a2E2(a)
(1 + wj)(1 + δj)

∑
k

Ωk,0 g(a)(1 + 3wk)δk −

1

a2E2(a)
(1 + wj)(1 + δj)(σ

2 − Ω2) = 0 , (21)

where ρ̄ is the background mass density, E(a) is the expansion function (see Pace
et al. 2010), and g(a) is a function specifying the time evolution of the dark-energy
model considered (see Pace et al. 2010).

The two previous equations are equivalent to Eq. (10) and Eq. (12) in Sandvik
et al. (2004), with the difference that in the present paper they are expressed in
real space and not in Fourier space, and that they contain both σ and ω.
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It is also important to notice that our derivation is very general and it should
not be considered as an expansion in the overdensity parameter. The equations
obtained have very broad validity and they hold also in the case when δ � 1.

Notice that the number of equations for δj is equal to the number of cosmo-
logical fluids in the system while we have only one equation for θ. This is due to

the fact that for a ‘top-hat’ profile, resulting in ~∇δj = 0, the peculiar velocity is
the same for all fluids (θj ≡ θ, σj ≡ σ, ωj ≡ ω), resulting in only one equation for
θ.

The evaluation of the term σ2−ω2 was discussed in Del Popolo et al. (2013b,c)
by defining the ratio β between the rotational and gravitational terms in Eq. (4):

β =
L2

M3RG
. (22)

In the case of spiral galaxies like the Milky Way, β ' 0.04. Its value is larger for
smaller size perturbations (such as of dwarf galaxy size) and smaller for larger size
perturbations (for galaxy clusters, the ratio is of the order of 10−6). In order to
obtain a value for δc similar to the one obtained by Sheth et al. (2001) (see also
Del Popolo 2006), we set β = 0.04 for galactic masses (see also Del Popolo et al.
2013b,c).

In order to integrate Eq. (16) we need to make explicit the σ2−ω2 term. This
was done in Del Popolo et al. (2013b,c). Based on the above outlined argument
for rotation, one may calculate the same ratio between the gravitational term and
the extra term appearing in Eq. (21) thereby obtaining

σ2 − ω2

a2H2
= −3

2
β
∑
j

Ωjδj(1 + 3c2eff,j) . (23)

In the following, we will consider β = 0.04, corresponding to spiral galaxies similar
to the Milky Way, and β = 0.02 and β = 0.01, corresponding to systems in which
rotation is less important.

The term c2eff used is the same as that proposed by Fernandes et al. (2012),
namely,

c2eff = = − C

ρ1+α

(1 + δ)−α − 1

δ
= w

(1 + δ)−α − 1

δ
.

(24)

Eq. (24) shows that the effective sound speed depends on the collapsed region
(through δ) and the background (through w). The parameter w relative to the
collapsed region, namely wc, is given by Eq. (20) of Fernandes et al. (2012):

wc = − C

(ρ(1 + δ))1+α
=

w

(1 + δ)1+α
. (25)

In order to study the effect of α on the growth of perturbations, we solved
a system of two Eqs. (15) (one for gCg and one for baryons), and one Eq. (16).
We used three values of α, namely, α = 0 (model equivalent to the ΛCDM) and
α = 0.5, 1, and C̄ = 0.75. As previously reported, we considered three values for
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Fig. 1. Growth of perturbations for the SCM in gCg-dominated universes.Top (panels
a–c): δb vs z. Bottom (panels d–f): δgCg vs z. Panels (a–c): from top to bottom, the
values of α are 1, 0.5, 0. The solid line represents δb without the effect of the additive
term σ2 − ω2, whereas the dotted line is shown with its presence. The value of β is 0.01
in panel (a), 0.02 in panel (b), and 0.04 in panel (c). Panels (d–f): similar to panels (a–c)
but for δgCg.

β, namely, β = 0.01, 0.02, and 0.04. The initial conditions for the system and the
values of the density parameters and Hubble constant are the same as in Fernandes
et al. (2012), and in agreement with recent values for the ΛCDM model (Komatsu
et al. 2011). As in Fernandes et al. (2012), pb = wb = c2s,b = c2eff,b = 0.

3. RESULTS

In our calculations, we used the same initial conditions for all of the models
considered. In Figs. 1a–1c (1d–1f), the solid lines represent the evolution of δb
(δgCg) in the case the term σ2 − ω2 is not present, similarly to Fernandes et al.
(2012), and from top to bottom of each plot the value of α changes, i.e., α = 1,
0.5, 0.

As noticed by Fernandes et al. (2012), larger values of α produce a faster
collapse via larger values of the effective sound speed at lower z. The different
behavior of δb (δgCg) for different α reflects the different evolution of c2eff and w
on the equations of evolution of δ. Moreover, at smaller z, when DE dominates,
larger values of α produce a later transition from DM to DE dominated stages of
the gCg universes.
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Fig. 2. Evolution of wc and w with z for gCg universes. Panels (a–c): from left to
right, the values of α are 1, 0.5, 0. The solid line represents δb without the effect of the
additive term σ2 − ω2, whereas the dotted line is shown with its presence. The value of
β is 0.01 in panel (a), 0.02 in panel (b), and 0.04 in panel (c). Panel (d): w versus z for
α = 1 (dashed line), 0.5 (dot-dashed line), 0 (solid line).

The dotted line in Fig. 1 represents δb (δgCg) for the same values of α but when
σ2 − ω2 is different from zero. In Fig. 1a the value of β is 0.01, while in Figs. 1b
and 1c it is 0.02 and 0.04, respectively, and similarly in Figs. 1d–1f. The effect
of σ2 − ω2 is that of slowing down the collapse, so that the collapse acceleration
produced by larger values of α is mitigated by the additive term. Somehow, the
presence of the additive term can be mimicked by a reduction of α.

In Figs. 2a–2c, we calculate wc using Eq. (25) and the previously calculated
values of δgCg, while in Fig. 2d we calculate w. The solid lines in Figs. 2a–2d
represent wc when σ2 − ω2 is not taken into account, for α = 1 (top curve), 0.5
(median curve), 0 (bottom curve). As can be seen, α has a strong effect on the
results. A larger α produces a faster collapse and wc closer to zero, and, moreover,
in a later transition from DM to DE dominated stages of the gCg universes. The
quoted result is obtained for a fixed value of C (in our case, C = 0.75). If we
increase the content of DE of the system, corresponding to increasing the value
of C, the collapse will happen at later times or it will be prevented with the
consequence that wc will no longer be close to zero. The dotted lines represent
the same quantity when the additive term is taken into account. In Fig. 2a the
value of β is 0.01, while in Figs. 2b and 2c it is 0.02 and 0.04, respectively. Since
the effect of the additive term is to slow down the collapse, the effect on wc is
that of showing a more pronounced departure from zero. Fig. 2d represents w
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Fig. 3. UDM solution for perturbations as a function of the wavenumber k. The green
dot, dot-dashed and solid curves are gCg models calculated by Sandvik et al. (2004),
while the black curves are calculated in this paper with α = −10−4, −10−5 and α = 0,
respectively. The data points are the power spectrum of the 2df galaxy redshift.

given by Eq. (3), depending on C, a, and α, and then independent of our additive
parameter, and, consequently, identical to Fig. 2b of Fernandes et al. (2012). The
solid line represents the case α = 0, the dash-dotted one the case α = 0.5, and the
dashed line the case α = 1. The comparison of wc, a local (non-linear) parameter,
with w, a global (linear) parameter, shows a clear evidence of the difference in the
linear and non-linear dynamical behavior of the gCg.

The previous works (e.g., Sandvik et al. 2004) showed a problem in UDM mod-
els, namely, oscillations or exponential blowup of the dark matter power spectrum
inconsistent with observations, the problem which is evident on galactic scales and
only at recent times and that cannot be solved by taking baryons into account.
Sandvik et al. (2004) showed that gravitational effects of DM, at late time, can
add fluctuations to baryons but that they are unable to erase the ones already
present.

Our result, concerning the effect of α on the growth of perturbations is partially
in disagreement with the linear theory of perturbation in gCg universes (e.g.,
Sandvik et al. 2004) and in agreement with Fernandes et al. (2012) findings. In our
study, however, due to the additive term which has its maximum effect on galactic
scales, the growth of perturbation is slowed down. This somehow implies that the
presence of additive term works towards reducing possible present oscillations as
found by Sandvik et al. (2004).

In order to show this, we used the spectrum obtained by Sandvik et al. (2004),
applied our Eq. (21) written in Fourier space, and used it to evolve the fluctuations
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in the range 0 < z < 100. The result is plotted in Fig. 3. The lines are explained
in the caption. The Sandvik et al. (2004) model, not taking account of baryons,
shear and vorticity, presents large changes on small scales for small α 6= 0, and is
in agreement with data for α = 0. In the case of our gCg, the discrepancies shown
by Sandvik et al.’s model are not present, confirming, as discussed previously, that
baryons and non-linear effects change the gCg behavior.

4. CONCLUSIONS

In the present paper, we used the SCM to study how perturbations evolve in
gCg universes, taking into account the effect of shear and rotation. We used the
same c2eff of Fernandes et al. (2012), and, in agreement with their work, we found
that larger values of the parameter α speed up the collapse, but the additive term
σ2−ω2 produces a slowing down of this acceleration, visible in the figures showing
the evolution of δb and δgCg (Fig. 1), and wc (Fig. 2). The comparison of wc,
a local (non-linear) parameter, with w, a global (linear) parameter, shows clear
evidence of the difference in the linear and non-linear dynamical behavior of the
gCg.

We also showed that the blow-up of the dark matter power spectrum observed
by Sandvik et al. (2004) is no longer present when baryons and the effects of shear
and rotation are taken into account.

Notwithstanding the fact that the SCM is usually a faithful technique to study
gravitational collapse and structure formation, with its results comparable to those
of simulations by Ascasibar et al. (2007), it would be worthwhile to check the
results of this paper against SPH simulations, that would allow to take account
of spatial pressure gradients. Moreover, more realistic profiles would improve our
understanding of the local dynamics of gCg universes, and how the background
dynamics is influenced by local non-linear inhomogeneities.

REFERENCES

Abramo L. R., Batista R. C., Liberato L., Rosenfeld R. 2007, Journal of Cosmology
and Astroparticle Physics, 11, 12

Allen S. W., Rapetti D. A., Schmidt R. W. et al. 2008, MNRAS, 383, 879
Amanullah R., Lidman C., Rubin D. et al. 2010, ApJ, 716, 712
Amendola L., Finneli F., Burigana C., Carturan D. 2003, JCAP, 07, 005
Ascasibar Y., Hoffman Y., Gottlöber S. 2007, MNRAS, 376, 393
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