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Abstract—It is well known that the response of individuals
to disease varies, either because of unpredictable exogenous
events, such as possibly unknown environmental effects, or just
because of endogenous factors, i.e. different genetic background.
In particular, when a treatment effectiveness has to be validated,
the individual variability should be taken into account by ex-
ploiting stochastic models. Relapsing Remitting Multiple Sclerosis
(RRMS) is an unpredictable and complex disease, whose random
behaviour perfectly fits the study with stochastic models. RRMS
is the most common form of Multiple Sclerosis (MS), an immune-
mediated inflammatory disease of the central nervous system,
characterized by alternate episodes of symptom exacerbation
(relapses) with periods of disease stability (remission). Several
treatments were proposed to contrast the disease progression.
Among these, Daclizumab initially exhibited promising results.
However, due to the risk of serious side effects the treatment has
been retired. We propose a stochastic and an hybrid extension,
based on a generalization of the high level Petri Net formalism,
of an existing model of Daclizumab effects on RRMS. The
model is developed to investigate the complex mechanisms and
unpredictable behaviour characterizing the RRMS disease and
its relapsing, especially under the Daclizumab administration.

Index Terms—Multiple Sclerosis, Computational modeling,
Stochastic modeling, Petri Net.

I. INTRODUCTION

When a new treatment is designed, to be allowed for sale
from the respective regulatory agency, two aspects have to
be demonstrated: 1) its safety: it will not worsen the disease
course or give rise to undesirable side effects; and 2) its
effectiveness: it will improve the recipient health. Indeed,
the verification of such features can be achieved through
specific experiments executed under controlled conditions,
with the involvement of several patients. These experiments,

usually referred to as clinical trials, are very expensive but
fundamental to assess the usefulness of a treatment at the
population level. In other words, it must be assured that
the treatment is both safe and effective independently from
the biological, immunological, epigenetic and environmental
differences characterizing the individuals involved into the
trial.

More recently, many regulatory agencies are opening to the
possibility of using computational methods to verify the treat-
ments safety and effectiveness, in particular through the use of
large scale simulations on virtual patients. These experiments,
referred to as “in silico” trials, will open to new possibilities
in the design and experimentation of novel treatments, with
a reduction of time and costs. Besides their capability of
reproducing the disease dynamics and the effects of a given
treatment, such “in silico” models must also demonstrate to
be able to capture individual diversity. In many instances
people diversity can be described and introduced inside the
models through a vector of biological features, but in other
cases, due to the lack of information about the disease, or
simply because of unpredictable environmental events, some
of the individual variability can be captured only by exploiting
stochastic approaches. An example of such diseases, with an
only partially understood etiology, is Multiple Sclerosis (MS).
MS is a chronic and potentially highly disabling disease with
considerable social impacts and economic consequences. In
Europe it is the leading cause of non-traumatic disabilities in
young adults, since more than 700,000 EU people suffer from
MS [1].
The scientific community commonly agrees that MS involves
a process mediated by immune system in which an abnormal
response of the bodys immune defense is directed against the
central nervous system (CNS), made up of the brain, spinal978-1-7281-1867-3/19/$31.00 ©2019 IEEE
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cord and optic nerves. Within the CNS, the immune system
causes an inflammation process that damages the myelin (i.e.
the fatty substance that surrounds and insulates the nerve
fibers), the nerve fibers themselves and the specialized cells
that make myelin (i.e. Oligodentrocytes, ODC). The direct
consequence of damaging in MS patients is the alteration
or completely interruption of nervous messages within the
CNS, producing a variety of neurological symptoms that
will vary among people with MS in type and severity. As
already stated, the causes of MS are still not very clear,
but physicians retain that they include abnormalities in the
immune system and environmental factors (e.g. Epstein-Barr
Virus) that combine to trigger the disease [2]. People with
MS typically experience one of four disease patterns (types
of MS) with a predominance of the Relapsing-Remitting MS
(RRMS) course observed in approximately 85% of patients at
diagnosis [2]. RRMS patients alternate episodes of symptom
exacerbation (relapses) with periods of disease stability with
complete or partial recovery (remission) [1]. Until now, dozen
treatments have been proposed to stop, slow and contrast
the RRMS progression. Such disease modifying therapies
include oral agents and monoclonal antibodies, which have
been designed for a selectivity of the drug action. Daclizumab
(DAC) is one of the therapeutic monoclonal antibody directed
with high-affinity against interleukin-2 receptor (IL2R). IL2R
is the receptor-structure able to bind a key component of the
immune system, Interleukin 2 (IL2). Daclizumab introduces a
new mechanism of action preventing the binding of IL2 with
its receptor with a consequent blocking of immune regulation
and its effect on a population of cells with regulatory ability,
such as the Natural Killer (NK) cells [2]. DAC efficacy was
demonstrated in reducing the clinical relapse rate of RRMS,
the disability progression and in improving health-related
quality of life in patients with relapsing MS [2]. Daclizumab
appears to be generally well tolerated by the patients but
with some adverse events as infections, encephalitis, and liver
damages. For these reasons Daclizumab has been withdrawn
from the market worldwide.

The study and the simulation of MS involves a series
of hypotheses about the disease mechanisms that cannot be
always described as deterministic parameters to be included
into an ”in silico” model. Environmental events, the complex
balance mechanism between the Treg and Teff cells , or
the random spreads of self-reactive T cells cannot be well
predicted, and fall within that part of uncertainty that cannot
be quantified and that can potentially distinguish the disease
course of different individuals, even with the same genetic
background. In this perspective, some stochastic models of
RRMS have been presented. Vélez de Mendizábal et al. [3]
presented a Stochastic Differential Equations (SDE) model to
reproduce the typical oscillating behavior of RRMS. In [4] the
authors present a (stochastic) agent based model with a more
complete description of the entities involved into the disease,
including some thoughts about the role of vitamin D [5], and
the Blood Brain Barrier [6].

Differently, in [7]–[9] a computational methodology is

proposed to analyse the RRMS behaviour exploiting the de-
terministic approximation of the model based on a system
of ordinary differential equations. Indeed, the deterministic
process is not capable to reproduce relevant random features
like variance, bimodality, and tail behaviour. For these reasons,
with the purpose to improve our understanding of this complex
disease, we will extend the RRMS models presented in these
works for the stochastic analysis.
Hence, we firstly describe how Extended Stochastic Symmet-
ric Net (ESSN) [9], [10] formalism can be efficiently used
to derive a graphical and parametric description of the system
under study. Then, we show how the Master equations, that can
be automatically derived from an ESSN model, well describe
the stochastic behaviour of this disease. In particular, when
complex models are studied, the computational cost of the
stochastic simulation could become significantly high. To cope
with this the so called Hybrid models [11], [12], where parts of
model are considered deterministic and others stochastic, can
be exploited to obtain a good approximation of the system
behaviour reducing computational cost.
Then, to show the relevance to consider the stochasticity
and variability into a biological system, we applied such
methodology to the RRMS model introduced in [8], [9].
In conclusion, in this work we firstly describe how the ESSN
formalism can be efficiently used to derive a graphical and
parametric description of the system under study, and secondly
how to obtain automatically the Master equations, which
reproduce the stochastic disease dynamics. Finally we test the
proposed methodology constructing two different models, the
former completely stochastic and the latter hybrid, which allow
us to analyse the variability characterizing the Daclizumab
administration considering a diseased RRMS patient.

II. BACKGROUND

In this section we introduce the high-level Petri Net exten-
sion called Extended Stochastic Symmetric Net (ESSN) [9],
which is used to model and analyze our case study. Then,
we report how the stochastic behaviour of a system modeled
through such a formalism can be efficiently computed by
exploiting the Gillespie algorithm, and by a hybrid approach.
Finally, we briefly recall the biological system characterizing
the Multiple Sclerosis and its respective ESSN model, rigor-
ously defined in [8], [9].

A. Extended Stochastic Symmetric Net

Petri Nets (PNs) [13] and their extensions are widely
recognized to be a powerful tool for modeling and studying
biological systems thanks to their ability of representing sys-
tems in a graphical manner and of allowing the computation
of qualitative and quantitative information about the behavior
of these systems. Among the PN generalisations proposed in
literature, Extended Stochastic Symmetric Nets (ESSNs) [9],
[10] extend the PN formalism providing a more compact,
parametric, and readable representation of the system.
In details, ESSNs are bipartite directed graphs with two types
of nodes, the former are called places and are graphically
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represented as circles, the latter are called transitions and are
graphically represented as boxes. Usually, places correspond
to the state variables of the system, and the transitions to the
events that might occur. Two different nodes are connected
by arcs, which express the relation between states and event
occurrences. To each arc is associated a specific cardinality
(multiplicity), describing the number of tokens, objects con-
tained in each place and drawn as black dots, whose can be
removed from (or added to) the corresponding place. In ESSN,
it is possible to associate specific information (i.e. colors) with
each token, making the model more compact and parametric.
Then, the number of colored tokens in each place defines the
state of an ESSN, called marking.
We define a transition enabled, if and only if each input
place contains a number of tokens greater or equal than a
given threshold defined by the cardinality of the corresponding
input arcs. Thus, the firing of an enabled transition removes
a fixed number of tokens from its input places and adds a
fixed number of tokens into its output places, according to
the cardinality of its input/output arcs. Hence, to allow the
definition of complex rate functions, the set of transitions T is
split in two sub-sets Tma and Tg , distinguishing the standard
transitions, which fire with a rate following a Mass Action
(MA) law, and the general transitions, whose random firing
delay have rates that are defined as general real functions that
might depend only from the time and the corresponding input
places. The standard transitions are graphically represented by
white bars, while the general ones by black bars.

An example of a simple ESSN is given in Fig. 1, where it
is represented the activation, and so the entrance to system, of
the Effector T cells (Teff) due to the Epstain Bar Virus (EBV)
occurrence. The Teff cells start to attack both the virus cells
and the myelin sheaths, expressed by the Oligodentrocytes
(ODC), given the structure similarity of the viral protein with
myelin proteins. This is a sub net of the more complex ESSN
represented in Fig. 2, for this reason further details will be
given in Sec.II-C. This sub net is characterized by three places,
Teff, EBV and ODC, representing the Effector T cells, Epstain
Bar Virus cells, and the Oligodentrocytes cells, respectively.
This model is defined by one standard transition representing
the Teff cells death, namely TeffDeath, and by four general
transitions modeling: the virus occurrence, i.e. the activation
of the Teff cells, the control mechanism given by the Teffs
over the EBV cells, and finally the damage of the mylen sheets,
respectively called EBV injection, TeffActivation, TeffKillsEBV,
and TeffKillsODC.

To associate colors with the tokens, we have to define a
color domain to each place p, denoted cd(p). Color domains
are defined by the Cartesian product of elementary types
called color classes, C = {C1, . . . , Cn}, which are finite and
disjoint sets, and might be further partitioned into (static)
subclasses. Similarly, a color domain is associated with
transitions and is defined as a set of typed variables, where
the variables are those appearing in the functions labeling the
transition arcs and their types are the color classes. Then, we
can define an instance, denoted as 〈t, c〉, of a given transition

t as an assignment (or binding) c of the transition variables
to a specific color of a proper type. Moreover, we define
guard a logical expression defined on the color domain of
the transition, which can be used to define restrictions on
the allowed instances of a transition. For instance, in the
example in the Fig. 1 the ODC color domain is defined
by one color class, the myelination levels of ODC cells,
named Mye. This is divided into 5 static subclasses (i.e.
Lmin, L1, L2, L3 and Lmax) so that myelination level
ranges from an irreversible damage (Lmin, no myelination) to
no damages (Lmax, full myelination). So, the color domain
of TeffKillsODC transition, representing the damage of an
ODC cell, is Mye and the variable characterizing its input
arc is l ∈Mye.

Each ESSN arc is labeled with an expression defined by the
function I[p, t], if the arc connects a place p to a transition t,
or O[p, t] for the opposite direction. The evaluation of I[p, t]
(resp. O[p, t]), given a legal binding of t, provides the multiset
of colored tokens that will be withdrawn from (input arc) or
will be added to (output arc) the place connected to that arc
by the firing of such transition instance. Moreover, we denote
with •t and t• the set of input and output places, respectively,
of the transition t. We use the notation E(t,m) to denote the
set of all instances of t enabled in marking m. Where, in the
case of ESSN formalism, a transition instance 〈t, c〉 is enabled
and can fire in an marking m, if: (1) its guard evaluated on c
is true; (2) for each place p we have that I[p, t](c) ≤ m(p),
where ≤ is the comparison operator among multisets. The
firing of the enabled transition instance 〈t, c〉 in m produces a
new marking m′ such that, for each place p, we have m′(p) =
m(p) +O[p, t](c)− I[p, t](c).
In ESSNs each transition is associated with a specific rate,
representing the parameter of the exponential distribution that
simulates its firing time. So, let define m̂(ν) = m(ν)|•t as
the subset of the marking m(ν) concerning only the input
places to the transition t. Then, the parameter associated with
an enabled transition instance 〈t, c〉 is given by the function

F (m̂(ν), t, c, ν) :=

{
ϕ(m̂(ν), t, c), t ∈ Tma,

f〈t,c〉(m̂(ν), ν), t ∈ Tg,
(1)

f〈t,c〉 ∈ Ω(t, c)

where Ω = {f〈t,c〉}t∈T∧c∈cd(t) is set grouping all the real
functions characterizing the transition speeds ∀t ∈ T , with
f〈t,c〉 = ϕ(·, t, c) when t ∈ Tma. Where ϕ(m(ν), t, c) is the
MA law, i.e.

ϕ(m(ν), t, c) = ω(t, c)
∏

〈pj ,c′〉| p∈•t ∧ c′∈cd(pj)

mpj ,c′(ν)I[pj ,t](c
′)[c]

with ω(t, c) the rate of the enabled transition instance 〈t, c〉.
Observe that ϕ(m̂(ν), t, c) and f〈t,c〉(m̂(ν), ν) can depend
only on the time ν and the marking of the input places of
transition t at time ν. Stochastic firing delays, sampled from
a negative exponential distribution, allow one to automati-
cally derive the underlying Continuous Time Markov Chain
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(CTMC) that can be studied to quantitatively evaluate the
system behaviour [13]. In details, the CTMC state space,
S, corresponds to the reachability set of the corresponding
ESSN, i.e. all possible markings that can be reached from the
initial marking. Thus, the Master equations for the CTMC are
defined as follows:

dπ(mi, ν)

dν
=

∑
mk

π(mk, ν)qmk,mi mi,mk ∈ S (2)

where π(mi, ν) represents the probability to be in marking
mi at time ν, and qmk,mi

the velocity to reach the marking
mi from mk, defined as

qmk,mi
=

∑
t∈T∧

T 〈t,c′〉∈E(t,mk)|mi

F (mk, t, c′, ν)(L[p, t](c′)[c]).

Where E(t,mk)|mi
is the set of all instances of t enabled

in marking mk whose firing bring to the marking mk, and
L[p, t](c′)[c] = O[p, t](c′)[c]− I[p, t](c′)[c].

In complex systems these equations 2 are often compuata-
tionally intractable, then several techniques, such as the Monte
Carlo simulation, can be exploited to study the system taking
into account stochasticity.

Teff

TeffKillsEBV
EBV 

injection

EBV

TeffDeath

TeffActivation

TeffKillsODC

ODC: Mye 

Class Mye =

Domain Mye Var l : Mye

circular {l1} is Lmin + {l2} is L2 + {l3} is L3 + {l4} is L4 + {l5} is Lmax

<l>

<l++>

[ l ∉Lmax ]

Fig. 1: Sub net of ESSN Fig. 2, representing the appearance
of the EBV in the system, the consequent activation of Teff
cells and the damage the ODCs.

B. Stochastic Simulation

Deterministic approximation, in which the system behaviour
is approximated by a deterministic model described through
an Ordinary Differential Equations (ODEs) system, is one of
the most used approach for studying a dynamical system.
However, in those systems in which randomness plays an
important role this approach is able to provide a good ap-
proximation of the real system behaviour. To deal with these
systems stochastic models can be instead exploited.
In 1976 Daniel Gillespie proposed an innovative algorithm,
called Stochastic Simulation Algorithm (SSA) [14], to simu-
late chemical or biochemical systems of reactions. The SSA
is an exact stochastic method to simulate chemical systems,
indeed it is possible to obtain sample trajectories distributed
according to the solution of the Master equations, eq.s 2. Since
this method explicitly simulates all the events that might occur

in the system, it becomes often slow when the number of
system molecules increased. For this reason several algorithms
[15]–[17] were proposed for obtaining similar approximations
as the SSA ones, but with significantly lower computational
costs. One of the most common of these approximate simu-
lation algorithms is the τ -leaping algorithm [16]. Indeed by
using a Poisson approximation the τ -leaping algorithm can
leap over many fast reactions and approximate the stochastic
behavior of the system very well. Then it provides a natural
connection between the SSA in the discrete stochastic regime
and the explicit Euler method applied in the continuous
deterministic approximation.
Differently, hybrid simulation is based on the combination of
discrete and continuous variables into the same model, by
defining which transitions have to be considered stochastic
or deterministic. Then, the hybrid simulation co-simulates the
discrete (stochastic) part of the model and the continuous
(deterministic) ones. In particular, the discrete components of
the model are treated according to the mechanisms of the
original CTMC, eq. 2, and are simulated by exploiting the
SSA algorithm components. While the continuous variables
are approximated by solving an ODEs system. How to obtain
the ODEs system underlying an ESSN model is rigorously
explained in [9]. Thus, the resulting process is a hybrid process
where the discrete state changes can be seen as switches that
take the ODE simulation from one condition to another.
Indeed, this approach is an approximation of the stochastic
process, and by choosing the right events (transitions) that
have to be considered as continuous, a significant reduction
of the computational time and a better approximation on the
system behavior with respect to the deterministic simulation
can be obtained. However, in this approach the choice of which
transitions must be dealt as continuous ones is critical. For
instance, the modeling of fast transitions [12] (i.e. transitions
firing several times in one simulation step) such as discrete
ones might return a hybrid approximation worthless compared
to the stochastic simulation, since the resolution time might
considerably increase due the multiples switches from one
process to the other. Therefore, a pre-analysis on the net to
identify the fast transitions, and so to set them as continuous
variables, i.e. deterministic, could be crucial.

C. A model of Relapsing-Remitting Multiple Sclerosis

RRMS is an autoimmune disease in which the immune
system of the patient react against itself removing the myelin
sheath (i.e. Oligodentrocyte (ODC)) from the nerve fibers of
the CNS preventing the efficient transmission of the nervous
signals. Although the precise cause of RRMS has not yet
been established, the disease is understood to result from
an abnormal immune-mediated response triggered by envi-
ronmental factors in genetically susceptible individuals. In
particular, viruses may play a role in MS pathogenesis acting
as such environmental triggers [18]. An hypothesis is that
the Epstein Barr Virus (EBV) first infection as well as the
reactivation of the latent infection can cause the activation of
auto-reactive T effector (Teff) lymphocytes against the CNS
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resulting in damage to myelin and nerve fibers, and triggering
an inflammatory cascade. Teff lymphocytes produce IL2, an
immunomodulating molecule, released for a self-stimulation of
Teff to duplicate and propagate their actions, via the binding
of IL2 to the receptor IL2R, located on the surface of the
cells [18]. In this context, another type of lymphocytes, T
regulatory (Treg) and Natural Killer cells (NK) give also
a contribute regulating the auto-reactive Teff cells activity
and acting as first-line defense against the virus, respectively.
However, despite the continuous attacking action of Teff to
myelin results in a reduction of the same, it is worth to note
that in some cases the ODC are able to partially recover the
lost myelin if the damage is not excessive.
All these cellular interactions characterizing the RRMS are de-
scribed by the model showed in Fig. 2. The model consists of
10 places and 22 transitions, four are standard and 18 general.
The corresponding general functions are rigorously reported in
[9]. We can distinguish seven modules corresponding to the
biological entities which play a key role in the development
of the disease, as illustrated in Fig. 2.
Firstly, the EBV module, characterized by the place EBV,
simulates the virus injections in the system through the
EBVinj transition. Then the Treg module, constituted by
the Resting Treg and Treg places, encodes the arrival of
new resting Treg cells from thymus, the control mechanism
of the Treg over the Teff, and their activation, prolifer-
ation and death, respectively by the following transitions:
FromTimoREG, TregKillsTeff, TregActivation, TregDup and
TregDeath. Similarly to this module is the third module
regarding the Teff cells, with the addition of the EffectorMem-
ory place. In particular, the annihilation of the virus by
the Teff action is encoded by the TeffKillsEBV, while the
duplication transition is split into two different transitions,
namely TeffDup Sym and TeffDup Asym, simulating the Teff
cell proliferation which might take place in two different
manners called Symmetrical and Asymmetrical processes.
The fourth module is defined by one place corresponding to
the NK cells. Through the transition NKentry is simulated the
new NK cells arrival, and by the NKKillsTeff and NKKillsTreg
transitions the killing of self-reactive Teff and Treg cells,
respectively. Finally, the death and proliferation of the NK
cells are modeled by transition NKDeath and NKdup. The
IL2 module focuses on the role of this protein, and it is
characterized by IL2 place. The module encodes the IL2 con-
sumption during the Treg, Teff and NK proliferation, and
its production from the Teff activation. The ODC module de-
scribes instead the ODC behaviour, characterized particularly
by the damage caused by Teff cells on ODC cells, represented
by the TeffKillsODC transition. To simulate this damage, we
associate with the place ODC the color class Mye encoding
the myelination levels of ODC. Mye is divided into five static
subclasses ranging from Lmin (no myelination) to Lmax (full
myelination). Indeed, when the myelin level reaches the lowest
value, an irreversible damage occurs and a remyelinization,
given by the Remyelinization transitions, of the neurons is
no more possible. Finally, the DAC module encodes the

drug administration, modeled through the place DAC, and its
pharmacokinetics inhibition of the expansion of Treg and Teff,
decreasing the velocity of transitions TregDup,TeffDup Sym,
and TeffDup Asym. The drug administration is modeled by
transition DACinj, and its degradation by DACDegradation.

III. RESULTS

In this section we firstly present the prototype computational
framework that we developed to study the RRMS. Then, we
discuss the results obtained from the stochastic and hybrid
model, in which we investigated the effect of the Daclizumab
administration in MS patient. In details, all the constants and
parameters used were obtained from [9].

ODE system
(.R)

ESPN
(.net, .def)

ODE Solver

PN2ODE

Generic Reactions Parameters
(.ReactionPar)

Dynamics
&

Data

Fig. 3: Architecture of the prototype framework combining
GreatSPN suite with C++.
A. Framework Architecture

The framework that we developed and proposed for study-
ing the RRMS disease is integrated in GreatSPN [19], a well-
known software suite for modeling and analyzing complex
systems through the PN formalism and its generalizations.
The architecture of this framework is depicted in Fig. 3. In
details, by exploiting GreatSPN, a Java Graphic User Interface
(GUI), it is possible to draw and build the ESSN model, then
calling PN2ODE, a C/C++ program, the underlying stochastic
and deterministic processes are generated. Then, the processes
underlying the model are automatically generated and saved
into a binary file with .solver extension, from which determin-
istic, hybrid, or stochastic simulation algorithm can be settled.
Let us note that the type of transitions, such as general and
stochastic, can be defined dynamically adding a specific label
to the transition through the GreatSPN GUI. Observe that file
storing the functions corresponding to the general transitions
is optional and it is needed only when a rate function different
from the one specified by Mass Action law is used. Finally,
let us underline that the GreatSPN GUI can be downloaded at
https://github.com/greatspn; instead, all the C/C++ files and the
GreatSPN files of the net are freely available at https://github.
com/qBioTurin/ESSNandRRMS/tree/master/StochasticModel.

B. Stochastic Model

In this work we report only the trajectories related to
the ODC and NK places, since they are the most important
variables for identifying the spreading of the disease and
the therapy effectiveness. In this experiment for the missing
input parameters we used the value estimated in [9], so that
RRMS patient is characterized by an irreversible damage in
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7) DAC

FromTimoREG
FromTimoEFF

EffectorMemoryResting_Treg Resting_Teff

TregActivation TeffActivation
MemActivation

Treg

TregDeath

TregKillsTeff

Teff

TregDup

NKdup

Remyelinization

TeffDup_Sym

TeffKillsODC

TeffDeath

TeffKillsEBV

EBVinj

NKDeath

NKentry

NKKillsTeffNKKillsTreg

EBV

ODC: Mye 
IL2

NK

5) IL2

6) ODC
TeffDup_Asym

2) Treg 1) EBV3) Teff

4) NK

DAC

DACinjDACDegradation

Fig. 2: RRMS Model represented by exploiting the ESSN graphical formalism.

about 80% of ODC cells. Therefore, starting with a value of
500 ODC cells with the highest level of neuronal myelin-
ization, we define the disease occurrence when the lowest
level of neuronal myelinization is reached for each ODC
cell. This event represents an irreversible damage. For all
the simulations, we assumed as initial marking the following
parameters consistent with a space of 1mm3 of blood and
4mm3 of neural tissue: 500 ODC with level Lmax of neuronal
myelinization, 1687 resting Teff cells, 63 resting Treg cells,
375 NK cells and 1000 IL2 molecules, and zero cells in the
other places (see [9]). In particular, we modeled firstly the
developing of the disease (the Fig. 4’s left column, namely
”Without therapy”), and successively the Daclizumab therapy
administrated by using the same initial conditions (the Fig. 4’s

right column, namely ”With therapy”). In details, both the
scenarios are characterized by five virus injections at irregular
times, introducing into the system 1000 EBV copies per
injection. Then, only for the second scenario we simulated
the DAC administration, one each two months, at the 53rd
day after the first EBV injection, introducing in the system
30 DAC molecules (it has been shown in [9] that the amount
of DAC administered does not worthily impact the result).
In these experiments, showed in Fig. 4, 500 trajectories (in
grey) were simulated by exploiting the SSA algorithm over
one year time interval [0, 364]. Thus, it is possible to see
that in first scenario, both the mean trends (blue lines) of
the irreversibly ODC cells damaged and NK cells, calculated
from the 500 simulations, are very similar to the deterministic
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solution (red line) obtained from [9]. This clearly highlights
that the deterministic process is a good approximation, and the
randomness of the system can be disregarded in this phase.
Considering the Daclizumab therapy administration on the
same model, it is straightforward to see the disease relapse
with a decreasing to 40% of ODCs irreversibly damaged,
Fig. 4c), but with an increasing mean trend of the NK cells
with respect to deterministic one, Fig. 4d). In particular,
comparing Fig. 4b) and Fig. 4d) is possible to see that with
the therapy we have in both the cases (deterministic and
stochastic) an increasing of the NK cells, as expected from
literature [2]. Since the stochastic trajectories in Fig. 4d) are
characterized by a most increasing trend, with a mean value
quite different from the ODEs solution, we can conclude that
the stochastic model is probably more suitable to capture the
side effects characterizing the Daclizumab treatment.

C. Hybrid Model

Similarly to the experiments showed above, here we show
the simulations obtained considering an hybrid model instead
of a completely stochastic one. Since we are interested to
analyze the variability on the therapy outputs, we decide
to fix as stochastic transitions: 1) the ones related to the
DAC therapy, i.e. TregDup, TeffDup Asym, TeffDup Sym and
, DACDegradation transitions, and 2) the the remyeliniza-
tion of the ODC cells, i.e. Remyelinization transition. It is
straightforward to observe similar results for the ODC place
Fig. 5a-c), but instead a complete loss of the stochasticity for
the NK place is present, as shown in Fig. 5b-d). Although
we estimated a decrease of the computational time, especially
considering the scenario with the Daclizumab administration,
from an average of 67.02 s. for the stochastic model to 23.23s.
for the hybrid model, a loss of stochastic information regarding
the NK cells variability is visible, even if we can still observe
from Fig. 5d) an increasing of the NK cells with respect to
Fig. 5b), and so the different mean trend could mislead the
choice of the model to exploit.

IV. CONCLUSION AND FUTURE PERSPECTIVE

In this paper we proposed two modeling approaches for
the analysis of the RRMS variability with the Daclizumab
administration. In particular, the descriptive power of Extended
Stochastic Symmetric Nets is exploited to provide a graphical,
parametric and compact representation of this disease. Then
we showed that the model is able to reproduce some of
the variability that usually characterizes this disease and its
Daclizumab treatment, showing in particular that not always a
deterministic model, or an hybrid model, is able to effectively
capture all the effects entitled with the use of a given therapy.

We remind here that, from an “in silico” trial perspective, it
mandatory to consider the potential variability that is involved
with different individuals, and not only the mean behavior
entitled with the use of a given compound. A treatment must
be effective for the majority of, if not all, the patients involved,
and thus the capability of reproducing such variability is fun-
damental to test and optimize through the use of computational

models both dosage and timing.
As future works we will implement the τ -leaping algorithm
able to include the general functions characterizing the ESSN
model. Currently the Gillespie algorithm and hybrid simu-
lation are the only Stochastic solvers available to simulate
an ESSN model, due to the assumptions on which the τ -
leaping approach is based: (i) the calculation of the partial
derivatives of the rate functions or (ii) the hypothesis that
all the reactions have to follow the Mass Action law. Such
constraints could be obviously not respected by the ESSN
model, given the presence of general functions, and so the
resulting difficulties for the partial derivatives calculation.
Therefore, with an improving of the time simulation, which
does not affect the the goodness of the results, we plan to
encode in the stochastic model the spatial coordinates of all
entities in a cubic tissue portion.
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