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Summary Polymeric nanoparticles based on cyclodextrins
are currently undergoing clinical trials as new promising
nanotherapeutics. In light of this interest, we investigated cy-
clodextrin cross-linked polymers with different lengths as car-
riers for the poorly water-soluble drug sorafenib. Both poly-
mers significantly enhanced sorafenib solubility, with shorter
polymers showing the most effective solubilizing effect.
Inclusion complexes between sorafenib and the investigated
polymers exhibited an antiproliferative effect in tumor cells
similar to that of free sorafenib. Polymer/Sorafenib complexes
also showed lower in vivo tissue toxicity than with free soraf-
enib in all organs. Our results suggest that the inclusion of
sorafenib in polymers represents a successful strategy for a
new formulation of this drug.
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Introduction

Cyclodextrins (CyDs) are cyclic oligosaccharides consisting
of α-1,4-linked glucopyranose units with a hydrophilic outer
surface and a hydrophobic central cavity. CyDs are widely

used as pharmaceutical excipients, enhancing chemical stabil-
ity and improving the shelf-lives of drugs [1]. Several chem-
ical functionalizations are possible on CyDs to improve their
properties in pharmaceutical and biomedical applications
[2–10]. An example of an important CyD derivative is
sugammadex, which is based on γ-CyD. Sugammadex acts
as a selective binding agent that encapsulates the muscle re-
laxant rocuronium, considerably shortening the recovery time
of muscular tone in patients after general anesthesia [11]. The
use of CyDs in the formulation of poorly water-soluble drugs
is of particular interest [12]. CyDs can, in fact, increase the
apparent solubility of many drugs, thus increasing their bio-
availability and allowing for them to reach systemic circula-
tion or the desired target site [13].

More recently, the synthesis of stable CyD nanoparticles
(NPs) [14] has attracted considerable interest, and a variety of
organic and hybrid CyD-based NPs have been synthesised
[15–19]. The cyclosert delivery platform, for instance, is a
successful example of linear CyD polymers designed as drug
nanocarriers [20–22]. Many CyD-based polymers have been
prepared by linking CyD units with crosslinkers (i.e. cross-
linked polymers). Epichlorohydrin (EPI) has also been used as
a crosslinker, and EPI cross-linked polymers have been wide-
ly investigated as drug nanocarriers [23–25]. Typically, CyD
polymers exhibit a greater drug-carrying capacity than simple
CyDs [26–28]. More recently, oligomers of CyDs have also
been studied as drug carriers [6, 26]. One potential advantage
of oligomers of CyDs is that they are easier to excrete through
the renal tubules without degradation [29]. On this basis, we
investigated EPI-crosslinked CyD nanocarriers to tackle the
low-solubility of sorafenib (Nexavar, SFN).

SFN is an oral multikinase inhibitor approved by the
U.S. Food and Drug Administration in 2006 for the treat-
ment of patients with advanced renal cell carcinoma or
unresectable hepatocellular carcinoma. SFN displays
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antitumor activity across a variety of tumor types, includ-
ing renal, hepatocellular, breast, thyroid and colorectal car-
cinomas. SFN also inhibits several tyrosine kinase recep-
tors involved in tumor progression and tumor angiogenesis
[30]. According to the biopharmaceutical classification
system (BCS), in vitro studies catalog SFN as a class II
drug [31]. In fact, SFN is water soluble at a rate of 9.86 ng/
mL in a neutral pH environment [32], and its oral bioavail-
ability is low (about 8.5%, oral administration), due to its
low aqueous solubility [33]. SFN tosylate is used as tablets
(Nexavar, Bayer Healthcare Pharmaceuticals–Onyx
Pharmaceuticals) to slightly improve its solubility. Some
formulations have been prepared to increase the solubility
and bioavailability of SFN [34, 35]. Despite its inherent
selectivity, SFN can cause unusual adverse reactions, in-
cluding severe respiratory and liver failure, thus posing a
challenge for oncologists [36–39].

In particular, we prepared the inclusion complexes of a β-
CyD polymer (92 kDa) and oligomer (12 kDa) with SFN
(Fig. 1). We determined the complexation efficiency (CE) of
the hosts and tested the cytotoxicity of the inclusion com-
plexes and SFN in different cell lines. We also determined
the in vivo tissue toxicity of SFN and its soluble complexes.

Materials and methods

Chemicals

All chemicals obtained from commercial sources were used
without further purification. The water-soluble polymer pCyD
(92 kDa, 70% of CyDs, 57 CyD units) was purchased from
CyClolab. CyD oligomer (oCyD, 12 kDa, 65% of CyD, 7
CyD units) was synthesised as described elsewhere [40].
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Fig. 1 Schematic structure of
cross-linked polymers (n ≈ 1
oCyD & n ≈ 50 pCyD) and so-
rafenib (SFN)
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oCyD: Dimension (DLS): 3.8 ± 0.8 nm. Zeta potential:
2.1 ± 1 mV.

NMR spectroscopy

1HNMR spectra were recorded at 25 °Cwith a Varian UNITY
PLUS-500 spectrometer at 499.9. NMR spectra were recorded
by using standard pulse programmes from the Varian library.

Light scattering measurements

Dynamic light scattering (DLS) measurements were per-
formed at 25 °C with a Zetasizer Nano ZS (Malvern
Instruments, UK) operating at 633 nm (He–Ne laser).

UV/Vis and circular dichroism spectroscopy

UV/Vis spectra were recorded using an Agilent 8452A diode
array spectrophotometer. CD spectra were recorded with a
JASCO J-1500 spectropolarimeter at 25 °C.

Solubility studies

Phase-solubility studies were performed in aqueous solutions.
An amount of SFN (7 mg) was added to 2 mL aqueous solu-
tions containing different concentrations of β-CyD, oCyD or
pCyD in Tris (tris(hydroxymethyl)aminomethane) buffer
(10 mM, pH 7.4).

After an incubation time of 12 h at 25 °C, the suspension
was centrifugated, and SFN concentration was determined in
the supernatant by UV/Vis spectroscopy at 268 nm. A plot of
the solubility of SFN (SSFN) versus the total concentration of
CyD cavities ([CyD]t) was obtained. The AL-type diagrams
fitted with the following eq. [41]:

SSFN ¼ SoSFN þ K1:1So= 1þ K1:1Soð Þ CyD½ �t

CE was calculated from the slope of the straight line
obtained:

CE ¼ SoSFNK1:1 ¼ Slope= 1�SlopeÞð

The apparent stability constant K1:1 = CE/S0 was calculated
for S0 = the intrinsic solubility of SFN. Calibration curves of
SFN in the presence of CyD polymers were used to determine
SSFN values. The molar absorptivity of SFN, determined in an
aqueous solution of pCyD or oCyD, was 45,300 (mol−1 L
cm−1) and 47,000 (mol−1 L cm−1), respectively.

CyD polymer/SFN complexes for biological assays

Solutions for the in vitro study were prepared by adding 50μL
of a DMSO solution of SFN (10 mg/mL) to a solution (2 mL)
of pCyD or oCyD (10 mg/mL, Milli-Q water). Solutions for
the in vivo toxicity study were prepared by adding 100 μL of a
DMSO solution of SFN (200mg/mL) to a solution (10 mL) of
pCyD or oCyD (50 mg/mL). The solutions were stirred for 8 h
and then filtered. The final concentration of SFN was deter-
mined using UV-Vis spectroscopy.

Cell cultures

Human breast carcinoma MCF-7, gastric carcinoma HGC-27,
liver cancer HepG2 and melanoma SKMel-28 cells were
grown in DMEM medium (Euroclone, Pero, Italy) supple-
mented with 10% FBS and 1% penicillin-streptomycin
(Euroclone). Tumor thyroid K1 cells were grown in DMEM
medium/F12 medium (1:1), supplemented with 10% FBS and
1% penicillin-streptomycin.

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

Cell lines were plated into flat-bottomed, 96 well microtiter
plates at appropriate concentrations. After a 6–8 h incubation,
cells were treated with solutions of SFN or the selected SFN
complexes (five concentrations). After a 72 h treatment, the
MTT assay was used as described elsewhere [42]. The IC50

values were calculated from the analysis of single
concentration-response curves; each final value is the mean
of 4–7 experiments.

Apoptosis by 4,6-diamidino-2-phenylindole (DAPI)
staining

MCF-7, K1, HepG2 and HGC-27 cells were plated in 1 mL at
opportune densities/well into 24 well-microtiter plates. After
about 6–8 h, SFN, pCyD/SFN and oCyD/SFN were added at
their IC50 and IC75 values. All floating and adherent cells were
harvested 3 d later, washed with a saline solution and fixed
with 100 μl of 75% ethanol in phosphate-buffered saline. For
the microscope analysis, samples were treated with 6 μL of
DAPI aqueous solution (10 μg/mL) and immediately ana-
lyzed under a fluorescence microscope to evaluate the per-
centage of apoptotic segmented nuclei/cells [43].

Animals

For toxicity studies of SFN complexes, female nudemice (age: 6
wk.; n= 4 per treatment group)were purchased fromHarlan Italy
(now Envigo, S. Pietro al Natisone, Italy). All animals were
housed in microisolator cages under germ-free conditions and
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placed in laminar-flow racks. They received autoclaved food and
water. Once arrived, they were allowed a 7 d period before use.
Mice were treated for 5 consecutive days (q1–5) with 30 mg/Kg
SFN (os), and oCyD/SFN and pCyD/SFN (ip) and observed
daily (for 8 d) for signs of toxicity and survival. SFN was
suspended in water with 1% DMSO, while oCyD/SFN and
pCyD/SFN solutions were diluted in water, thus containing
0.1% DMSO. Mice were sacrificed with CO2 on day 8.

All experiments were performed in accordance with the
guidelines of the Federation of European Laboratory Animal
Science Associations, approved by the Institutional Review
Board for animal studies.

Toxicity and histochemical studies

Immediately after the autopsy the fresh kidney, liver and
lung tissues were removed and fixed in paraformaldehyde
in 0.1 PBS (pH 7.4) for 24 h, processed routinely, embed-
ded in Paraplast (Sigma-Aldrich, Milano, Italy) wax and
sectioned at 6 μm. Sections from all organs were then
stained with haematoxylin/eosin (H&E) and mounted with
DPX for histology (Sigma-Aldrich). Digital pictures of
samples were taken with a Canon EOS 1200D camera
connected to a Zeiss Axioskop II Plus light microscope
to perform a qualitative evaluation of tissue sections.

Results and discussion

Two different nanosystems were assayed as solubilizing
agents of the poorly water-soluble drug SFN (Fig. 1). In par-
ticular, an EPI cross-linked polymer pCyD (Mw of 92 kDa,
55–58 β-CyD cavities, NP diameter 8.8 nm) and an oligomer
oCyD (12 kDa, 7 CyD cavities, NP diameter 3.8 nm) [40]
were tested. Both pCyD and oCyD significantly affected
SFN solubility (Fig. 2). A clear solution of SFN was

obtained in the presence of 10 mg/mL of pCyD or
oCyD (Fig. 2, vials 3 and 4). In the presence of β-CyD
(Fig. 2, vial 2) a suspension was obtained, as was also the
case in SFN alone (Fig. 2, vial 1).

The inclusion ability of oCyD or pCyD for SFN was
investigated using CD spectroscopy. Fig. 3 reports the
CD spectra obtained when SFN was added to an oCyD
solution at pH 7.4. The spectra show an induced circular
dichroism positive band at 275 nm. The intensity of the
band increased when the guest/host molar ratio in-
creased, thus suggesting that SFN interacts with the olig-
omer. The CD spectra of SFN in the presence of pCyD
or oCyD is reported in Fig. 4. For a better comparison

Fig. 2 SFN (0.40 mg/mL) in water alone (1) or with 10 mg/mL of β-
CyD (2); pCyD (3); oCyD (4)

Fig. 3 CD spectra of SFN (read from gray to black: 0.5, 1, 1.5, 2, 2.5, 3,
3.5 & 4 × 10−5 M) with oCyD (β-CyD cavity concentration:
1.3 × 10−3 M) at pH 7.4 (10 mM Tris buffer)

Fig. 4 CD spectra of SFN (2 × 10−5 M) with oCyD (black); pCyD
(gray); (β-CyD cavity concentration: 1.3 × 10−3 M)
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among the hosts, which have a different number of cav-
ities, CD spectra were carried out at the same concentra-
tion of CyD cavities in the samples. The highest intensity
of the CD bands observed in the case of oCyD may
suggest a better interaction of SFN with the CyD units
of oCyD. These results are in keeping with the apparent
stability constant values discussed below.

Solubility studies

The CE values of polymers with SFN were obtained from
solubility measurements using the method described by
Higuchi and Connors [41]. This method has been widely used
for determining stability constants of drug/CyDs and for poly-
meric hosts [15, 44–46]. As all the CyD cavities of the poly-
mer were equivalent binding sites, the drug can be included in
a single CyD cavity.

The solubility phase diagram, obtained by plotting SFN con-
centration versus the concentrations of oCyD or pCyD, is re-
ported in Fig. 5. The host concentration is the CyD cavity con-
centration for a better comparison among the different systems.

We obtained an AL-type phase diagram with a linear cor-
relation between SFN and the host concentration (slope less of
unity). This trend suggests the formation of a 1:1 host/guest
inclusion complex with the CyD unit. We found that SFN
solubility was not affected by β-CyD in the experimental

condition, as reported by others [47]. Interestingly, the solu-
bility of the drug increased linearly with the host (oCyD or
pCyD) concentration. The oligomer is more effective than
pCyD, and the solubility of SFN in the presence of oCyD
significantly increases over 80 μM. This data suggests that a
shorter polymer chain shows better solubilizing properties as
shown for similar systems [46]. In fact, for polymers with a
higher number of CyD units, the cavities become less acces-
sible probably due to steric hindrance.

Loftsson has reported that for poorly water-soluble drugs,
the intrinsic solubility (S0) is in general different from the
intercept (Sint) value of the phase-solubility diagram, resulting
in erroneous K1:1 values. Therefore, a preferred parameter for
the evaluation of the solubilizing efficiency of CyDs is their
CE (i.e. the concentration ratio between complexed and free
CyD). It is independent of both S0 and Sint, and more reliable
to investigate the influences of different compounds on the
solubilization.

CE values for oCyD and pCyD were calculated from the
slope of the phase-solubility diagrams (Table 1). The best
results were obtained with oCyD. K1:1 was also calculated
using an S0 of SFN = 2.1 × 10−8 M [32].

Antiproliferative activity (MTTassay)

The SFN inclusion complexes pCyD/SFN and oCyD/SFNwere
evaluated for their antiproliferative effects on the MCF7, HGC-
27, HepG2, SKMel-28 and K1 cancer cell lines and compared
to SFN. Table 2 reports the IC50 values obtained. Interestingly,
the administration of SFN included in pCyD and oCyD did not

Fig. 5 Solubility of SFN vs. pCyD (●) or oCyD (■) at pH 7.4 (TRIS
buffer)

Table 1 CE and apparent stability constant (K) values for the inclusion of SFN in pCyD and oCyD (25 °C, TRIS buffer pH 7.4)

Host CE K1:1 (M
−1) Slope Sint

pCyD 0.020 ± 0.001 9.5 (±0.5) ×105 0.020 ± 0.001 3.4 (±0.9) ×10−6

oCyD 0.035 ± 0.002 1.7 (±0.1) ×106 0.034 ± 0.002 7 (±1) ×10−7

Table 2 IC50 values (μM) of SFN and its inclusion complex with
pCyD and oCyD

Cellular lines SFN pCyD/SFN oCyD/SFN

MCF-7 8.59 ± 1.17 21.8 ± 3.7 15.9 ± 3.4

HepG2 4.10 ± 0.32 5.99 ± 0.65 7.80 ± 2.34

HGC-27 5.12 ± 1.18 4.24 ± 0.77 2.91 ± 0.39

SKMel-28 8.45 ± 1.07 11.0 ± 1.3 11.2 ± 2.0

K1 12.5 ± 3.2 26.5 ± 3.9 25.1 ± 5.9

All data is the mean (± SD) of 4–7 runs
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undergo any significant reduction in its antiproliferative activity
in two of the cell lines treated (HepG2 and SKMel-28). In K1
and MCF-7 lines, the polymers decreased the activity of SFN

(on average 113 ± 26%), while oCyD seems to improve the
activity slightly (+43%) in HGC-27.

The reduced antiproliferative effect of the CyD polymer/
SFN complexes in comparison to SFN in some cell lines is in
keeping with the trend reported for other drug delivery nano-
particles [48, 49].

Visualization of apoptotic cells/nuclei by DAPI

We tested the ability of SFN, pCyD/SFN and oCyD/
SFN to trigger apoptosis in MCF-7, K1, HepG2 and
HGC-27 cells through an analysis of the morphology
of DAPI stained nuclei and after exposure to equitoxic
drug concentrations (IC50 and IC75). As shown in
Fig. 6, all preparations demonstrated a good level of
apoptotic activity in all cell lines with a clear dose-
response correlation, except in K1. As for their specific
activity, SFN and its complexes showed comparable ac-
tivities in HepG2, K1 and MCF-7 cells, while SFN was
more active than oCyD/SFN and pCyD/SFN in HGC-27
cells.

Fig. 6 Apoptotic activity of SFN, pCyD/SFN and oCyD/SFN in four tumor cell lines. Bars represent the mean ± SD of 4–8 data. IC50, (■), IC75, (□)

Fig. 7 Percent body weight variation in mice treated with SFN and its
complexes. Control (●), SFN (○), pCyD/SFN (□), oCyD/SFN (Δ). SDs
were omitted to avoid confusion

Invest New Drugs (2018) 36:370–379 375



In vivo experiments

We also determined the in vivo tissue toxicity of a standard
dose of SFN (os) and its soluble complexes (ip, 30 mg/Kg, all
given daily for 5 consecutive days). The percentage variation
in body weight of treated mice is reported in Fig. 7. In sum, no
significant weight variations were observed after the adminis-
tration of the complex oCyD/SFN. Negative weight variations
were observed for SFN (day 3) and pCyD/SFN (from day 2–
6), but only for pCyD/SFN these variations were significantly
different (p < 0.02) than those of control mice.

These results suggest a lower general toxicity for oCyD/
SFN as compared to SFN and pCyD/SFN. Treatment with

oCyD/SFN causes a significant, although not impressive, loss
of weight as compared to control mice.

Histological analysis of the main organs

Morphological analysis of the lung showed a very slight effect
of the 0.1% DMSO-containing solvent on lung structure. In
fact, we observed some almost normal areas and others with
altered alveolar morphology, thickened walls and the presence
of erythrocyte congestion (Fig. 8). On the other hand, after SFN
administration, we observed more extensively altered paren-
chymal areas with compromised alveolar morphology, the col-
lapse of the alveolar component and erythrocyte congestion.

Fig. 8 Lung histology. Panel (a),
control mice administered with
distilled water containing 0.1%
DMSO. Panel (b), mice treated
with SFN per os at 30 mg/Kg q1–
5. Panels (c) and (d), animals
treated with pCyD/SFN and
oCyD/SFN, respectively, at
30 mg/Kg q1–5. Altered alveolar
morphology: arrow. Thickened
walls: arrowhead. Erythrocyte
congestion: asterisk. Scale bar:
100 μm

Fig. 9 Liver histology. Panel (a),
control mice administered with
distilled water containing 0.1%
DMSO. Panel (b), mice treated
with SFN per os at 30 mg/Kg q1–
5. Panels (c) and (d), animals
treated with pCyD/SFN and
oCyD/SFN, respectively, at
30 mg/Kg q1–5. Dilated sinu-
soids: arrow. Vessels congested
by erythrocyte: asterisk.
Hepatocytes with pycnotic nuclei:
arrowhead. Scale bar: 100 μm
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After ip administration of pCyD/SFN, we observed a greater
frequency of impaired parenchymal areas, always coupled with a
moderate erythrocyte congestion. However, after ip treatment
with oCyD/SFN, only occasional alterations of parenchyma, ac-
companied by reduced erythrocyte congestion, were observed.

While analyzing the liver sections in control mice, we ob-
served some very light tissue alterations in the periportal areas.
On the contrary, after the administration of SFN (per os), di-
lated sinusoidal areas, vessels frequently congested by eryth-
rocyte and occasionally amorphous material were evident. In
some areas of the section, we also observed the presence of
hepatocytes with irregular (pycnotic) nuclei. On the other
hand, liver sections of mice treated with pCyD/SFN present
sinusoids with a regular appearance and hepatocyte laminae
regular in appearance. A similar situation was also observed in
animals treated with oCyD/SFN (Fig. 9).

In control kidney sections, the cortical area did not present
any evident alterations (Fig. 10). We observed the presence of
some proximal tubules with fringed epithelium and occasional
vessels containing congested erythrocytes in kidney sections
from animals treated with SFN, while we recorded a greater
presence of proximal tubules with altered epithelium and ves-
sels congested by erythrocytes in mice treated with pCyD/SFN.
After ip treatment with oCyD/SFN, the histological situation
was similar to what was observed after pCyD/SFN treatment.
The medullary area showed no evidence of morphological dif-
ferences in either treated or control animals.

Conclusions

Cyclodextrin (CyD) nanocarriers were used to efficiently
solve the low-solubility issue with sorafenib (SFN).
CyD cross-linked polymers with different molecular

weights were used to prepare soluble supramolecular
complexes with SFN up to 80 μM. The CyD polymer/
SFN complexes were able to inhibit cell proliferation
and trigger apoptosis in the cell lines used. Our results
indicate that CyD polymer/SFN complexes have lower
in vivo toxicity than SFN alone. In particular, oCyD/
SFN showed the lowest toxicity in the lung, where
SFN alone showed a strong toxicity under our experi-
mental conditions. The toxicological data was also con-
firmed by a lower general toxicity of oCyD/SFN in
comparison to SFN or pCyD/SFN. Moreover, both the
polymer/SFN complexes showed almost no liver toxicity
as compared to SFN. Overall, our results suggest that
CyD polymers could provide a new formulation strategy
for the delivery of SFN, thus moving to class I
(Biopharmaceutics Classification System), in order to
increase its bioavailability and reduce its systemic
toxicity.
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Fig. 10 Kidney histology. Panel
(a), control mice administered
with distilled water containing
0.1% DMSO. Panel (b), mice
treated with SFN per os at 30 mg/
Kg q1–5. Panels (c) and (d),
animals treated with pCyD/SFN
and oCyD/SFN, respectively, at
30 mg/Kg q1–5. Proximal tubules
with fringed epithelium: arrow.
Vessels containing congested
erythrocytes: asterisk. Scale bar:
100 μm
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