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3-D Mixed Finite Element Schemes for Charge Transport Equations
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Abstract. We use the Raviart-Thomas-Nédéléc space to discretize the current continuity equa-
tions of the drift-diffusion semiconductor models with Mixed Finite Element methods in R3.
An asymptotic analysis of the behaviour of the scheme when the potential is very large is given.

1. INTRODUCTION

We extend to 3-D problems the mixed approach introduced in [1-2] to discretize the current
continuity equations arising in the drift-diffusion model for semiconductors. For simplicity,
we shall deal only with the equation for positive charges, i.e., we want to find a solution
p € H}(Q) such that:

—div(Vp+pVy) = f inQcCH?

p=yg on 'y C 6Q Q)
Op oy _ .y
-é-r—l + -a; =0 on Fl = 8Q\FQ

The first equation of (1) describes the stationary behaviour of a semiconductor when the
concentration of positive charges is p and the electrical potential, coming from the solution
of the Poisson’s equation, is ¥. For a complete description of a stationary semiconductor
problem one needs another equation for the negative charges and a Poisson equation for 3.
All the quantities are conveniently scaled in order to avoid numerical problems due to the
different orders of magnitude of the physical quantities. See [3] for more details.

We assume that v, f and g are known. In general, the right-hand side in (1) is a nonlinear
function of the negative and positive charge concentration. Here, we shall assume that some
linearization has been introduced, so that f is independent of the actual p. Following [1-2],
we use the Slotbloom change of variables for p:

p=we ¥ 2

giving us a new problem in the u variable:

—div(e"¥Vu) = f in Q

u=-¢e¥g=yx on Ty (3)
-g—% =0 onT;.

2. MIXED SCHEME
To introduce the mixed scheme, we define the following spaces:

Y ={re H(div;Q),7-n =0on Ty},
® =L*Q).
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The current J = —e"¥Vu = —(Vp + pV) is now a new variable and the mixed formu-
lation of (3) is:
Find J€X and u € ® such that:
Jo ¥l - Tde + [qudivrde =frox_1;.ﬂds VreX 4)
Jq ¢divide = [, ¢fdzx Voed

where n is the outward unit normal to I'y. Now we discretize equation (4) introducing a
regular sequence {T},} of decompositions of  into tetrahedrons T (see [4]), assuming for
simplicity that Q is a polyhedron. We introduce the Raviart-Thomas-Nédéléc [5] set of
polynomial vectors on T' € T, with Q@ = UT C R3:

RTN(T) = span {(1,0,0),(0,1,0),(0,0,1), (=, y,2)}.

Next, we construct our finite element spaces as follows:

Th = {1, € (L*Q))® : 1,|lr € RTN(T)VT € T1,},
O = {¢n € L*(Q) : ¢n € P(T)VT € T} .

Notice that no continuity requirement on the normal component of ;, € Lj at the interele-
ment boundaries is made, so that ¥ ¢ X. Actually, we relax this continuity via Lagrange
multipliers, by introducing the ‘Lagrange multiplier space’ Ay , in the following way:

Any = {pn € L*(En) : pal € Po(I), VI € Ey, /(uh — x)do = 0 Vi C To},
!

where [ is a face of the tetrahedron and E}j is the set of faces of T,. The continuity of
the normal components of the current at the interelements is then forced by the Lagrange
multipliers. In this way, the discretization of (4) gives us the new problem:

Find J, € Zp, up € ®p, Ap € Ay, such that:

Joe¥ Iy -Thde + Er [pupdivryde — Bp [ Az, - nds = 0 VI, € Xy
St fpondivd, de = [, fonde Vén € Bn
X7 fc’)T pn Jp - nds =0 Vun € Anpo.

(3)

In the computation ¥ is assumed piecewise linear in each tetrahedron so that the integral
of e¥ can be computed exactly. Then we introduce the piecewise constant function 1 defined
in each T € T}, as:

. e¥dz

Hence, the system (5) can be written, with obvious notation, as the linear system:

eV A] + Bu— CA=
B*J =

G L =

(7)

=y e

In (7), J can be easily eliminated by static condensation, A being a block-diagonal matrix
(each block being a 4 x 4 matrix):

J=e¥A? (CA — Bu)
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leading to the new system:
{ —e ¥ B* A1 Bu + e~¥ B*A~! Cl=F
—e¥C"A'Bu+e¥C* AT CA= 0.

Also u can be eliminated by static condensation, B* A~! B being block-diagonal (actually
diagonal in our case):

u=eY(B*A1B)Ye"?B*A"1CA - F). (8)
The final system is then: _
e”¥ M)A = DF (9)
where: D = —(C* A~ B)(B* A~ B)~!
and: M = C*A~1C - C*A"'B(B*A"'B)"'B*4A"1C.
It can be checked that the matrix M is an M-matrix, if the triangles of the tetrahedrons
have each angle < 7/2. It can be proved [6] that A is an approximation of u. Then,

following [1-2], to go back to the original variable p, we use the following discrete version of
transformation (2):

Anli = elipn,

with:
fie¥ do

i =

Vil € Ej. (10)

That is, each column of the matrix M has now to be multiplied by e¥ on the corresponding
face. Although the resulting matrix is not anymore symmetric, it is still an M-matrix.

3. ASYMPTOTIC BEHAVIOUR OF THE FINAL MATRIX

We will now study the asymptotic behaviour of the numerical scheme when the potential
becomes very large. For that, let us write:

wo

&

(11)

where ¢° is a piecewise linear function with smooth gradient, ¢ a small real parameter and
we want to analyze the behaviour of the scheme for € going to zero. It is easy to check that
the contributions m?;- of an element T to the final matrix have the form:

m?; =eVir L,-T;- e¥ li; (12)

where Lg; is a matrix depending on the basis functions.

The function ¥° on a tetrahedron could have its maximum on a vertex, on an edge or on
a face. It could also be constant. s
We shall first analyze the asymptotic behaviour of e=¥ |p in the different cases:

a) Ymax = Y(V), that is, the maximum of 9 is reached on a vertex:
e¥ |p = e3e¥mer ,

b) Ymax = ¥(V1) = ¥(V,), that is, ¥ has its maximum on the V;V; edge:
e |7 o g2e¥me=

¢) Ymax = ¥(face) that is ¥ has its maximum on a face:
v |7 o g e¥max

d) ¥max = const(T), ¢ is constant on each tetrahedron:

¥ |p = eVmes
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On each face l;, 9 is a linear function in two variables, and we also have to examine 3 cases:

a’) 9 has its maximum at one vertex:

e¢ |Ij.: Ezetpm;xllj

b’) % has its maximum on an edge:

e"l’ llj ~ Eewm&xh]'
¢’) ¥ = const i
ed’ |l' o e¢m;x|lj
3

-1,,0

Consequently, since: Ymax = €™ 9%y, and: Ymaxl; = €793 |i,, we have:

_ Cls, L1y i =
mg;' = C(e, LiTj)ew“‘" li; = ¥mex) o { ( ”) wmax'h, You:
0 otherwise
Hence, we are interested to study C(e, L,-Tj when Ymax|i; = Ymax. It is then immediate to

see that case a) on T will imply case a’) on I;. Similarly, b) implies that b’) holds, and c)
implies ¢’). Consequently, if one of these cases holds, we have:

Wiy = .
otherwise

L | .
T g1 é[]—'zr if 'wmaxll_,- = Ymax
0
(where: v; = |li|n;).
Therefore, as in the 2-D case, the asymptotic behaviour of the scheme fits the structure

of the continuous problem (1):
0

—Np -+ %p = [

As a final remark, let us point out that if case d) holds, then Vi = 0 in T, and the scheme
fits again the structure of problem (1), which reduces in this case to: —Vp = f.

REFERENCES

1. F. Brezzi, L.D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-
diffusion models, STAM J. Numer. Anal. 26 (6), 1342-1355 (1989).

2. F. Brezzi, L.D. Marini, and P. Pietra, Numerical simulation of semiconductor devices, Comp. Meths.
Appl. Mech. and Engr. 75, 493-514 (1989).

. P.A. Markowich, The Stationary Semiconductor Device Equations, Springer, (1986).

. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, (1978).

. J.C. Nédéléc, Mixed finite elements in R, Numer. Math. 35 (3), 315-341 (1980).

. D.N. Arnold and F. Brezzi, Mixed and non-conforming finite element methods: Implementation, post-
processing and error estimates, M2AN 19 (1), 7-32 (1985).

[« N I NI

Dipartimento di Matematica, Universita’ di Catania, Catania, Italy



