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In the past few decades, the incidence of thyroid cancer (TC), namely of its papillary 
hystotype (PTC), has shown a steady increase worldwide, which has been attributed at 
least in part to the increasing diagnosis of early stage tumors. However, some evidence 
suggests that environmental and lifestyle factors can also play a role. Among the potential 
risk factors involved in the changing epidemiology of TC, particular attention has been 
drawn to insulin-resistance and related metabolic disorders, such as obesity, type 2 dia-
betes, and metabolic syndrome, which have been also rapidly increasing worldwide due 
to widespread dietary and lifestyle changes. In accordance with this possibility, various 
epidemiological studies have indeed gathered substantial evidence that insulin resis-
tance-related metabolic disorders might be associated with an increased TC risk either 
through hyperinsulinemia or by affecting other TC risk factors including iodine deficiency, 
elevated thyroid stimulating hormone, estrogen-dependent signaling, chronic autoim-
mune thyroiditis, and others. This review summarizes the current literature evaluating the 
relationship between metabolic disorders characterized by insulin resistance and the risk 
for TC as well as the possible underlying mechanisms. The potential implications of such 
association in TC prevention and therapy are discussed.

Keywords: insulin resistance, insulin, thyroid cancer, obesity, type 2 diabetes, insulin growth factor, metformin, 
insulin sensitizers

iNTRODUCTiON

Thyroid cancer (TC) is a relatively rare cancer but represents one of the most common malignan-
cies originating from the endocrine organs (1). It is more frequent in women than in menand is 
now the third most common cancer in women under the age of 45 in highly developed countries 
(2). Among various histotypes, differentiated thyroid carcinomas (DTCs) are the most frequent, 

Abbreviations: AIT, autoimmune thyroiditis; cAMP, cyclic adenosine monophosphate; AMPK, 5′ adenosine monophosphate-
activated protein kinase; ATC, anaplastic thyroid cancer; ATP, adenosine triphosphate; BMI, body mass index; B-Raf, serine/
threonine-protein kinase B-Raf; CBP, CREB-binding protein; CRCT2, CREB regulated transcription coactivator 2; CREB, 
cAMP response element-binding protein; DTC, differentiated thyroid cancer; E2, 17-beta estradiol; EDCs, endocrine 
disrupting chemicals; EGF, epidermal growth factor; ERKs, extracellular signal-regulated kinases; FGF-2, fibroblast growth 
factor-2; GPER, G protein-coupled estrogen receptor; HR, hazard risk; HT, Hashimoto’s thyroiditis; IGF-1, insulin growth 
factor 1; IGF-2, insulin growth factor 2; IL-8, interleukin-8; IR, insulin receptor; JAK/STAT, janus kinase/signal transducers of 
activated transcription;MAPK, mitogen-activated protein kinase; OR, odds ratio; p90rsk, MAPK-activated protein kinase-1; 
OCT, organic cation transporter; PCOS, polycystic ovary syndrome; PIO, pioglitazone; PI3K, phosphoinositide-3-kinase; 
PKC, protein kinase C; PTC, papillary thyroid cancer; PKA, protein kinase A; PKB/Akt, protein kinase B/Akt; c-Raf, proto-
oncogene; Rap1, Ras-related protein 1; Ras, rat sarcoma virus protein; RGZ, rosiglitazone; ROS, reactive oxygen species; RR, 
relative risk; RTKs, tyrosine kinase receptors; TC, thyroid cancer; T2DM, type 2 diabetes mellitus; Tg, thyroglobulin; TPO, 
thyroperoxidase; mTOR, mammalian target of rapamycin; TSH, thyroid stimulating hormone; TZDs, tiazolidinediones; VEGF, 
vascular endothelial growth factor; Wnt, proto-oncogene protein Wnt.
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TAble 1 | Studies regarding a possible association between TC risk and insulin-
resistance and related disorders.

Conditions Reference

Insulin-resistance Rezzónico et al. (38)
Bae et al. (39)

Obesity Ron et al. (40)
Dal Maso et al. (27)
Samanic et al. (28)
Oh et al. (41)
Engeland et al. (29)
Renehan et al. (32)
Brindel et al. (33)
Clero et al. (35)
Leitzmann et al. (36)
Kitahara et al. (21)
Almquist et al. (42)
Rinaldi et al. (43)
Kim et al. (44)
Oberman et al. (45)

T2DM Wideroff et al. (46)
Meinhold et al. (37)
Chodick et al. (47)
Aschebrook-Kilfoy et al. (48)
Duran et al. (49)
Lai et al. (50)
Tseng (51)
Paulus et al. (52)
Yeo et al. (53)
Oberman et al. (45)
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accounting for approximately 85% of all TCs (3). Increasing 
incidence of DTCs has been observed worldwide (4–6) in both 
men and women, although the cancer-specific mortality remains 
stable (7, 8). TC incidence has increased about twofold in some 
European countries (7, 9) and up to threefold in North America 
in the past decades (7, 10). Some studies put emphasis on the 
supposed “overdiagnosis” of TC consequent to the widespread 
use of ultrasonography and fine needle biopsy, and point out to 
the increasing diagnosis of papillary thyroid microcarcinomas 
(tumors with a diameter of 1 cm or less) (4, 11, 12). However, 
other studies (5, 6) have reported an increased incidence of TC 
of all sizes, suggesting that “overdiagnosis” cannot explain all the 
findings and that TC incidence is truly increasing. A promising 
hypothesis is that some rising risk factors might favor the molecu-
lar alterations typical of papillary TCs (PTCs), thus increasing its 
incidence.

The known non-modifiable risk factors for TC are age, sex, 
ethnicity, and genetic predisposition for TC (13–15). However, 
epidemiological studies suggest that TC incidence is largely 
dependent on modifiable risk factors, such as environmental 
carcinogens, diet habits, and lifestyle (16). Environmental pol-
lutants, such as heavy metals, compounds used by industries, 
non-anthropogenic carcinogens of volcanic origin (17–19), as 
well as dietary factors (20), and obesity (21) are some of the 
putative risk factors suspected to play a role in the changing 
epidemiology of TC. Interestingly, this increasing incidence 
involves virtually only the papillary histotype, suggesting that 
some carcinogens may favor specific molecular abnormalities 
related to this histotype (5, 22).

iNSUliN ReSiSTANCe, 
HYPeRiNSUliNeMiA, AND 
ePiDeMiOlOGiC AND CliNiCAl 
ASPeCTS OF TC: A POSSible liNK?

evidence of a Positive Association 
between TC and insulin Resistance
Obesity is the most common metabolic disorder associated 
with insulin resistance and compensative hyperinsulinemia. 
Obesity has more than doubled its prevalence in the past 
30 years reaching a prevalence of 40% in the United States and 
30% in Europe. The association of obesity with several cancer 
histotypes is now well established and has become an area of 
raising concern in oncology (23). In particular, cancers associ-
ated with obesity also pose a therapeutical challenge because 
they tend to be resistant to conventional as well as to target 
treatments, to metastasize earlier and to have a worse prognosis 
(24–26). Approximately 14% of cancer-related deaths in men 
and 20% in women are partially attributed to obesity.

During the past two decades, several epidemiological stud-
ies, although not specifically designed for TC, have consistently 
suggested that a positive association exists between obesity and 
TC risk (Table 1). A pooled analysis of 12 case–control stud-
ies provided early evidence that body mass index (BMI) and 
weight at diagnosis were directly related to a higher risk for TC 
in women [odds ratio (OR) = 1.2 for the highest tertile], but not 

in men. This association was observed for both PTCs and folli-
cular TCs and in all age groups, although there was a significant 
heterogeneity between the studies analyzed (27). From 2001 to 
2010 several single cohort, case–control, prospective cohort, 
and cross-sectional studies have confirmed the association 
between overweigh/obesity and TC risk, although the results 
are rather inconsistent in men, likely for the smaller number 
of cancer cases in men and the suboptimal adjustment for 
potential concomitant risk factors (28–36). However, a meta-
analysis based on prospective observational studies, found 
a positive role of obesity as risk factor for TC in both sexes 
[relative risk (RR) of 1.33 and 1.14, respectively, for women and 
men, for each 5-unit increase in BMI] (32). In a prospective 
study based on self-reported medical history, anthropometric 
and behavioral factors in 90,713 US radiologic technologists 
followed for 23 years, an elevated risk for TC was observed for 
women with a RR of 1.74 (95% CI: 1.03–2.94, P-trend: 0.04) 
for BMI ≥ 35.0 vs. 18.5–24.9 kg/m2. A similar association was 
found for men (37).

In 2011, a pooled analysis of five prospective studies including 
a large number of incident TC in men, and taking into account 
several potential risk factors, found that the risk of TC was greater 
with increased BMI [per 5 kg/m2: hazard risk (HR) in women 1.16 
and 1.21 in men]. When considering women and men together, 
the HR was 1.2 and 1.53, respectively, in overweight and obese 
subjects. No differences were found among the TC histotypes. 
This pooled analysis provided the first strong support to the 
concept that obesity is an independent risk factor for TC in both 
women and men (21). However, these studies have limitations, 
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FiGURe 1 | Schematic representation of the possible links between insulin 
resistance and thyroid cancer (TC). Insulin resistance consequent to 
metabolic disorders, as well as exposure to endocrine disrupting chemicals 
(EDCs), genetic factors, and other conditions may affect the risk of TC by 
inducing or increasing various risk factors.
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as they lack data on fat distribution, amount of lean versus fat 
mass, fat mass and/or insulin resistance-related biomarkers, and 
thyroid function parameters. These technical issues and the low 
HR values often reported impose caution in interpreting the 
biological significance of these results.

Three studies conducted in 2012 attempted to provide addi-
tional clues regarding TC association with insulin-resistance 
parameters (43, 54, 55). However, the results were conflicting. 
Two of these studies (43, 55) found an increased risk of TC in 
subjects with high waist circumference (>102 cm in men and 
>88  cm in women), a parameter that correlates with visceral 
adiposity and is a solid readout of insulin resistance. The HR 
was 1.79 in men (56) and ranged from 1.42 to 1.54 in women 
(43), suggesting that central adiposity may impact on TC risk. 
In contrast, the third study (54), conducted in a cohort of 
postmenopausal women, failed to find an association between 
TC risk and various adiposity parameters such as waist cir-
cumference, waist-hip-ratio, hip circumference, and BMI (54).  
In a meta-analysis of seven cohort studies, the combined RR 
of TC was 1.18 (95% CI: 1.11–1.25) for overweight and obesity 
combined (57).

Another recent pooled analysis (56) included 22 prospective 
studies investigating the association between anthropometric 
factors, such as waist circumference, baseline BMI, and BMI 
gain and the risk of TC. Data showed that all anthropometric 
factors analyzed were associated with an increased risk of all 
histotypes of TC originating from follicular cells: HR for height 
(per 5 cm) = 1.07; BMI (per 5 kg/m2) = 1.06; waist circumfer-
ence (per 5 cm) = 1.03; young-adult BMI (per 5 kg/m2) = 1.13; 
and adulthood BMI gain (per 5  kg/m2)  =  1.07. Associations 
for baseline BMI and waist circumference were mitigated after 
mutual adjustment (HR for waist = 1.02 and for BMI = 1.01). 
Furthermore, baseline BMI and BMI gain were strongly associ-
ated with anaplastic TC (ATC) and TC mortality.

A strong association between BMI and TC clinical–patho-
logical features has been also confirmed by other studies, which 
found that, in patients affected by papillary TCs (PTCs), over-
weight and obesity were positively associated with recurrent or 
residual post-operative locoregional events (58), extrathyroidal 
invasion and advanced TNM (TNM Classification of Malignant 
Tumors) stage (44, 59). Taken together, these results suggest 
that excess adiposity is associated with increased incidence 
and mortality for TC of follicular origin. However, at least one 
study has reported an inverse relation of BMI with stage, tumor 
invasion and recurrence (60), suggesting that more studies are 
needed to better evaluate the link between TC prognosis and 
adiposity.

Dysregulation of Adipocytokines  
As a Possible Contributor to Cancer  
Risk in Obese Patients
Obesity is strictly associated not only with insulin resistance 
and hyperinsulinemia but also with a profound dysregulation 
of adipocytokines secretion (Figure  1). Indeed, adipose tis-
sue has strongly been established as an endocrine organ for its 
ability to secrete several polypeptides, known as adipokines, 

which contribute to the pathogenesis of insulin-resistance and 
related metabolic alterations in obese patients. Two most known 
adipokines are leptin and adiponectin. Both of them have been 
studied as potential contributors to the pathophysiology of can-
cer associated with insulin resistance, beyond their well-known 
role in energy balance (61). Leptin is generally up-regulated with 
increasing fat mass and acts as an antiappetite regulator, mainly 
through specific membrane receptors, the obesity receptors  
(Ob-Rs). Aberrant expression of leptin and/or its receptor have 
been found in a variety of malignancies including TC (62, 63).  
In vitro studies have shown that leptin modulates growth, 
proliferation and invasion of TC cell lines via activation of vari-
ous prosurvival signaling pathways such as Janus kinase/signal 
transducers of activated transcription (JAK/STAT), phosphoi-
nositide-3-kinase (PI3K)/protein kinase B/Akt (PKB/Akt), and/
or mitogen-activated protein kinase (MAPK) (62, 63). However, 
the results have been sometimes contradictory, likely because of 
dependence on the cell type and cell context.

Adiponectin is the most abundant adipokine negatively cor-
related with body fat, BMI, insulin-resistance, and inflammation 
states (61). Adiponectin binds two receptors isoforms (AdipoR1, 
AdipoR2) and acts as an insulin-sensitizer, anti-inflammatory 
and anti-tumor agent, the latter by inhibiting cell proliferation 
and angiogenesis and increasing apoptosis via the involvement 
of mammalian target of rapamycin (mTOR)/5′ adenosine 
monophosphate-activated protein kinase (AMPK), MAPK, JAK/
STAT, and PI3K/PKB/Akt pathways (61, 64). So far, few studies 
have investigated the association between adiponectin and TC. 
One of these studies has shown that TC specimens and cell lines 
express both AdipoR1 and AdipoR2. However, in the TC cell lines 
evaluated, recombinant adiponectin did not exert significant 
biological effects (65).

For both adiponectin and leptin only a limited number of 
in  vivo studies have been performed. Serum leptin levels in 
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papillary thyroid tumor patients were found to be significantly 
higher than in control subjects, and Ob-Rs expression in TC 
tissues was significantly associated with more aggressive tumor 
phenotype (66, 67). However, these studies did not find sig-
nificant differences in BMI between cancer patients and control 
subjects (66–72).

Adiponectin levels have been found to be lower in TC patients 
than in controls (17.00  ±  6.32 vs. 19.26  ±  6.28  µg/ml) (65). 
Besides, individuals in the highest tertile of adiponectin levels 
showed a lower risk for TC (OR = 0.29; 95% CI: 0.14−0.55) (65). 
Conversely, in a prospective cohort study of patients with end-
stage renal disease, low adiponectin levels were an independent 
predictor of developing cancer, with the TC being the second 
more common malignancy (71). Yet, in a single-cohort study of 
patients affected by PTC, tumor expression of adiponectin recep-
tors (both AdipoR1 and AdipoR2) was positively correlated with 
the tumor aggressiveness.

In summary, several studies suggest a significant association 
between obesity, visceral adiposity and altered adipocytokine 
profile with TC risk and aggressiveness. However, at least some 
of these studies have significant limitations with regard to study 
design, including lack of adjustment for potential confounders, 
and/or limited statistic power. Therefore, more studies are needed 
to confirm these conclusions. As a practical implication of these 
data, one study found that in obese patients with established 
risk factors [family history, radiation exposure, Hashimoto’s 
thyroiditis (HT), elevated thyroid stimulating hormone (TSH)], 
ultrasound screening for TC is cost-effective (73).

THe iNTeRPlAY OF iNSUliN 
ReSiSTANCe wiTH OTHeR PUTATive 
RiSK FACTORS FOR TC

insulin Resistance and TSH
In follicular well-differentiated thyroid cells, signaling mediated 
by pituitary TSH represents the major pathway, which primes 
thyroid cells to undergo cell cycle progression, DNA synthesis, 
and cell proliferation (74). The key role of TSH signaling in thy-
roid carcinogenesis is supported by large epidemiological studies 
showing a strong association between serum TSH levels and TC 
development and progression (75–77) (Figure 1). However, even 
in differentiated hystotypes, suppression of TSH is not enough 
to avoid or block local invasion and distant metastases. This 
observation suggests that the mitogenic effect of TSH on human 
thyrocytes is modulated by other factors including insulin, insu-
lin growth factor-1 (IGF-1), insulin growth factor-2 (IGF-2), and 
epidermal growth factor (EGF) (74, 78–83).

Classically, TSH induced growth in thyrocytes occurs mainly 
through the TSHR-dependent increase in cyclic adenosine 
monophosphate (cAMP), which in turn activates protein kinase A 
(PKA)-dependent and -independent pathways including: cAMP/
PKA/cAMP response element-binding protein (CREB), cAMP/
PKA/exchange factor directly activated by cAMP 1/Ras-related 
protein 1(Rap1)/extracellular signal-regulated kinases (ERKs)/
ETS transcription factor, protein kinase C (PKC)/nuclear factor 
kappa-light-chain-enhancer of activated B  cells, nuclear factor 

κB, PKC/proto-oncogene c-Raf (c-Raf)/ERK/MAPK-activated 
protein kinase-1 (p90rsk), and rat sarcoma virus protein (Ras)/ 
c-Raf/ERK cascades (84–87).

Moreover, full activation of mitogenesis results from the cross-
talk between TSH downstream pathways with other signaling 
networks, such as PI3K/Akt/mTOR, serine/threonine-protein 
kinase B-Raf, (B-Raf)/MAPK, proto-oncogene protein Wnt-1, 
(Wnt)/β-catenin, activated by several tyrosine kinase recep-
tors (RTKs) (85, 88). Studies carried out in normal and tumor 
thyrocytes have especially highlighted the importance of the 
functional crosstalk between TSH-cAMP and insulin/IGF axis, 
which occurs at multiple levels (74, 89).

Notably, the IGF axis plays an important role in regulating 
normal growth and development in the thyroid (90, 91), partially 
by modulating the expression of thyroid transcription factor 2, 
which mediates the transcription of thyroid specific genes such 
as thyroglobulin (Tg) and thyroperoxidase (TPO) (74, 92–95). 
As mentioned above, the crosstalk between TSH and insulin/
IGF axis appears also to play a role in thyroid tumorigenesis. 
Indeed, in TC cells and tissue specimens, both IGF-1 receptor 
(IGF-1R) and insulin receptor (IR) are often overexpressed, 
representing an early event in thyroid carcinogenesis (96, 97).  
IR expression is also stimulated by TSH, via cAMP (98). IR, 
exists in two isoforms (IR-A and IR-B), and in cancer is pre-
dominantly expressed as the “promitogenic” isoform A (IR-A), 
which binds with high affinity not only insulin but also IGF-2 
(97, 99–101). In TC, the activation of the autocrine IGF-2/
IR-A loop was found to correlate with cellular dedifferentiation 
and tumor progression and aggressiveness. Indeed, the relative 
abundance of IR-A is approximately 40% in normal thyrocytes 
and increases to over 70% in TC cells with undifferentiated 
or stem-like phenotype (90, 97) that also produce IGF-2 (97). 
Interestingly, IGF-1R expression is also high in differentiated 
cancers but decreases somehow with cancer dedifferentiation 
(102–105). In agreement with these data, phosphorylated 
IGF-1Rs are highly expressed in the majority of TCs but tend 
to be low in aggressive tumors (106). Interestingly, IGF-1R 
expression in PTC appears to be higher in patients with type 2 
diabetes mellitus (T2DM) than in non-diabetic patients (107). 
Taken together, these data suggest that both IGF-1R and IR-A 
play a role in TC. However, the IGF-2/IR-A loop appears to be 
more important than the IGF-1/IGF-1R loop in thyroid cells 
with dedifferentiated and stem-like phenotype (108) involved 
in tumor progression and metastasis (90).

In insulin resistant subjects, the crosstalk between TSH and 
IGFs axis appears to be enhanced (Figure  1). In fact, obese 
subjects often show TSH levels at the upper limit of the normal 
range or slightly increased (109) that seem in relation with 
the degree of obesity and to the levels of cytokines and other 
inflammatory markers produced by adipose tissue, including 
leptin (109–117). Although the actual cause for the hyperthy-
rotropinemia in obese individuals is still unknown, several 
mechanisms have been proposed, including increased produc-
tion of pro-TRH by leptin (118), impaired feedback due to 
decreased T3 receptors in the hypothalamus (119), changes in 
peripheral deiodination process of thyroid hormones (119–121),  
the adaptive response to increased energy expenditure, and 
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TAble 2 | Studies showing a possible interplay between insulin resistance related disorders and some TC risk factors.

Disorders/ 
TC risk factors

Obesity T2DM Metabolic syndrome PCOS

Increased TSH 
levels

Iacobellis et al. (111), Radetti  
et al. (112) Reinehr and Andler 
(114), Reinehr et al. (115) 
Michalaki et al. (116), Sari et al. 
(113), Javanthi et al. (117)

Javanthi et al. (117), Javanthi et al. (128), 
Wolide et al. (129), Taneichi et al. (130)

Roos et al. (132), Lai 
et al. (131), Siemimska 
et al. (133), Mehran  
et al. (134)

Mueller et al. (123), Benetti-Pinto et al. 
(124), Benetti-Pinto et al. (135),  
Trummer et al. (125), Yin et al. (126),  
Sinha et al. (127)

Iodine deficiency Lecube et al. (136), Soriguer  
et al. (137), Eray et al. (138)

Al-Attas et al. (139)

EDCs Rundle et al. (140), Fierens  
et al. (141), Lim et al. (142),  
Lee et al. (143), Wolf et al. (144)

Fierens et al. (141), Lim et al. (142), 
Henriksen et al. (145), Lee et al. (143),  
Lee et al. (146), Wolf et al. (144), Kramer 
et al. (147), Weinmayr et al. (148),  
Jerrett et al. (149), Coogan et al. (150), 
Lang et al. (151)

Lim et al. (142),  
Lee et al. (152),  
Lee et al. (153),  
Wolf et al. (144)

Kandaraki et al. (154), Akin et al. (155), 
Tarantino et al. (156), Rajkhowa et al. 
(157), Takeuchi and Tsutsumi (158), 
Takeuchi et al. (159), Miao et al. (160)

AIT Michalaki et al. (116),  
Rotondi et al. (161)

Akbar et al. (162), Yasmin et al. (163),  
Toulis et al. (164), Sarfo-Kantanka  
et al. (165)

Al Saab and Haddad (166), Janseen 
et al. (167), Menon and Ramachandran 
(168), Garelli et al. (169), Kachuei et al. 
(170), Sinha et al. (127), Novais Jde 
et al. (171), Arduc et al. (172), Ganie 
et al. (173)

Thyroid 
angiogenesis

Wang et al. (174)
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chronic low-grade inflammation associated with insulin resist-
ance (122).

A relationship between TSH and insulin-resistance has been 
also reported in women with polycystic ovary syndrome (PCOS), 
where mild TSH elevation may be positively related to their 
metabolic phenotype (123–127). Yet, TSH was also positively 
correlated with HOMA-IR and BMI in type 2 diabetic patients 
and in patients with metabolic syndrome (128–134). Although 
these results have been sometimes controversial, overall they 
support the positive correlation between insulin resistance and 
increased TSH serum levels (109) (Table 2).

Hyperinsulinemia itself, a major characteristic of insulin-
resistant patients, is considered a determinant of cancer ini-
tiation/progression in diabetic/obese patients (175, 176). In the 
animal model, several studies carried out in hyperinsulinemic 
male mice overexpressing a dominant-negative, kinase-dead 
IGF-1R in muscle (MKR mice), have supported the impor-
tant role of chronic hyperinsulinemia in cancer progression  
(177, 178). Notably, hyperinsulinemia may increase the growth 
of orthotopic mammary tumors through direct stimulation 
of the IR and without the involvement of the IGF-1R (179). 
However, no such studies have specifically addressed the role of 
hyperinsulinemia in TC.

Hyperinsulinemia may increase the bioavailability of IGF-1 
and IGF-2 by inhibiting the synthesis of IGF-binding protein 
1 and 2 and by intensifying IGF-1 hepatic production. The 
increased bioavailability of IGFs may contribute to tumor pro-
gression through the stimulation of IGF-1R, IR/IGF-1R hybrids, 
and IR-A itself (101). Yet, hyperinsulinemia, by directly activating 
IR-A, may favors its “non metabolic” functions and the induc-
tion of the pro-mitogenic MAPK/mTOR branch. Non-classical 
molecular partners, such as discoidin domain receptor 1 and  

G protein-coupled estrogen receptor, can be further recruited by 
the IGF system activated receptors, thereby favoring cancer cell 
proliferation and migration (180–183).

Taken together, these studies suggest that, in insulin-resistant 
patients, the concomitance of increased TSH levels, deregulation 
of the IGF axis, and hyperinsulinemia, may represent significant 
risk factors for TC.

insulin Resistance and Thyroid 
Angiogenesis
Recently, a study has suggested that insulin-resistance may affect 
the growth and progression of thyroid nodules by increasing 
angiogenesis and intranodular vascularization (Figure 1) (174). 
Indeed, it was found that insulin-resistance and high HbA1c 
are positively associated with a predominant intranodular flow, 
and with velocity, pressure and density of intranodular blood 
vessels, especially in nodules of large size (174) (Table  2). The 
molecular mechanisms responsible for these findings warrant 
further investigation. However, it is possible to speculate that 
insulin may stimulate vascular endothelial growth factor (VEGF) 
expression and promote proliferation of vascular endothelial 
cells in thyroid nodules and tumors, as shown in other contexts 
(184). In line with these findings, in breast cancer patients, both 
hyperinsulinemia and hyperglycemia may stimulate the secretion 
of pro-inflammatory factors, such as tumor necrosis factor-α, 
tumor growth factor-α, tumor growth factor-β, interleukin-8, 
fibroblast growth factor-2, and VEGF-α, thus contributing to 
tumor neoangiogenesis (185).

insulin Resistance and iodine Deficiency
Iodine is essential for the synthesis and regulation of thyroid 
hormones. The relationship between iodine intake and TC 
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is complex, as both iodine deficiency and iodine excess have 
been related to TC development (186, 187). Long-term iodine 
deficiency has especially been associated with follicular and ana-
plastic histotypes but also with the papillary histotype (188–190). 
In animal models, iodine deficiency acts as a weak initiator but 
a strong promoter of TC, mainly of the follicular type (187). The 
mechanisms linking the association between iodine deficiency 
and TC are multiple. Severe iodine deficiency may cause increase 
of TSH levels (191). However, iodine deficiency could per se favor 
angiogenesis in TC tissues by increasing VEGF mRNA expres-
sion (192) through the activation of the transcription factor 
hypoxia inducible factor 1a (192). In TC, iodine deficiency may 
also activate additional signals such as the mTOR/p70S6K path-
way (193). Low iodine levels may also promote TC development 
favoring H2O2-mediated radical reactive oxygen species (ROS) 
generation, which could result in DNA damage and somatic 
mutations (191).

Iodine deficiency is also linked to insulin resistance. Several 
lines of evidences have shown that urinary iodine, which is 
roughly equal to iodine intake, is markedly decreased in T2DM 
and obese patients as compared to control subjects, and is 
negatively correlated with glucose, insulin concentrations and 
HOMA-IR index (136–139, 194, 195) (Table 2). The physiologi-
cal pathways connecting insulin resistance with iodine status 
and the molecular mechanisms by which obese individuals 
show a reduction in urinary iodine levels are still unclear. It has 
been proposed that inflammatory cytokines secreted by adipose 
tissue of insulin resistant patients as well as hyperinsulinemia 
itself may negatively modulate the expression of sodium/iodine 
symporter (NIS) on the apical surface of enterocytes, thus 
inducing a decrease in iodine absorption (136). Taken together, 
these findings suggest a functional association between iodine 
deficiency and insulin resistance (Figure  1). However, further 
studies are needed to better clarify the mechanisms underlying 
this relationship.

insulin Resistance and endocrine 
Disrupting Chemicals (eDCs)
Various environmental compounds either natural or synthetic, 
act as EDCs. These substances may affect hormone signaling 
through different mechanisms. In the thyroid, they may act at 
different levels: they may interfere with the hypothalamic– 
pituitary–thyroid axis, induce direct thyroid cell damage, alter 
peripheral metabolism of thyroid hormones, and/or affect thyro-
cytes proliferation, increasing the susceptibility to develop DTCs 
(196). Recently, it has been found that in the volcanic area of 
Sicily, DTC incidence is abnormally increased possibly through 
chronic exposure to EDCs of volcanic origin (197), supporting 
data reported in other volcanic areas (198).

Beyond their intrinsic carcinogenic potential, some EDCs 
at the concentration found in human plasma, may lead to 
disturbances in glucose and fat metabolism. Indeed, they alter 
pancreatic β-cell function in cellular and animal models (199) 
and inappropriately regulate intracellular lipid homeostasis as 
well as proliferation and differentiation of adipocytes (200). 
These observations suggest that some environmental EDCs 

may represent a risk factor in the etiology of T2DM and other 
metabolic disorders, particularly in pre-diabetic individuals 
(199). In support of these evidences, several biological and 
epidemiological studies have correlated EDCs exposure with 
obesity, metabolic syndrome, T2DM and other diseases related 
to insulin-resistance, including cancer (Figure  1) (201, 202) 
(Table 2). Recently, it has been found that long-term exposure 
to air pollution is associated with an increase in HOMA index 
and insulin levels (144, 202). Some EDCs, including certain 
metals, by disrupting estrogen homeostasis or by mimicking 
estrogen actions, may lead to a pregnancy-like metabolic state 
characterized by insulin-resistance and hyperinsulinemia (199). 
Furthermore, estrogens potentiate insulin proliferative effects 
(203). Therefore, EDCs may contribute to DTC initiation and 
progression (204). The observation that DTC is 3-fold more 
frequent in women than in men (205) support the pivotal role 
of estrogens in DTC etiopathogenesis. Indeed, 17-β estradiol 
(E2) is a potent stimulator of benign and malignant thyrocytes, 
and both estrogen receptor α (ERα) and ERβ are expressed in 
DTCs (206). Moreover, as it has been seen in other cellular 
contexts (207–210), it is likely that also in thyrocytes EDCs may 
induce membrane-initiated rapid signals involving androgen 
receptors (ARs) and ERs, both of which crosstalk with the IGF 
axis (211).

In summary, long-term exposure to EDCs is linked to TC 
development and progression by multiple mechanisms that 
include direct toxic effects, estrogen-like effects, and worsening 
of insulin-resistance (Figure 1).

insulin Resistance and Chronic 
Autoimmune Thyroiditis (AiT)
The association between AIT and DTC has long been a topic of 
controversy. Data available so far are conflicting. The coexistence 
of these two diseases has been reported by numerous studies 
ranging from 0.5 to 30% (212). A meta-analysis conducted by 
Singh et  al. (213) demonstrated that the incidence rate of HT, 
the most common AIT, is 2.8 times higher in patients with PTC 
than in patients affected by benign thyroid diseases, and that 
patients with HT were affected by PTC twice as often as expected. 
However, many of the published studies are retrospective, had 
used variable histological methodologies and definitions and 
have been subjected to several selection biases. Furthermore, it 
should be underlined that population-based fine needle aspira-
tion biopsy studies have not confirmed this relationship between 
HT and DTC (214).

The presence of chronic inflammation in HT acting as an initi-
ating factor in carcinogenesis could represent a potential mecha-
nism responsible for the link between HT and PTC. Moreover, 
the increase in TSH levels or in TSH receptor stimulating anti-
bodies (TSAb), the imbalance in the amount of chemokines and 
cytokines favoring a switch from Th2 to Th1 immune response 
or the presence of insulin-resistance, may provide additional 
explanations for this association (215, 216).

A link between insulin-resistance and AIT has been reported 
by several studies (Table 2; Figure 1). For instance, it has been 
seen that the prevalence of AIT in insulin-resistant individuals 
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is higher compared to normal control subjects. For instance, in 
PCOS patients, anti-TPO antibodies are present in 19.6–26.9% 
when compared with 3.3–8.3% of control patients (127, 166–173), 
whereas the prevalence of AIT ranges from 10 to 43% in T2DM 
patients (162–165) and from 12.4% (in children) to 10–16%  
(in adults) in obese patients (116, 161). Recently, obesity has been 
proposed to be a risk factor for thyroid autoimmunity (217). Data 
showed a positive correlation between leptin and AIT (r = 0.26; 
P  <  0.001), independent of BMI and fat mass, suggesting the 
hypothesis that high leptin levels may enhance autoimmune thy-
roid reaction in a context susceptible to Th-1 immune response 
(217). Despite these intriguing results, some controversy does 
remain concerning whether and how insulin resistance prompts 
the development of AIT. So far, available studies have several 
limitations, such as restricted number of subjects, biases in the 
selection of patients and controls, differences in study design, 
and variability in the use of commercially available assays for 
anti-TPO antibodies.

insulin Resistance in the Context of T2DM
Type 2 diabetes mellitus is characterized not only by insulin 
resi stance but also by hyperglycemia with oxidative stress and 
advanced glycation end products on proteins and macromol-
ecules, as well as by dyslipidemia and chronic low-grade inflam-
mation (218). In some studies T2DM has been associated with 
increased risk for TC, although the association ratio values were 
low (75, 76, 219). Indeed, a recent pooled analysis, including five 
prospective studies from the USA, showed that the hazard ratio 
for TC was 1.19 (95% CI: 0.84–1.69) in women and 0.96 (95%  
CI: 0.65–1.42) in men (55) (Table 1).

Many studies have shown an association between glucose 
metabolism disorders and thyroid morphologic changes in 
terms of gland echogenicity, goiter and nodules prevalence, and 
TSH levels (220–223). In a prospective study, T2DM patients 
showed higher TSH levels than controls (224). T2DM patients 
had also larger thyroid volumes and an increased prevalence of 
nodules. Conversely, in a retrospective survey of 1,559 patients 
with a new diagnosis of TC (from the continuous National 
Examination Survey, NHANES) an increased prevalence of 
T2DM was found among patients who were ≤44 years old as 
compared to control patients (RR 2.32, CI: 1.37–3.66) (52).

Two longitudinal studies showed that a history of T2DM, 
ascertained by a self-administered questionnaire, is a risk fac-
tor for TC (37, 48). In the total cohort, the increase in TC risk 
was irrelevant, but it was significantly increased in women (HR. 
1.46, 95% CI: 1.01–2.10). Case–control and cohort studies con-
ducted in Unites States (37, 45, 48, 225), Canada (226), Europe  
(46, 227–230), and Asia (231, 232), confirmed an increased TC 
risk of approximately 20% in diabetic patients, independently of 
geographic region, study design, and quality analysis. Despite of a 
high heterogeneity among studies, the observation that the risk is 
increased among diabetic women, but not among men, has been 
always confirmed (37, 46, 233). However, the TC risk associated 
with DM is more evident in the geographic areas of the world 
with high rates of TC.

A recent study based on a large prospective cohort, the 
Women’s Health Initiative, reported data at variance with 

previous results. In this study, 147,934 cancer free women at 
baseline were followed up for a median time of 15.9 years. No 
significant association was found between occurrence of TC with 
diabetes or diabetes treatment (234). Possible explanations for 
these negative findings include a weak association between TC 
and diabetes in postmenopausal women, and the lack of informa-
tion for insulin resistance and hyperinsulinemia. TC risk is also 
increased in metabolic syndrome characterized by long-standing 
insulin resistance, confirming the fundamental role of elevated 
insulin and glucose levels in the pathogenesis of this association 
(235). Nevertheless, studies on TC risk in T2DM have some 
limitations because data regarding the metabolic control, the 
duration of DM, or the presence of chronic complications, have 
not always been evaluated. Moreover, confounding elements 
such as treatment, age of patients, comorbidities like obesity, 
have not always been appropriately taken into account in some 
studies. For these reasons, results are somehow controversial and 
should be interpreted with caution.

Several potential mechanisms can be taken into account to 
explain the association between T2DM and TC including the 
higher prevalence of abnormal serum TSH levels (236), the 
effects of elevated insulin and/or glucose levels in affecting cellu-
lar energy metabolism [by increasing the intracellular adenosine 
triphosphate (ATP)/adenosine monophosphate ratio and inac-
tivating AMPK] (237) and immune system (by increasing ROS 
production and especially nitric oxide) (237, 238) (Figure  1). 
Moreover, it has been suggested that chronic treatment with 
some antidiabetic drugs, may favor the association between 
T2DM and cancer (239).

Clearly, insulin therapy causes chronic peripheral hyper-
insulinemia, and several studies have attempted to clarify 
whether long-term treatment with insulin or insulin analogs 
may increase the risk of overall cancer mortality and incidence 
in patients with T2DM (240, 241). Although some studies have 
suggested that, unlike native insulin, the long-acting insulin 
analog glargine could be associated with a higher risk for cancer, 
especially breast cancer (241–246), re-analysis of these data, as 
well as further studies have found no differences in cancer risk 
for insulin glargine as compared with native insulin or other 
insulin analogs (240). Therefore, there is no clear recommenda-
tion regarding the use of insulin or insulin analog in relation to 
cancer risk.

The possible role of insulin secretagogues (sulfonylureas,  
glinides) has also been studied. Sulfonylureas (SUs) (glibencla-
mide, glipizide, and glimepiride) are widely used in diabetic 
patients. Binding to sulfonylurea receptor 1 on pancreatic beta 
cells, they stimulates insulin release from the intracellular vesi-
cles. Being potent stimulators of insulin secretion, in principle, 
sulfonylureas might increase cancer risk. However, epidemio-
logical studies have given controversial results sometimes show-
ing increased cancer risk (243, 247–249). Less potent insulin 
secretagogues, such as glinides do not appear to be associated 
with cancer risk (250–253). In any case, none of the above- 
mentioned studies has focused on TC.

Incretin-based therapies include glucagon-like peptide-1 
receptor (GLP-1R) agonists and dipeptidyl-peptidase-4 
inhibitors, both of which amplify the insulin response to 
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glucose besides having pleiotropic effects. Therapy with GLP-1R 
agonists has been recently linked to the C-cell hyperplasia and 
increased medullary, but not follicular, TC in rodents (245, 254). 
However, this effect has been observed after lifetime exposure 
to supratherapeutic doses (255). Moreover, as human thyroid 
tissues express very low levels of GLP-1R this risk seems to be 
irrelevant. Data from human observational studies and clinical 
trials have yielded inconclusive results, thus, continuous moni-
toring of this issue is still required. Patients with T2DM often 
follow combination therapies with multiple drugs, making these 
epidemiological studies very difficult. Moreover, many studies 
have not taken into account the length of treatment, thus intro-
ducing time-related bias.

Two main classes of antidiabetic drugs, thiazolidinediones 
(TZDs) and biguanides act by reducing insulin resistance (insulin 
sensitizers). Their possible role in TC is discussed below.

Other antidiabetic drugs, such as alpha-glucosidase inhibi-
tors or SGLT-2 inhibitors, do not directly affect insulin levels or 
insulin resistance. In any case, no data regarding the use of these 
drugs and the risk of TC are available.

POSSible iMPliCATiONS FOR TC 
PReveNTiON AND THeRAPY

Insulin resistance is multifactorial, and genetic factors account for 
a significant proportion of insulin resistant subjects (256–262). 
However, physical inactivity and visceral obesity are the most 
frequent preventable causes of insulin resistance (263–265).

While the underlying biological mechanisms remain to be 
investigated, insulin resistance seems to be worsened by iodine 
deficiency in obese and diabetic patients (136–139, 194, 195). 
Moreover, evidences showing that TSH and estrogens potenti-
ate the growth effects of insulin, lend support to the hypothesis 
that insulin resistance may significantly affect the risk of TC, 
especially by interacting with subclinical hypothyroidism, iodine 
deficiency, and endocrine disruptors with either estrogen-like 
or antithyroid activity (Figure 1). At least two of these factors, 
insulin resistance and environmental contamination with endo-
crine disruptors have been steadily rising in the past decades  
(204, 266) and it is reasonable to hypothesize that the interplay 
among these factors may contribute to the worldwide increase of 
PTCs incidence (16, 17, 20, 21).

Prevention and therapy of visceral obesity and of related 
disorders, such as T2DM and metabolic syndrome, are the main-
stay to limit the spread of insulin resistance in the population.  
To this aim, and to reduce associated disorders including cancer, 
several international organizations and scientific societies have 
issued guidelines that recommend a healthy lifestyle consisting 
of constant physical activity and a correct diet (267–270). It is 
worth noting that these lifestyle changes are difficult to attain 
and maintain for most people and that only a small proportion of 
obese subjects is able to achieve significant weight loss by these 
measures. However, relatively small weight losses may bring 
about significant amelioration of insulin resistance (271, 272). 
Whether reduction of insulin resistance achieved by lifestyle 
changes is associated with reduced TC risk is currently unknown.

Exposure to environmental risk factors, such as iodine defi-
ciency and contamination with endocrine disruptors, should be 
considered as well. Although iodine prophylaxis with iodized 
salt is now established in most countries, borderline low iodine 
intake can be still observed, especially in countries where iodine 
prophylaxis is facultative (187, 273).

Similarly, environmental monitoring for EDCs may reveal 
geographic areas and places with high EDC contamination (204). 
Clinical, ultrasound and biochemical screening can now easily 
diagnose autoimmune thyroid disorders that may also be associ-
ated with TC.

The identification of these additional risk factors may 
allow the recommendation of individualized strategies for TC  
prevention.

iNSUliN SeNSiTiZeRS: A POSSible 
ROle iN TC PReveNTiON AND THeRAPY

As stated above, only a minority of patients succeeds to change 
lifestyle and achieve long-lasting weight loss. Therefore, the 
use of insulin sensitizers has been proposed to reduce insulin 
resistance and its complications.

Metformin
Metformin is by far the insulin sensitizer most studied in cancer 
prevention and therapy. A primary effect of metformin is the sup-
pression of the hepatic gluconeogenesis and glucose output, and  
to increase the peripheral glucose uptake, with consequent reduc-
tion in insulin resistance and circulating insulin levels (274).

Interestingly, the use of metformin in diabetic patients has 
been associated with a lower risk for cancer. A recent meta- 
analysis of 11 independent studies found an overall 30% statisti-
cally significant decrease in cancer risk in patients treated with 
metformin compared with other diabetic treatments with a 
promising trend for reduction in overall cancer mortality (275). 
Similar reductions in cancer risk and mortality was also observed 
in a second meta-analysis that included 32 articles (276). These 
and other studies have made a good case for metformin repur-
posing in cancer chemoprevention. However, a note of caution 
comes from the fact that these studies regard only diabetic 
patients, are all retrospective, and results need to be adjusted for 
multiple variables (277).

Moreover, no specific data on TC were available in these 
studies, although a recent study performed in Taiwan has shown  
that the risk of TC is also reduced in diabetic patients treated 
with metformin (278). However, a second case–control study 
(279) was unable to find a reduced risk for TC in diabetic patients 
taking metformin.

In some studies, the use of metformin seems to inhibit the 
growth of thyroid nodules, which is among risk factors for 
TC (280–282). In one study, the association of metformin to 
l-thyroxine was shown to inhibit the growth of thyroid nodules 
more effectively that l-thyroxine alone (280). In another rand-
omized placebo-controlled clinical trial the use of metformin was 
also associated with the reduction of small solid thyroid nodules 
(281). Notably, a recent study showed that metformin therapy 
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in subjects with insulin resistance was effective in decreasing 
thyroid volume and nodule size (282).

Multiple mechanisms may account for the chemopreventive 
and anticancer effects of metformin in several cancer histotypes 
and in TC in particular (283, 284). Relevant to thyroid, additional 
in  vivo effects of metformin that may be linked with chemo-
prevention of TC may include lowering of TSH serum levels in 
diabetic patients (285). In fact, metformin potentiated the effect 
of l-thyroxine in reducing thyroid nodule volume in patients 
with multinodular goiter (280). However, there is evidence that 
the TSH lowering effect of metformin is seen only in patients 
with treated hypothyroidism, but not in euthyroid patients 
(286). Further studies are needed to fully clarify the potential 
of metformin as chemopreventive drug in non-diabetic, insulin 
resistant, euthyroid patients.

As an additional mechanism, sex steroids and sex steroid-
mimicking EDCs may induce membrane-initiated signals 
involv ing AR and ERs and activation of the IGF system (211, 287).  
These effects have been demonstrated in prostate cancer cells, 
but may also operate in other cells sensitive to sex hormones. 
Interestingly, these membrane-initiated signals may be inhibited 
by metformin (288), thus supporting the potential role of met-
formin in cancer chemoprevention.

Apart for its possible role in cancer prevention metformin  
may also play a role in cancer treatment.

Anticancer actions of metformin are partially ascribed to its 
ability to activate the liver kinase B1/AMPK pathway and to  
suppress ATP production through the inhibition of mitochon-
drial complex I (289–292). Both actions of metformin contrib-
ute to the inhibition of the mTOR pathway, a major regulator 
of cell growth and proliferation (277). Metformin may also 
inhibit ERK signaling (293) and Ca(2+)-dependent PKC-alpha/ 
ERK and JNK/activator protein 1 pathways (294, 295). It may 
also reduce Akt activity through serine phosphorylation of 
IRS-1 (296).

Other effects include the inhibition of transcriptional activ-
ity of CREB transcriptional factor (297) through the induction 
of the AMPK-dependent phosphorylation of CREB cofactor 
CRTC2 at Ser171, which causes CRTC2 sequestration in the 
cytoplasm by binding with 14–3–3 proteins (298, 299). In fact, 
dephosphorylated CRTC2 translocates into the nucleus, where 
it contributes to the CREB-dependent transcription by stimu-
lating the formation of the complex CREB—CREB-binding 
protein—CRTC2 (297).

Notably, in metformin-treated patients, intraparenchimal 
metformin concentrations are generally significantly higher 
than metformin concentration in the bloodstream. For example, 
metformin concentration at the level of the portal vein is much 
higher than in the peripheral circulation, thus exposing liver to 
very high metformin levels (300). Many other organs, including 
salivary glands, stomach, small intestine, kidney as well as other 
organs/tissues are also able to concentrate metformin in depend-
ence of the expression of organic cation transporters (OCTs), 
such as OCT1–2–3 and organ-specific metformin metabolism 
(301). Metformin also concentrates in the mitochondrial matrix 
by approximately 1,000-folds (302). These high concentrations 
are believed to play an important anticancer role (302, 303).

In TC cell lines, metformin was able to inhibit proliferation, 
through the downregulation of cyclin D1 expression and activa-
tion of AMPK, which in turn inhibits the p70S6K/pS6 signaling 
pathway. Moreover, in undifferentiated TC cells cultured as 
thyrospheres and enriched in stem-like cells, metformin inhib-
ited the effects of insulin on growth and sphere formation, and 
potentiated the inhibitory effects of doxorubicin and cisplatin 
(304). The ability of metformin to potentiate the cytotoxic 
effects of chemotherapeutics via AMPK and p53 signaling was 
confirmed in other studies (305–307). In addition, metformin 
may inhibit the growth, migration and mesenchymal transition 
of TC cell lines by inhibiting mTOR (308). Han et al. showed 
that metformin elicited a dual antiproliferative effect on pri-
mary thyroid cultures and TC cells both by reducing circulating 
insulin and by directly inhibiting cell cycle progression and sur-
vival (304). Accordingly, DTCs occurring in metformin-treated 
diabetic patients were found to be significantly smaller and 
with increased progression-free survival as compared with the 
non-metformin groups (309). A higher remission in patients 
with TCs with cervical lymph node metastasis has also been 
observed (310).

Taken together, these data suggest that metformin might play 
a role in prevention and treatment of thyroid nodules and cancer 
in insulin resistant patients. Several clinical trials are currently 
under way with the aim to evaluate the efficacy of metformin as 
an add-on therapy for patients with various cancer histotypes, but 
none of these is focused on TC (Clinicaltrials.gov).

PPAR-γ Agonists
Thiazolidinediones, also known as glitazones, bind and activate 
the nuclear receptors PPAR-γ acting as agonists. They are potent 
insulin sensitizers used in the treatment of patients with T2DM 
(311). Although both metformin and TZDs decrease hepatic 
glucose production (312, 313), only TZDs reduce liver fat content 
(312, 314) and diminish fasting free fatty acid concentrations 
(315) thus improving skeletal muscle insulin sensitivity and 
reducing liver steatosis. However, side effects of TZDs, such as 
weight gain and fluid retention that can precipitate cardiac failure 
and bone fractures, have limited their use in clinical practice. 
Troglitazone and rosiglitazone (RGZ) were withdrawn because 
of hepatotoxicity (316) and suspected to increase cardiovascular 
risk (317), respectively. In addition, the benefit–risk ratio of 
pioglitazone (PIO) has been reassessed recently in light of a 
putatively increased risk of bladder cancer.

In a population-based study (318), it has been found that 
RGZ was associated with a 30–50% reduced risk of TC. In dose 
response analysis, the adjusted hazard ratios (95% confidence 
intervals) were significant for the third tertile of duration of 
therapy (≥14  months) and cumulative dose ≥1,800  mg (0.53, 
CI 0.31–0.89) and for age ≥50 years (0.50, CI 0.29–0.87) (318). 
However, a successive study using PIO did not show the same 
protective effect on TC risk, even if some limitations related to 
the patients classification or the presence of confounding factors 
cannot be excluded. However, the different results obtained with 
the two glitazones (RGZ and PIO) suggested that, apart from 
restoring insulin-sensitivity, the two drugs might have differential 
mechanisms on cancer (319) and thyroid cells (320).
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iNHibiTORS OF iNSUliN/iR-A SiGNAliNG

Several studies have highlighted the importance of the insulin/
IGF-2/IR-A pathway as a potential target in tumors addicted to 
this signaling (101, 105). However, for several reasons, targeting 
this pathway in cancer treatment is not simple. In particular, 
it is now well accepted that IR and its homolog IGF-1R are 
functionally interconnected by forming hybrid receptors with 
an important role in cancer (321), and that targeting either IR 
or IGF-1R alone results in increased activity of the homolog 
receptor (322) and resistance to treatment. However, various 
strategies have been developed to target the insulin/IGF-2/IR-A 
pathway. Whether these approaches may have specific benefits in 
insulin resistant patients with cancer is unknown.

In order to avoid or minimize the severe derangement of 
the glucose metabolism associated with inhibition of total 
IR, future therapies should possibly aim at specific targeting 
of IR-A. However, specific antibodies or other drugs able to 
inhibit the IR-A and not the IR-B are not available and difficult 
to obtain because of the small differences between the two IR 
isoforms (323).

The identification of mutations in splicing factors in several 
malignancies (324, 325) has led to the development of drugs  
able to counteract the effects of these mutated splicing factors  
(326, 327). However, whether such drugs may inhibit IR-A for-
mation and favor the IR-B isoform in TC is unknown. Another  
possible approach is to take advantage of the differential regula-
tion of IR isoform protein maturation. Indeed, furin and paired 
basic amino acid-cleaving enzyme 4 enzymes, seems to be dif-
ferentially required for IR-A and IR-B maturation (328, 329),  
and furin can be inhibited by a number of polyphenols (330).

Finally, various miRNAs have been found to be dysregulated  
in obesity and insulin resistance (331). Studies are needed to 
assess whether some of these miRNAs may play a role in the 
altered IR-A expression in cancer and whether they could be 
useful tools to normalize the IR-A:IR-B ratio.

Currently available small molecule TK inhibitors lack specific-
ity for IR-A, but are able to coinhibit the IR and IGF-1R. The 
most studied drugs in this category are Linsitinib (OSI-906) and 
BMS-754807. Preclinical data, showing a significant efficacy of 
both drugs either alone or in combination therapies (332), have 
prompted several phase I–III studies—https://clinicaltrials.gov/
ct2/results?term=linsitinib&pg=1 and https://clinicaltrials.gov/
ct2/results?term=BMS-754807+&Search=Search. However, no 
definite evidence of efficacy in a clinical setting has been dem-
onstrated so far.

A different approach for malignancies driven by the IGF-2/
IR-A loop is to block IGF-2 using specific antibodies or specific 
ligand traps. A specific trap for IGF-2 can be obtained using a 
soluble preparation of the high-affinity domain 11 of M6P/IGF-2R 
(333, 334), while the soluble form of the IGF-1R combined with 
the Fc portion of IgG1 can provide a trap for both circulating 
IGF-1 and IGF-2 (335). These therapies have the advantage to 
block IR-A stimulation by IGF-2 without impairing the metabolic 
effects of insulin. However, they do not inhibit the effects of high 
circulating insulin levels in insulin resistant patients. Preclinical 
studies are encouraging but clinical data are lacking (335). So far, 

no studies have addressed the question whether inhibition of the 
insulin/IGF-2/IR-A signaling by these approaches may provide 
benefits to patients with TC in the context of insulin resistance.

SUMMARY AND PeRSPeCTiveS

Several lines of evidence now support the concept that the acti-
vation of the insulin/IR axis plays a role in TC carcinogenesis. 
In particular, various dysmetabolic conditions characterized 
by insulin resistance are significantly associated with an 
increased risk and worse prognosis of TC. Whether and to 
what extent insulin resistance plays a role in the worldwide, 
steady increase in PTCs has not been clarified yet. Indeed, sev-
eral clinical studies performed until now, have reported only 
a positive association rather than a causative role. Moreover, 
some of these studies show significant limitations, including 
lack of adjustment for potential confounders, and/or limited 
statistic power and/or low OR values. These limitations should 
be  taken into account when considering the physiological/
biological significance of these studies. Similarly, more studies 
are required to elucidate the possible interactions between 
insulin resistance/hyperinsulinemia and more established TC 
risk factors, such as radiations, iodine deficiency, endocrine 
disruptors, and inflammation. Finally, how obesity derived 
cytokines, and overactivation of the insulin/IGF axis may affect 
the molecular pathways involved in the pathogenesis of TC 
should be explored in depth.

However, as for other malignancies associated with insulin 
resistance, it is to be expected that a correct lifestyle, which 
includes a healthy diet and physical activity, aimed at prevent-
ing obesity and T2DM would exert a beneficial effect also in 
TC occurrence. For all people living in iodine deficient areas, 
iodine prophylaxis is mandatory in order to avoid the growth 
promoting effect of reduced iodine intake on the thyroid gland. 
It could be hypothesized that additional attention should be lent 
to people with concomitant insulin resistance in order to avoid 
the combined effects of hyperinsulinemia and iodine deficiency. 
In T2DM patients, administration of insulin sensitizers or 
inhibitors of SGLT2 (336, 337) should be preferred to insulin 
stimulating drugs and insulin itself. Hopefully, these assump-
tions will be validated by future studies, although, because of the 
indolent natural history of most DTCs, such studies may prove 
to be difficult to perform.

As far as therapy is concerned, surgery, radioactive iodine 
treatment and TSH suppression by l-thyroxine administration 
are the cornerstones of DTC treatment. However, no specific 
therapy exists for poorly differentiated or undifferentiated TCs 
that have lost the ability to uptake radioiodine. Drugs with 
multikinase inhibiting activity are increasingly used in these 
cancers, but so far their effect on cancer mortality is at best 
uncertain (338). Clearly, new combined therapies are urgently 
required for these aggressive cancers. Evidences showing that the 
insulin/IGF axis is frequently activated in these tumors owing to 
overexpressed IR and IGF-1R and increased local production of 
IGFs lend support to the possibility that therapies targeting this 
axis could have a role in these new approaches. The increased 
awareness that overexpression of IR-A possibly plays a more 
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important role than IGF-1R and may compensate for IGF-1R 
inhibition, strongly suggests that dual IR and IGF-1R inhibitors 
should be more efficacious than specific inhibitors of IGF-1R. 
Moreover, future approaches may explore the efficacy of drugs 
specifically targeting IR-A or pathways preferentially activated by 
the IGF-2/IR-A loop. Finally, insulin sensitizers able to reduce 
peripheral insulin levels could have a role on both prevention and 
treatment of TC. Certainly, more studies are needed to address 
the role of insulin and insulin resistance in better and individual-
ized programs of TC prevention and adjuvant therapies. More 
in general, in spite of several lines of evidence indicating that 
obesity/insulin resistance-driven mechanisms are associated 
with cancer development and progression, specific guidelines for 
cancer prevention and treatment in these patients are lacking and 
should be considered a desirable aim of precision medicine.
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