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Abstract: Diabetes causes various macrovascular and microvascular alterations, often culminating
in major clinical complications (first of all, stroke) that lack an effective therapeutic
intervention. N-palmitoylethanolamide-oxazoline (PEA-OXA) possesses anti-inflammatory and
potent neuroprotective effects. Although recent studies have explained the neuroprotective properties
of PEA-OXA, nothing is known about its effects in treating cerebral ischemia. Methods: Focal cerebral
ischemia was induced by transient middle cerebral artery occlusion (MCAo) in the right hemisphere.
Middle cerebral artery (MCA) occlusion was provided by introducing a 4–0 nylon monofilament
(Ethilon; Johnson & Johnson, Somerville, NJ, USA) precoated with silicone via the external carotid
artery into the internal carotid artery to occlude the MCA. Results: A neurological severity score
and infarct volumes were carried out to assess the neuroprotective effects of PEA-OXA. Moreover,
we observed PEA-OXA-mediated improvements in tissue histology shown by a reduction in lesion
size and an improvement in apoptosis level (assessed by caspases, Bax, and Bcl-2 modulation and
a TUNEL assay), which further supported the efficacy of PEA-OXA therapy. We also found that
PEA-OXA treatment was able to reduce mast cell degranulation and reduce the MCAo-induced
expression of NF-κB pathways, cytokines, and neurotrophic factors. Conclusions: based on these
findings, we propose that PEA-OXA could be useful in decreasing the risk of impairment or improving
function in ischemia/reperfusion brain injury-related disorders.
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1. Introduction

Diabetes mellitus (DM) is a metabolic disorder connected with chronic hyperglycemia, which has
been identified as enhancing systemic oxidative stress, inclining patients toward diabetic complications.
World Health Organization (WHO) data show that around 386 million people in the world are now
affected by diabetes, which is a main risk factor for atherosclerotic diseases, such as acute brain
ischemia [1,2]. Additionally, it has been well demonstrated that diabetic patients have a higher
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possibility of stroke than nondiabetic patients do and are more likely to have a poor prognosis and
increased mortality after stroke [3–5]. Cerebral ischemia is a consequence of an unexpected decrease
or loss of blood passage to the brain area, which corresponds with a loss of neurological function.
This disorder can lead to quadriplegia and difficulties with thinking, memory, and language. Often the
restoration of blood flow to the ischemic area is one of the most useful strategies in clinical stroke
treatment, but it can exacerbate neurocognitive deficits and give origin to additional damage. The early
responders to this injury are the major immune system factors [6,7]. It has been well described that
inflammation is an important characteristic of ischemic brain tissue [8,9]. This activation causes the
infiltration of several inflammatory cell types and the production of proinflammatory mediators in the
damaged tissue, free radical generation, oxidative stress, apoptosis, and/or axonal injury, ending in
cellular degeneration, altered neural circuits, and impaired synaptic plasticity and transmission [10–12].
During hyperglycemia, NF-kB is quickly activated in vascular cells, developing in a subsequent
intensification of leukocyte adhesion and the transcription of proinflammatory cytokines [13–15].
Recent studies, performed using experimental animal models, have helped to identify a wide selection
of neuroprotective/anti-inflammatory compounds (e.g., inhibitors of inducible nitric oxide synthase and
kinases, antiepileptics, polyphenols, and antioxidants) [16–20]. Often these molecules have shown few
positive outcomes [21,22]. However, animal models offer the possibility to collect information to limit
stroke severity, and they display translational potential in improving future stroke consequences [21,23].
The reason for the little efficacy of these approaches could be that they target only neuronal cell protection
without a safeguard for cerebral blood vessels from secondary damage from inflammation and reactive
oxygen/nitrogen species. Moreover, several anti-inflammatory strategies have been described that
have displayed success in experimental animal models of stroke [24,25]; however, their translation into
clinical trials has been disappointing [26,27]. In this paper, we would like to focus our attention on
a class of lipid-signaling molecules, the N-acylethanolamines (NAEs) [28,29], which are produced in
response to tissue stress and injury to prevent additional damage and restore homeostatic balance [30].
It is well known that one of these NAEs, N-palmitoylethanolamide (PEA), allows for the maintenance
of cellular homeostasis, acting in the resolution of the inflammatory pathway [31,32]. In particular,
PEA has shown neuroprotective and anti-neuroinflammatory effects [33–36]. This anti-inflammatory
effect can also be gained by upregulating endogenous PEA levels and targeting its principal catabolic
enzyme, N-acylethanolamine-hydrolyzing acid amidase (NAAA) [37], through the modulation of
its degradation [37–41]. PEA on-demand production exerts an adjusting effect on glia and mast
cells involved in neuroinflammation [31,32] and requests that PEA pleiotropic actions [31] be
organized by a mechanism, allowing for inactivation. It has been proposed that NAAA can control
PEA levels, preserving its on-demand synthesis and degradation [42]. Recent evidence has shown
that pharmacological management of NAAA with the oxazoline of PEA (2-pentadecyl-2-oxazoline
(PEA-OXA)) [43] had beneficial effects on secondary neuroinflammatory events associated with the
spinal cord, traumatic brain injury, and Parkinson’s disease in mice [44,45]. Starting from this evidence,
the aim of this study was to investigate the effects of PEA-OXA on secondary neuroinflammatory
events induced by transient middle cerebral artery occlusion (MCAo) in diabetic rats.

2. Results

2.1. Effect of PEA-OXA Treatment on Regional Cerebral Blood Flow (rCBF) and Ischemic Brain Damage

The monitoring of rCBF displayed successful MCAo (Figure 1A). At the same time points,
no statistical difference was detected in rCBF between sham, PEA-, and PEA-OXA-administered
animals. Additionally, 24 h after ischemia/reperfusion, the animals showed infarcts affecting the
striatum and cortex (Figure 1B,D). The PEA-OXA-administered group (Figure 1B,F) had significantly
less tissue damage 24 h after transient MCAo compared to sham-operated animals (Figure 1B,C) and
PEA-treated animals (Figure 1B,E). A histological analysis displayed healthy cerebral neurons in the
control group (Figure 1G,M), while (24 h after transient MCAo) vehicle-treated animals revealed
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a paucity of intact neurons (Figure 1H,M). In tissues obtained from PEA-administered animals,
the corresponding area showed protection from neuronal cell loss (Figure 1I,M). This protection was
significantly higher in the PEA-OXA-administered animals (Figure 1L,M).
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Figure 1. Efficacy of PEA-OXA on rCBF and the ischemic area induced by transient MCAo: rCBF was 
controlled to confirm the success of the induction of the transient ischemia. This was monitored at 
baseline (10 min before), at 10 and 60 min during ischemia, and 5 min after ischemia (A). TTC staining 
of brain sections was performed 24 h after MCAo. Tissues from vehicle-treated animals displayed the 
presence of an unstained area (B,D) compared to the sham group (B,C). PEA-OXA administration 
(B,F) reduced this infarcted area more effectively than did the PEA treatment (B,E). A histological 
analysis of brain samples from vehicle-treated rats revealed the loss of neurons (H,M) compared to 
the sham group (G,M), which was ameliorated by PEA administration (I,M). PEA-OXA 
administration displayed more protective effects compared to the PEA treatment (L,M). For the 
histology, a 20× magnification is shown (50-µm scale bar). A p-value of less than 0.05 was considered 
significant: * p < 0.05 versus sham; ° p < 0.05 versus vehicle; ** p < 0.01 versus sham; °° p < 0.01 versus 
vehicle; *** p < 0.001 versus sham; °°° p < 0.001 versus vehicle; # p < 0.05 versus PEA; ## p < 0.01 versus 
PEA; ### p < 0.001 versus PEA. 

2.2. Effect of PEA-OXA Treatment on MCAo-Induced Mast Cell Degranulation 

Figure 1. Efficacy of PEA-OXA on rCBF and the ischemic area induced by transient MCAo: rCBF was
controlled to confirm the success of the induction of the transient ischemia. This was monitored at
baseline (10 min before), at 10 and 60 min during ischemia, and 5 min after ischemia (A). TTC staining
of brain sections was performed 24 h after MCAo. Tissues from vehicle-treated animals displayed the
presence of an unstained area (B,D) compared to the sham group (B,C). PEA-OXA administration (B,F)
reduced this infarcted area more effectively than did the PEA treatment (B,E). A histological analysis of
brain samples from vehicle-treated rats revealed the loss of neurons (H,M) compared to the sham group
(G,M), which was ameliorated by PEA administration (I,M). PEA-OXA administration displayed more
protective effects compared to the PEA treatment (L,M). For the histology, a 20×magnification is shown
(50-µm scale bar). A p-value of less than 0.05 was considered significant: ◦◦ p < 0.01 versus vehicle;
*** p < 0.001 versus sham; ◦◦◦ p < 0.001 versus vehicle; # p < 0.05 versus PEA; ### p < 0.001 versus PEA.

2.2. Effect of PEA-OXA Treatment on MCAo-Induced Mast Cell Degranulation

Toluidine blue staining was performed to investigate mast cell infiltration and degranulation in the
injured tissue. In brain sections from vehicle-treated animals, an increased number of mast cells were
identified (Figure 2B,E) compared to the tissues from sham-operated rats (Figure 2A,E). In samples
from animals administered PEA, fewer of these cells were observed (Figure 2C,E). In addition,
tissues collected from PEA-OXA-administered animals revealed fewer mast cells than did tissues from
vehicle-treated animals (Figure 2D,E). An immunohistochemical analysis of tryptase expression showed
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increased staining in tissue sections from vehicle-treated animals [46] (Figure 2G, see densitometric
analysis in Figure 2L), which was reduced in samples from PEA-OXA-administered animals (Figure 2I,
see densitometric analysis in Figure 2L). PEA administration was also able to reduce tryptase expression
(Figure 2H, see densitometric analysis in Figure 2L), but PEA-OXA treatment was more effective.
The basal staining of tryptase (Figure 2F, see densitometric analysis in Figure 2L) was detected in the
sham-operated animals.
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Figure 2. Efficacy of PEA-OXA on mast cell infiltration and degranulation induced by transient MCAo.
An increased number of mast cells were detected in tissues from vehicle-treated animals (B,E) compared
to the control (A,E). PEA and PEA-OXA-treated ischemic rats showed fewer cells of this type (C–E).
An increased expression of tryptase (G,L) was found in sections obtained from vehicle-treated rats
compared to the sham-operated animals (F,L). PEA-OXA administration reduced tryptase expression
more effectively than did PEA (H,I,L). The number of mast cells was counted in three sections per
animal and is presented as the number of positive cells per high-power field. For the mast cells,
a 100×magnification is shown (10-µm scale bar). For the immunohistochemistry, a 40×magnification
is shown (75-µm scale bar). A p-value of less than 0.05 was considered significant: *** p < 0.001 versus
sham; ◦◦◦ p < 0.001 versus vehicle; # p < 0.05 versus PEA.

2.3. Effect of PEA-OXA Treatment on MCAo-Induced SIRT1 and UCP2 Expression and Redox Status

To understand the molecular mechanism by which PEA-OXA acts, we evaluated (by western
blot) the modulation of SIRT1 (silent information regulator 1) and UCP2 (uncoupling protein 2)
expression. PEA-OXA administration increased SIRT1 expression compared to the vehicle group
(Figure 3A and the densitometric analysis in Figure 3B), while PEA treatment displayed less of
an increase (Figure 3A and the densitometric analysis in Figure 3B). SIRT1 gene expression was increased
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in the PEA-OXA-administered animals compared to the vehicle group, while PEA-treated animals
showed less upregulation (Figure 3E). Treatment with PEA-OXA also diminished UCP2 expression
compared to the vehicle-treated rats (Figure 3C and the densitometric analysis in Figure 3D), while PEA
treatment displayed less efficacy (Figure 3C and the densitometric analysis in Figure 3D). To observe
the effect of PEA-OXA administration on redox status, the NAD+/NADH ratio (Figure 3F), the GSH
level (Figure 3G), and SOD activity (Figure 3H) after MCAo were examined. The results showed that
GSH and SOD were increased after PEA-OXA administration compared to the vehicle-treated animals,
while PEA administration showed less efficacy (Figure 3G,H). Compared to the sham-treated animals,
the NAD+/NADH ratio was higher in the vehicle-treated rats, while PEA-OXA treatment restored
its levels (Figure 3F). PEA administration displayed less efficacy in the increase of NAD+/NADH
(Figure 3F).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 23 
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Figure 3. The efficacy of PEA-OXA on SIRT1 and UCP2 expression, the NAD+/NADH ratio, GSH,
and SOD activity (induced by transient MCAo). A western blot analysis of SIRT1 showed basal
expression that was significantly increased after MCAo. After PEA-OXA treatment, this expression
was significantly upregulated, while after PEA administration, it increased less (A,B). Real-time PCR
analysis of the SIRT1 gene displayed the same trend (E). UCP2 expression in vehicle-treated animals
was significantly increased compared to the sham-operated animals. PEA-OXA administration was
able to significantly restore the basal levels (C,D). PEA displayed less protection. The NAD+/NADH
ratio was reduced by PEA-OXA treatment compared to the vehicle-treated animals (E). MCAo reduced
GSH (G) and SOD (H) activity in vehicle-treated animals, while PEA-OXA administration restored the
basal levels. A p-value of less than 0.05 was considered significant: * p < 0.05 versus sham; ◦ p < 0.05
versus vehicle; ◦◦ p < 0.01 versus vehicle; *** p < 0.001 versus sham; ◦◦◦ p < 0.001 versus vehicle;
# p < 0.05 versus PEA; ### p < 0.001 versus PEA.
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2.4. Effects of PEA-OXA Treatment on MCAo-Induced Apoptosis

The apoptotic pathway was evaluated by western blot analysis of Bax and Bcl-2 and by TUNEL
staining: 24 h after transient MCAo, an upregulated expression of Bax (Figure 4A and the densitometric
analysis in Figure 4B) and a reduced expression of Bcl-2 (Figure 4C and the densitometric analysis
in Figure 4D) were detected in samples from vehicle-treated animals compared to the control group.
PEA-OXA administration both significantly decreased Bax and increased Bcl-2 levels; in contrast,
treatment with PEA at the same dose was less beneficial (Figure 4A,C and the densitometric analysis
in Figure 4B,D). The same result was observed in TUNEL staining, where the number of positive
cells was significantly diminished after treatment with PEA-OXA compared to the MCAo group
(Figure 4E–I). Moreover, since it is well known that caspases play pivotal roles in apoptosis, we also
observed the expression of caspases by immunostaining. The results obtained showed significantly
increased levels of caspase 3 in the MCAo group compared to the sham group (Figure 5A and the
densitometric analysis in Figure 5E). Treatment with PEA-OXA markedly reduced its expression
(Figure 5D and the densitometric analysis in Figure 5E). PEA treatment showed less efficacy (Figure 5C
and the densitometric analysis in Figure 5E). We also investigated the levels of LDH in serum. It was
higher in the vehicle-treated animals compared to the sham, while PEA-OXA administration reduced
its value (Figure 5F). Treatment with PEA at the same dose was less beneficial (Figure 5F).
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a minimal expression of Bax in brain samples taken from sham rats was detected. PEA-OXA was able
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to decrease Bax expression in the MCAo-induced group (A,B). On the other hand, a basal level of Bcl-2
was present in brain tissue collected from sham rats, while the expression of Bcl-2 was significantly
lower in the vehicle group. PEA-OXA treatment was able to increase the expression of Bcl-2 at levels
similar to the sham group (C,D). Treatment with PEA at the same dose was less beneficial (A–D). A low
level of TUNEL-positive staining was detected in the sham group (E,I). PEA-OXA (H,I) administration
reduced the number of TUNEL-positive cells compared to the MCAo group (F,I). PEA treatment
showed less efficacy (G,I). The number of TUNEL-positive cells was counted in three sections per
animal and is presented as the number of positive cells per high-power field. For TUNEL staining,
a 100×magnification is shown (10-µm scale bar). A p-value of less than 0.05 was considered significant:
◦ p < 0.05 versus vehicle; ◦◦ p < 0.01 versus vehicle; *** p < 0.001 versus sham; ◦◦◦ p < 0.001 versus
vehicle; # p < 0.05 versus PEA; ### p < 0.001 versus PEA.
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Figure 5. Efficacy of PEA-OXA on caspase 3 expression and LDH levels (induced by transient MCAo).
An immunohistochemical analysis of caspase 3 (E) was performed. A marked increase in its expression
was detected in brain samples from animals administered vehicle (B) compared to the sham-treated
animals (A). This expression was notably reduced by treatment with PEA-OXA (D), while PEA
treatment displayed less efficacy (C). PEA-OXA administration also reduced LDH levels to normal
levels (F). For the immunohistochemistry, a 20×magnification is shown (50-µm scale bar). A p-value
of less than 0.05 was considered significant: ◦ p < 0.05 versus vehicle; *** p < 0.001 versus sham;
◦◦◦ p < 0.001 versus vehicle; # p < 0.05 versus PEA; ## p < 0.01 versus PEA.

2.5. Effect of PEA-OXA Treatment on MCAo-Induced IκB-α Degradation, NF-κB Translocation,
and TGF-β Expression

We found that IκB-αwas significantly downregulated in vehicle-treated animals subjected to MCAo
compared to the sham group. PEA-OXA administration partially restored this expression (Figure 6A
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and the densitometric analysis in Figure 6B), while PEA treatment displayed less efficacy (Figure 6A
and the densitometric analysis in Figure 6B). Treatment with PEA-OXA also diminished NF-κB
translocation into the nucleus compared to the vehicle-treated rats (Figure 6C and the densitometric
analysis in Figure 6D), while PEA administration reduced its activation with significantly less efficacy
(Figure 6C and the densitometric analysis in Figure 6D). NF-κB gene expression was increased in the
vehicle-administered animals compared to the sham group, while PEA-OXA-treated animals showed
reduced expression. In addition, PEA administration reduced NF-κB gene expression but with less
efficacy (Figure 6E). Considering that recent evidence has demonstrated that TGF-β plays a key role
in the formation of cerebral edema as well as in the neuronal processes that lead to necrosis in the
acute stage of ischemia, we investigated the effect of PEA-OXA treatment on TGF-β expression after
MCAo [47,48]. An immunohistochemical analysis of TGF-β expression showed increased staining in
tissue sections from vehicle-treated animals (Figure 6H and the densitometric analysis in Figure 6F),
which was reduced in samples from PEA-OXA-administered animals (Figure 6L and the densitometric
analysis in Figure 6F). PEA administration was also able to reduce TGF-β expression (Figure 6I and the
densitometric analysis in Figure 6F), but PEA-OXA treatment was more effective. The basal staining
of TGF-β expression (Figure 6G and the densitometric analysis in Figure 6F) was detected in the
sham-operated animals.
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Figure 6. Efficacy of PEA-OXA on IκB-α degradation, NF-κB translocation, and TGF-β expression
(induced by transient MCAo). Samples from vehicle-treated rats subjected to ischemia/reperfusion
injury showed increased IκB-α degradation (A,B) and NF-κB translocation into the nucleus (C,D)
compared to the sham-operated animals. PEA-OXA administration was able to significantly restore
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them to basal levels, while PEA showed less efficacy. Real-time PCR analysis of the NF-κB gene displayed
the same trend (E). An immunohistochemical analysis TGF-β (F) was performed. A marked increase in
its expression was detected in brain samples from animals administered vehicle (F,H) compared to
the sham-treated animals (F,G). This expression was notably reduced by treatment with PEA-OXA
(F,L). Treatment with PEA at the same dose was less beneficial (F,I). For the immunohistochemistry,
a 20×magnification is shown (50-µm scale bar). A p-value of less than 0.05 was considered significant:
◦ p < 0.05 versus vehicle; ** p < 0.01 versus sham; ◦◦ p < 0.01 versus vehicle; *** p < 0.001 versus sham;
◦◦◦ p < 0.001 versus vehicle; # p < 0.05 versus PEA; ## p < 0.01 versus PEA.

2.6. Effect of PEA-OXA Treatment on MCAo-Induced Cytokine Production

It is well known that TNF-α and IL-1 β have been implicated in the functional consequences
of neuroinflammation. An immunohistochemical analysis of TNF-α and IL-1 β expression showed
increased staining in tissue sections from vehicle-treated animals (Figure 7B,F, see densitometric analysis
in Figure 7I,L), which was reduced in samples from PEA-OXA-administered animals (Figure 7D,H,
see densitometric analysis in Figure 7I,L). PEA administration was also able to reduce TNF-α and
IL-1β expression (Figure 7C,G, see densitometric analysis in Figure 7I,L), but PEA-OXA treatment
was more effective. The basal staining of TNF-α and IL-1β (Figure 7A,E, see densitometric analysis in
Figure 7I,L) was detected in sham-operated animals.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 23 
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Figure 7. Efficacy of PEA-OXA on TNF-α and IL-1β expression (induced by transient MCAo).
Twenty-four hours after transient MCAo, an increased expression of TNF-α (B,I) and IL-1β (F,L) was
found in sections obtained from vehicle-treated rats compared to the sham-operated animals (A,I; E,L).
PEA-OXA administration reduced both TNF-α (D,I) and IL-1β (H,L) expression more effectively than
PEA did (C,D; G,L). For the immunohistochemistry, a 20×magnification is shown (50-µm scale bar).
A p-value of less than 0.05 was considered significant: ◦ p < 0.05 versus vehicle; *** p < 0.001 versus
sham; ◦◦◦ p < 0.001 versus vehicle; ## p < 0.01 versus PEA; ### p < 0.001 versus PEA.
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2.7. Effect of PEA-OXA Treatment on MCAo-Induced Reduced BDNF and GDNF Expression

Transient MCAo induced a marked reduction in BDNF and GDNF neurotrophic factors (Figure 8B,F,
see densitometric analysis in Figure 8I,L). On the other hand, an immunofluorescence analysis of
brain samples from PEA-OXA-treated animals showed a significantly increased expression of these
factors (Figure 8D,H, see densitometric analysis in Figure 8I,L), while PEA displayed less protection
(Figure 8C,G, see densitometric analysis in Figure 8I,L). The basal expression of BDNF and GDNF was
found in tissues from control animals (Figure 8A,E, see densitometric analysis in Figure 8I,L).
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Figure 8. Efficacy of PEA-OXA on BDNF and GDNF expression (induced by transient MCAo).
The immunofluorescence of brain samples showed that PEA-OXA-administered animals exhibited the
presence of an increased number of positive cells for BDNF (D,I) and GDNF (H,L) staining compared to
the samples from vehicle-treated rats (B,I; F,L). PEA displayed less protection (C,I; G,L). Sham-operated
animals showed basal levels of BDNF (A,I) and GDNF (E,L). The number of BDNF- and GDNF-positive
cells was counted in three sections per animal and is presented as the number of positive cells per
high-power field. For immunofluorescence, a 100×magnification is shown (10-µm scale bar). A p-value
of less than 0.05 was considered significant: ◦ p < 0.05 versus vehicle; ◦◦ p < 0.01 versus vehicle;
*** p < 0.001 versus sham; ◦◦◦ p < 0.001 versus vehicle; ### p < 0.001 versus PEA



Int. J. Mol. Sci. 2019, 20, 4845 11 of 22

3. Discussion

Cerebral ischemia is associated with a severe morbidity and high mortality rate, in particular in
diabetic patients. Patients display related neurological disorders, such as cognitive and severe motor
impairments [49,50]. Investigation of the mechanisms involved in worsening neuroinflammatory injury
following cerebral ischemia in diabetes and linked hypoglycemia is very important. Suppressing
potential candidates involved in enriching neuroinflammatory reactions may help to downgrade stroke
severity and promote recovery in diabetic/hypoglycemic conditions [51]. It has been described that
cerebral ischemia affects adaptive and innate immune systems [52]; leads to oxidative damage [53],
excitotoxicity [54], blood–brain barrier dysfunction [55], microvascular injury [56], and post-ischemic
inflammation [8,57–59]; and induces neuronal apoptosis [60]. Further investigations to discover new
therapeutic strategies remain a high priority. Palmitoylethanolamide (PEA) is an important endogenous
molecule that controls tissue reactivity and associated inflammatory antalgic phenomena, both in the
central nervous system (CNS) and in innervated peripheral tissues [61,62]. N-acylethanolamines (NAEs),
the family of molecules to which PEA belongs, are selectively degraded by two intracellular enzymes:
N-acylethanolamine-hydrolyzing acid amidase (NAAA) [63,64] and fatty-acid amide hydrolase
(FAAH) [65]. In particular, the amidase NAAA is the most important for PEA degradation [66], which
means that the inhibition of this enzyme should increase PEA tissue levels [38,41,67,68]. Interesting
strategies to modulate substrate availability underline the ability of the oxazoline derivatives of fatty
acids to inhibit NAAA and display inhibitory activity toward inflammatory processes [69]. Recent
evidence has shown the capability of a new PEA derivate, PEA-oxazoline (PEA-OXA), in inhibiting
NAAA and decreasing inflammation processes [43,70–72]. In the present study, we focused our
attention on the neuroprotective effects of PEA-OXA in a rat model of transient middle cerebral artery
occlusion (MCAo) in diabetic rats. Our findings showed that oral administration of PEA-OXA at
a dose of 10 mg/kg could significantly reduce lesion size, histological damage, and mast cell activation
and degranulation associated with ischemia/reperfusion (I/R) injury. The inflammatory response
to brain injury is characterized by a synchronized activation of various pathways that manage the
expression of both anti- and proinflammatory mediators recruited from the blood and resident in
tissue cells. In vitro studies have underlined a neuroprotective role for silent information regulator
1 (SIRT1) in ischemic injury [73]. Moreover, it is well known that PEA and SIRT1 share the same
mechanism, expounding anti-inflammatory, analgesic, and neuroprotective effects [74–77]. In the
present study, for the first time we show that PEA-OXA also has neuroprotective effects through the
activation of SIRT1. During ischemia/reperfusion injury, the upregulation of SIRT1 is accompanied
by the upregulation of mitochondrial uncoupling protein-2 (UCP2) [78,79]. PEA-OXA administration
activated SIRT1 signaling and caused a reduced expression of UCP2. It is a proton channel of the inner
mitochondrial membrane that regulates oxidative stress and energy supply [80] by modulating the
oxidation of NADH, the level of ATP, and the redox balance [81,82]. An ischemic condition influenced
the redox status, increasing the NAD+/NADH ratio and reducing SOD activity and the GSH level.
SIRT1 activation induced by PEA-OXA administration caused a decrease in the NAD+/NADH ratio
and an increase in SOD activity and the GSH level. It is well described that brain ischemia/reperfusion
injury leads to the activation of the apoptotic pathway [83]. The activation of SIRT1 signaling through
PEA-OXA administration increased the expression of B-cell lymphoma 2 (Bcl-2) and decreased the
expression of Bax. It also decreased the expression of caspase 3, TUNEL staining, and LDH in serum.
PEA-OXA, targeting SIRT1, mediated different effects that contributed to a protective effect of the
nervous system. SIRT1 has been described as interacting with NF-κB and preventing its transcriptional
activity [84]. It is one of the main pathways activated by ischemic brain injury [14,15]. Normally,
it is sequestered into the cytoplasm by the inhibitor protein IkBα. Once IkBα is degraded, it allows for
NF-κB translocation into the nucleus [85]. NF-κB, in turn, induces the expression of proinflammatory
genes, including chemokines, cytokines, and adhesion molecules [86]. PEA-OXA administration
reduced IκB-α degradation and consequently NF-κB translocation into the nucleus. Moreover, our
results clearly demonstrate that PEA-OXA treatment downregulated the IL-1β, TGF-β, and TNF-α
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expression induced by cerebral ischemia [48]. In addition, neurotrophic family proteins exerted
neuroprotective effects against ischemic stress, protecting against brain damage induced by ischemia
and alleviating cognitive impairment [87]. Following MCAo, BDNF and GDNF expression was
downregulated [88], while PEA-OXA administration could significantly restore their expression to
sham levels.

4. Materials and Methods

4.1. Animals

Male Wistar rats (Envigo, Milan, Italy) weighing 200–250 g were employed. Animals were divided
in groups of three with free access to water and food under standardized humidity and temperature.
This study was approved by the University of Messina Review Board for the care of animals (Protocol
number 8/U-apr16). Animal care was in conformity with current legislation for the protection of animals
used for scientific purposes (Directive 2010/63/EU, 9 April 2016) and the ARRIVE guidelines.

4.2. Middle Cerebral Artery Occlusion

Focal cerebral ischemia was induced by transient MCAo in the right hemisphere. The animals
were anesthetized with inhaled 1.0–2.0% isoflurane and 5.0% isoflurane (Baxter International) in air
through the use of a mask. Body temperature was preserved at 37 ◦C with a heating pad and was
supervised via an intrarectal type T thermocouple (Harvard, Kent, UK). The animals were located in
a stereotaxic system (Kopf). Middle cerebral artery (MCA) occlusion was provided by introducing
a 4–0 nylon monofilament (Ethilon; Johnson & Johnson, Somerville, NJ, USA), precoated with silicone
(Xantopren; Heraeus Kulzer, Germany) via the external carotid artery into the internal carotid artery
to occlude the MCA [89–91]. Sham animals were subjected to the same procedure, but the filament
was introduced into the internal carotid artery and suddenly withdrawn. At the end of the procedure,
anesthesia was discontinued, and the rats were returned to a prone position. Laser Doppler flowmetry
(PeriFlux System 5000; Perimed AB, Stockholm, Sweden) with a flexible probe over the skull was used
to monitor regional cerebral blood flow (rCBF), as previously described [92].

4.3. Synthesis of PEA and PEA-OXA

PEA and PEA-OXA were synthesized as previously described by Impellizzeri and colleagues [43].

4.4. Induction of Diabetes

Diabetes was induced by streptozotocin, as previously described by Di Paola et al. [93].
We confirmed a diabetic condition by evaluating glucose levels at 15 and 60 days through a blood
glucose meter (Table 1) (Accu-Check Active®; Roche Diagnostic, Milan, Italy).

Table 1. Evaluation of glucose levels.

Experimental Group Blood Glucose

Day 0 Day 15 Day 60
Sham 120 ± 3.1 136 ± 2.5 126 ± 3.0

I/R 130 ± 2.7 459 ± 2.9 455 ± 2.4
PEA 125 ± 2.5 463 ± 2.2 459 ± 2.5

PEA-OXA 131 ± 1.9 466 ± 2.7 462 ± 2.3

4.5. Experimental Groups

Sixty days after the induction of diabetes, rats were randomly assigned into different groups,
as described below (n = 30):

TZ-hyperglycemic rats (ischemia/reperfusion (I/R) + vehicle): Diabetic rats were subjected to
MCAo (1 h) followed by 24 h of reperfusion [94]. One hour after ischemia and six hours after reperfusion,
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carboxymethyl cellulose (CMC) in saline (1.5 %, w/v) was administered (os), and the rats were sacrificed
24 h later.

STZ-hyperglycemic rats (I/R + PEA): Diabetic rats were subjected to the surgical procedures
described above. PEA (10 mg/kg in 1.5% CMC) was administered (os) 1 h after ischemia and 6 h after
reperfusion, and the rats were sacrificed 24 h later;

STZ-hyperglycemic rats (I/R + PEA-OXA): Diabetic rats were subjected to the surgical procedures
described above. PEA-OXA (10 mg/kg in 1.5% CMC) was administered (os) 1 h after ischemia and 6 h
after reperfusion, and the rats were sacrificed 24 h later;

Sham + vehicle: Rats were subjected to the same procedures, but the filament was introduced into
the internal carotid artery and suddenly withdrawn, and the rats were kept under anesthesia for the
duration of the experiment. The animals were administered (os) 1.5% (w/v) CMC in saline at the same
time point as the MCAo group and were sacrificed 24 h later;

Sham + PEA: The animals were the same as the sham-operated rats except for the administration
of PEA (10 mg/kg in 1.5% CMC, os) 1 h after ischemia and 6 h after reperfusion, and the rats were
sacrificed 24 h later (data not shown);

Sham + PEA-OXA: The animals were the same as the sham-operated rats except for the
administration of PEA-OXA (10 mg/kg in 1.5% CMC, os) 1 h after ischemia and 6 h after reperfusion,
and they were sacrificed 24 h later (data not shown).

Rats were given buprenorphine (0.03 mg/kg, subcutaneous) and saline immediately after surgery.
Randomization based on a single sequence of random assignments is known as simple

randomization [95–97]. This technique maintains complete randomness of the assignment of a subject
to a particular group. We used the most common and basic method of simple randomization: flipping
a coin.

The doses (10 mg/kg) of PEA and PEA-OXA, the administration route (os), and the vehicle
employed were chosen basing on our previous study [44,72,89].

At the conclusion of the experiment, animals were euthanized under anesthesia: the brain
was removed and fixed in 10% neutral-buffered formalin and then embedded in paraffin for future
histological analysis or stored at −80 ◦C for western blot or biochemical analyses (see graphical
timeline).

4.6. Quantification of Infarct Volume

Tissues were incubated in a 2% solution of 2,3,5-triphenyltetrazolium chloride (TTC) for 30 min
at 37 ◦C, processed, and quantified as previously described [96–98]. All analyses were carried out by
two observers blinded to the treatment.

4.7. Histological Evaluation

A histological evaluation was made as previously described by Ahmad et al. [88,99]. For the
histology, a 20×magnification is shown (50-µm scale bar). All analyses were carried out by two observers
blinded to the treatment.

4.8. Toluidine Blue Staining

In order to evaluate mast cell numbers and degranulation, brain tissue sections were stained with
toluidine blue. Sections were stained blue, while the mast cells were stained purple. The mast cell
count was performed on each slide through an Axiovision Zeiss (Milan, Italy) microscope and is shown
at a 100×magnification (10-µm scale bar). All analyses were carried out by two observers blinded to
the treatment.
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4.9. Immunohistochemical Localization of Tryptase, Caspase-3, Interleukin-1 Beta (IL-1β), Tumor Necrosis
Factor-Alpha (TNF-α), and Transforming Growth Factor Beta (TGF-β)

An immunohistochemical localization was done as previously described by Cordaro et al. [45].
Slices were incubated at room temperature overnight with one of the following primary antibodies:
anti-tryptase (Santa Cruz Biotechnology, Heidelberg, Germany, 1:100 in PBS, v/v), anti-caspase-3
(Cell Signalling, Danvers, MA, USA 1:300 in PBS, v/v), anti-IL-1β (Santa Cruz Biotechnology, Heidelberg,
Germany, 1:50 in PBS, v/v), anti-TNF-α (Santa Cruz Biotechnology, Heidelberg, Germany, 1:100 in PBS,
v/v), or anti-TGF-β (Santa Cruz Biotechnology, Heidelberg, Germany 1:50 in PBS, v/v). For a graphic
display of the densitometric analyses, the % of positive staining (brown staining) was measured by
computer-assisted color image analysis (Leica QWin V3, Newcastle, UK). The percentage area of
immunoreactivity (determined by the number of positive pixels) was expressed as % of total tissue
area (red staining) within five random fields at a 40×magnification. In particular, first the colors of the
images that were stained on the molecule of interest were defined. Once these colors were defined,
they were automatically detected in all samples. This is a semiquantitative analysis that measures areas
and not intensities [100,101]. Replicates for each experimental condition and histochemical staining
were acquired from each mouse in each experimental group. All immunohistochemical analyses were
carried out by two observers blinded to the treatment.

4.10. Immunofluorescence of Brain-Derived Neurotrophic Factor (BDNF) and Glial Cell-derived Neurotrophic
Factor (GDNF)

Brain tissue sections were incubated with one of the following primary antibodies—anti-BDNF
rabbit polyclonal (1:100, Santa Cruz Biotechnology) or anti-GDNF (1:100, Santa Cruz Biotechnology)—in
a humidified chamber at 37 ◦C overnight. Sections were washed with PBS and were incubated with
secondary antibody TEXAS RED-conjugated antirabbit Alexa Fluor-594 antibody (1:1000 in PBS, v/v,
Molecular Probes, Altrincham, UK) and with FITC-conjugated antimouse Alexa Fluor-488 antibody
(1:2000 v/v, Molecular Probes, Altrincham, UK) for 1 h at 37 ◦C. Sections were laved, and for
nuclear staining, 4′,6′-diamidino-2-phenylindole (DAPI; Hoechst, Frankfurt, Germany) (2 µg/mL) in
PBS was added. Sections were observed and photographed at a 100× magnification using a Leica
DM2000 microscope. All analyses were carried out by two observers blinded to the treatment.
For immunofluorescence, a 100×magnification is shown (10-µm scale bar).

4.11. Western Blot Analysis for SIRT1, UCP2, IkB-α, NF-kB, Bax, and Bcl-2

Western blots were done as previously described [45]. Filters were blocked with 1 × PBS and
5% (w/v) no-fat dried milk (PM) for 40 min at room temperature and then probed with one of the
following primary antibodies—anti-SIRT1 (1:500, Santa Cruz Biotechnology), anti-UCP2 (1:500, Santa
Cruz Biotechnology), anti-IkB-α (1:500, Santa Cruz Biotechnology, #sc1643), anti-Bax (1:500, Santa Cruz
Biotechnology, #sc526), or anti-Bcl-2 (1:500, Santa Cruz Biotechnology, #sc492)—in 1× PBS, 0.1%
Tween-20, and 5% w/v no-fat dried milk (PMT) at 4 ◦C overnight. Membranes were incubated with
peroxidase-conjugated bovine antimouse IgG secondary antibody or peroxidase-conjugated goat
antirabbit IgG (1:2000, Jackson ImmunoResearch, West Grove, PA,USA) for 1 h at room temperature.
Blots were also incubated with primary antibody against β-actin protein (1:10,000; Sigma-Aldrich
Corp., St. Louis, MO, USA) or laminin (1:10,000; Sigma-Aldrich Corp, St. Louis, MO, USA), which were
used as internal standards. The relative expressions of the protein bands of SIRT1 (120 kDa), UCP2
(33 kDa), IkB-α (37 kDa), NF-kB p65 (65 kDa), Bax (23 kDa), and Bcl-2 (29 kDa) were detected and
quantified by densitometry. In the experiments, including the western blot analysis, a representative
blot is displayed and a densitometric analysis is related in each figure. All analyses were carried out by
two observers blinded to the treatment.
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4.12. TUNEL Staining

The TUNEL staining protocol was according to the Roche protocol previously described by Fusco
et al. [102]. The tissue was then rinsed in PBS 3 times for 5 min and then observed using an excitation
wavelength in the range of 520–560 nm (maximum 540; green) and in the range of 570–620 nm
(maximum 580 nm; red). For TUNEL staining, a 100× magnification is shown (10-µm scale bar).
All analyses were carried out by two observers blinded to the treatment.

4.13. NAD+/NADH Assay

NAD+ and NADH levels were analyzed by an assay kit according to the manufacturer’s
instructions (Suzhou Comin, China). The brain was homogenized in the lysis buffer and was then
centrifuged at 4 ◦C. MTT was then reduced to formazan by the supernatant. The formazan was
dissolved in the buffer, and the absorbance was read at 570 nm. The relative level of NAD+ was
expressed as an NAD+/NADH ratio. All analyses were carried out by two observers blinded to
the treatment.

4.14. GSH Levels Assay

GSH levels were analyzed using an assay kit according to the manufacturer’s instructions
(Nanjing Jiancheng, Jiangsu, China). The brain was homogenized in saline and was then centrifuged
at 4 ◦C. The supernatant was set to react with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). Then the
absorbance was read at 405 nm. The level of GSH was expressed as µmol/g protein. All analyses were
carried out by two observers blinded to the treatment.

4.15. SOD Activity Assay

SOD activity was determined using an activity assay kit according to the manufacturer’s
instructions. The brain was homogenized in saline and was then centrifuged at 4 ◦C. The absorbance
was read at 450 nm. The SOD activity was expressed as U/mg protein. All analyses were carried out by
two observers blinded to the treatment.

4.16. LDH Release Detection

Twenty-four hours after reperfusion, each rat was euthanized, the blood was collected, and
the serum was separated. Lactate dehydrogenase (LDH) release was measured. The detection was
conducted with an assay kit (Solarbio, Beijing, China). All analyses were carried out by two observers
blinded to the treatment.

4.17. RT-PCR

Total RNA was extracted according to the manufacturer’s protocol and reverse-transcribed using
2-µg oligo(dT)15 primer, 10 units of AMV reverse transcriptase, 40 units of RNase inhibitor (all from
Promega, Southampton, UK), and 1.25 mM of dNTP (Bioline, London, UK) for 45 min at 42 ◦C. Real-time
PCR was carried out using TaqMan Universal PCR master mix and fluorescent primers obtained
from Quiagen (QuantiTect primers, Skelton House, UK). Cycling conditions were set according to the
manufacturer’s instructions. Sequence-specific fluorescent signals were detected by an ABI Prism
7700Sequence Detector System, and mRNA data were normalized relative to GADPH and then used
to calculate expression levels.

4.18. Materials

STZ and the other compounds were acquired from Sigma-Aldrich Company Ltd. (Milan, Italy).
All other chemicals were of the highest viable grade available. All stock solutions were arranged in
nonpyrogenic saline (0.9% NaCl; Baxter, Milan, Italy). PEA and PEA-OXA were kindly provided by
the Epitech Group (Saccolongo, Padua, Italy).
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4.19. Statistical Analysis

All values are shown as the mean ± standard error of the mean (SEM) of N observations. In the
experiments, including the immunohistochemistry, histology, and immunofluorescence, the figures
shown are representative of at least three experiments performed on different days on tissue sections
collected from all animals in each group. Data were analyzed by one-way ANOVA followed by
a Bonferroni post hoc test for multiple comparisons. A p-value of less than 0.05 was considered
significant: * p < 0.05 versus sham; ◦ p < 0.05 versus vehicle; ** p < 0.01 versus sham; ◦◦ p < 0.01 versus
vehicle; *** p < 0.001 versus sham; ◦◦◦ p < 0.001 versus vehicle; # p < 0.05 versus PEA; ## p < 0.01 versus
PEA; ### p < 0.001 versus PEA.

5. Conclusions

In summary, our data clearly demonstrated for the first time that PEA-OXA treatment (10 mg/kg)
significantly improved neurological injuries induced by transient MCAo compared to a simple PEA
treatment at the same dose.
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Abbreviations

HE hematoxylin and eosin
GFAP antiglial fibrillary acidic protein
Iba-1 ionized calcium-binding adaptor molecule 1
BDNF brain-derived neurotrophic factor
GDNF glial cell-derived neurotrophic factor
IL-1β interleukin 1 beta
IκB-α nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha
NAAA N-acylethanolamine-hydrolyzing acid amidase
NFκB nuclear factor-κB
NGF nerve growth factor
PEA N-palmitoylethanolamide
PEA-OXA 2-pentadecyl-2-oxazoline
rCBF regional cerebral blood flow
ROS reactive oxygen species
SIRT1 silent information regulator 1
STZ streptozotocin
TGF- β transforming growth factor beta
TNF-α tumor necrosis factor-alpha
UCP2 uncoupling protein 2
VEGF vascular endothelial growth factor
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