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Abstract
In this paper, we present new applications of our general minimax theorems. In particular,
one of them concerns the multiplicity of global minima for the integral functional of the
Calculus of Variations.
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Integral functional · Neumann problem
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1 Statements of theMain Results

This is the second ring of a chain of papers (started with [14]) which is devoted to conse-
quences and applications of certain general minimax theorems that we have established in
the past years [5–15].

The motivation for such papers is just to show the great flexibility and usefulness of those
theorems.

The two main results that we want to prove in the present paper are Theorems 1.1 and
1.2 below.

A real-valued function f on a topological space is said to be inf-connected (resp. sup-
connected) if f −1(] − ∞, r[) (resp. f −1(]r, +∞[)) is connected for all r ∈ R.

Theorem 1.1 Let X and Y be two real Banach spaces; � : X → Y a surjective continuous
linear operator; � : X → Y a non-constant Lipschitzian operator with Lipschitz constant
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B. Ricceri

equal to L; ϕ : Y → R a non-constant, continuous, concave and inf-connected functional;
[a, b] a closed sub-interval of [−1, 1].

Then, for every continuous and concave function γ : [a, b] → R, one has

max

{
inf
x∈X

ϕ

(
�(x) + a

α�L
�(x)

)
+ γ (a), inf

x∈X
ϕ

(
�(x) + b

α�L
�(x)

)
+ γ (b)

}

= inf
x∈X

sup
λ∈[a,b]

(
ϕ

(
�(x) + λ

α�L
�(x)

)
+ γ (λ)

)
,

where
α� = sup

‖y‖Y ≤1
dist(0,�−1(y)).

Let � ⊂ Rn be a bounded domain with smooth boundary and let p > 1. On the Sobolev
space W 1,p(�), we consider the norm

‖u‖ =
(∫

�

|∇u(x)|pdx +
∫

�

|u(x)|pdx

) 1
p

.

If n ≥ p, we denote byA the class of all continuous functions ψ : R → R such that

sup
ξ∈R

|ψ(ξ)|
1 + |ξ |q < +∞,

where 0 < q <
pn

n−p
if p < n and 0 < q < +∞ if p = n. While, when n < p, A stands

for the class of all continuous functions ψ : R → R.
Recall that a function ϕ : � × Rm → R is said to be a normal integrand [16] if it

is L(�) ⊗ B(Rm)-measurable and ϕ(x, ·) is lower semicontinuous for a.e. x ∈ �. Here
L(�) and B(Rm) denote the Lebesgue and the Borel σ -algebras of subsets of � and Rm,
respectively.

Recall that if ϕ is a normal integrand then, for each measurable function u : � → Rm,
the composite function x → ϕ(x, u(x)) is measurable [16].

A real-valued function f on a convex set is said to be quasi-convex (resp. quasi-concave)
if f −1(] − ∞, r[) (resp. f −1(]r,+∞[)) is convex for all r ∈ R.

Theorem 1.2 Let ϕ : �×R×Rn → R be a normal integrand such that ϕ(x, ξ, ·) is convex
for all (x, ξ) ∈ � × R and let ψ ∈ A be a strictly monotone function. Assume that
(i) There are c, d > 0 such that

c|η|p − d ≤ ϕ(x, ξ, η)

for all (x, ξ, η) ∈ � × R × Rn and

lim|ξ |→+∞
inf(x,η)∈�×Rn ϕ(x, ξ, η)

|ψ(ξ)| + 1
= +∞;

(ii) For each ξ ∈ R, the function ϕ(·, ξ, 0) lies in L1(�) and the function
∫
�

ϕ(x, ·, 0)dx is
not quasi-convex.

Then, for every sequentially weakly closed set V ⊆ W 1,p(�), containing the constants,
and for every convex set Y ⊆ L∞(�), dense in L∞(�), there exists α ∈ Y such that the
restriction to V of the functional

u →
∫

�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx
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Miscellaneous Applications of Certain Minimax Theorems II

has at least two global minima. The same property holds also with Y = C∞
0 (�).

2 Tools for Proving theMain Results

In this section, for reader’s convenience, we collect the tools that we will use to prove
Theorems 1.1 and 1.2. For the basic notions on multifunctions, we refer to [1]. The results
without any reference are new.

Theorem 2.A [10, Theorem 5.7] Let X be a topological space, I a compact real interval,
and f : X× I → R a function which is lower semicontinuous in X, and quasi-concave and
upper semicontinous in I . Moreover, assume that the set

{λ ∈ I : f (·, λ) is inf-connected in X}
is dense in I .

Then, one has
sup
I

inf
X

f = inf
X

sup
I

f .

A real-valued function f on a topological space is said to be inf-compact if f −1(] −
∞, r]) is compact for all r ∈ R.

Theorem 2.B [15, Theorem 1.2] Let X be a topological space, E a real vector space, Y ⊆
E a non-empty convex set, and f : X × Y → R a function which is lower semicontinuous
and inf-compact in X, and concave in Y . Moreover, assume that

sup
Y

inf
X

f < inf
X

sup
Y

f .

Then, there exists ŷ ∈ Y such that the function f (·, ŷ) has at least two global minima.

Proposition 2.A [10, Proposition 5.6] LetX and Y be two topological spaces, F : X → 2Y

a lower semicontinuous multifunction with non-empty values, and A ⊆ X a connected set.
Assume that the set

{x ∈ A : F(x) is connected}
is dense in A.

Then, the set F(A) is connected.

Theorem 2.C [4, Théorème 2] Let X and Y be two real Banach spaces, � : X → Y a
surjective continuous linear operator, and� : X → Y a non-constant Lipschitzian operator
with Lipschitz constant equal to L. Assume that α�L < 1.

Then, the multifunction y → (� + �)−1(y) is Lipschitzian in Y and its values are
absolute retracts.

We now are in a position to prove the following result from which we will draw
Theorem 1.1:

Theorem 2.1 Let X be a topological space; E a real topological vector space; Y a convex
subset of E; ϕ : Y → R a continuous, concave, and inf-connected functional; I a compact
real interval; and f, g : X → E two continuous functions such that f (x) + λg(x) ∈ Y

for all x ∈ X, λ ∈ I . Moreover, assume that there exists a set D ⊆ I , dense in I , with the
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following property: for each λ ∈ D, the function f + λg is onto Y and open with respect
to the relative topology of Y , and there exists a set Sλ ⊆ Y , dense in Y , such that the set
(f + λg)−1(y) is connected for each y ∈ Sλ.

Then, for every continuous and concave function γ : I → R, one has

inf
x∈X

sup
λ∈I

(ϕ(f (x) + λg(x)) + γ (λ)) = sup
λ∈I

inf
x∈X

(ϕ(f (x) + λg(x)) + γ (λ)).

Proof Consider the function ψ : X × I → R defined by

ψ(x, λ) = ϕ(f (x) + λg(x)) + γ (λ)

for all (x, λ) ∈ X × I . Clearly, for each x ∈ X, the function ψ(x, ·) is concave and contin-
uous in I . Now, fix λ ∈ D. Let r ∈ R be such that {x ∈ X : ψ(x, λ) < r} �= ∅. Clearly, we
have

{x ∈ X : ψ(x, λ) < r} = (f + λg)−1(ϕ−1(] − ∞, r − γ (λ)[)).
Now, observe that ϕ−1(] − ∞, r − γ (λ)[) is open in Y and connected since ϕ is continuous
and inf-connected. But, since λ ∈ D, the multifunction y → (f + λg)−1(y) is non-empty
valued and lower semicontinuous in Y . Since Sλ∩ϕ−1(]−∞, r−γ (λ)[) is dense in ϕ−1(]−
∞, r − γ (λ)[), thanks to Proposition 2.A, we conclude that the set (f + λg)−1(ϕ−1(] −
∞, r − γ (λ)[)) is connected. Clearly, ψ(·, λ) is continuous in X for all λ ∈ I . Now, the
conclusion follows directly from Theorem 2.A.

The following two results will be used jointly with Theorem 2.B to prove Theorem 1.2.

Proposition 2.1 Let � ⊂ Rn be a bounded domain with smooth boundary, let p > 1, and
let ϕ : � × R × Rn → R be a normal integrand such that, for some c, d > 0, one has

c|η|p − d ≤ ϕ(x, ξ, η)

for all (x, ξ, η) ∈ � × R × Rn and

lim|ξ |→+∞ inf
(x,η)∈�×Rn

ϕ(x, ξ, η) = +∞.

Then, in W 1,p(�), one has

lim‖u‖→+∞

∫
�

ϕ(x, u(x),∇u(x))dx = +∞.

Proof Clearly, for each u ∈ W 1,p(�), the integral
∫
�

ϕ(x, u(x),∇u(x))dx exists and
belongs to ] − ∞,+∞]. Fix a sequence {un} in W 1,p(�) such that limn→∞ ‖un‖ = +∞.
We have to show, up to a sub-sequence, that

lim
n→∞

∫
�

ϕ(x, un(x),∇un(x))dx = +∞.

If the sequence
{∫

�
|∇un(x)|pdx

}
is unbounded, this clearly holds, due to the assumed

growth of ϕ. So, assume that the sequence
{∫

�
|∇un(x)|pdx

}
is bounded. Then, by the

Poincaré-Wirtinger inequality, there exists a constant γ > 0 such that∫
�

|un(x) − an|pdx ≤ γ

for all n ∈ N, where

an =
∫
�

un(x)dx

m(�)
,
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m(�) being the Lebesgue measure of �. Since

lim
n→∞

∫
�

|un(x)|pdx = +∞
we clearly have

lim
n→∞ |an| = +∞.

Fix any M > 0. Then, there exists δ > 0 such that

ϕ(x, ξ, η) ≥ M

for all (x, ξ, η) ∈ � × R × Rn with |ξ | ≥ δ. We now show that

lim
n→∞ m(An) = m(�),

where
An = {x ∈ � : |un(x)| ≥ δ}.

Arguing by contradiction, assume that

lim inf
n→∞ m(An) < m(�).

Fix ρ satisfying
lim inf
n→∞ m(An) < ρ < m(�).

Now, fix θ > γ and n ∈ N so that, at the same time, one has

|an| >

(
θ

m(�) − ρ

) 1
p + δ

as well as
m(An) < ρ.

Then, one has

γ ≥
∫

�

|un(x) − an|pdx ≥
∫

�\An

|un(x) − an|pdx > (|an| − δ)p(m(�) − ρ) > θ,

an absurd. Now, for each n ∈ N, we have∫
�

ϕ(x, un(x),∇un(x))dx =
∫

An

ϕ(x, un(x),∇un(x))dx+
∫

�\An

ϕ(x, un(x),∇un(x))dx

≥ Mm(An) − m(� \ An)d.

Therefore,

lim inf
n→∞

∫
�

ϕ(x, un(x),∇un(x))dx ≥ Mm(�).

Since M is arbitrary, the sequence {∫
�

ϕ(x, un(x),∇un(x))dx} diverges and the proof is
complete.

Proposition 2.2 Let X and Y be two non-empty sets and f : X → R and g : X × Y → R
two given functions. Assume that there are two sets A, B ⊂ X such that
(a) supA f < infB f ;
(b) supy∈Y infx∈A g(x, y) ≤ 0;
(c) infx∈B supy∈Y g(x, y) ≥ 0;
(d) infx∈X\B supy∈Y g(x, y) = +∞.

Then, one has

sup
y∈Y

inf
x∈X

(f (x) + g(x, y)) < inf
x∈X

sup
y∈Y

(f (x) + g(x, y)).
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Proof Fix y ∈ Y and ε ∈]0, infB f − supA f [ as well. Since infx∈A g(x, y) ≤ 0, there is
x̃ ∈ A such that g(x̃, y) < ε. Hence, we have

inf
x∈X

(f (x) + g(x, y)) ≤ f (x̃) + g(x̃, y) < sup
A

f + ε,

from which it follows that

sup
y∈Y

inf
x∈X

(f (x) + g(x, y)) ≤ sup
A

f + ε < inf
B

f . (2.1)

On the other hand, in view of (c) and (d), we have

inf
B

f ≤ inf
x∈B

(f (x) + sup
y∈Y

g(x, y)) = inf
x∈B

sup
y∈Y

(f (x) + g(x, y)) = inf
x∈X

sup
y∈Y

(f (x) + g(x, y)).

(2.2)
Now, the conclusion follows directly from (2.1) and (2.2).

We also recall the following well-known fact:

Proposition 2.3 Let A ⊆ Rn be any non-empty open set and let v ∈ L1(�) \ {0}.
Then, one has

sup
α∈C∞

0 (A)

∫
A

α(x)v(x)dx = +∞.

3 Proof and Corollary of Theorem 1.1

Let λ ∈]a, b[. The Lipschitz constant of the operator λ
α�L

� is equal to |λ|
α�

and so it is strictly

less than 1
α�

. Then, by Theorem 2.C, the multifunction y → (� + λ
α�L

�)−1(y) is lower
semicontinuous (since it is Lipschitzian) and its values are non-empty and connected (since
they are absolute retracts). So, the operator � + λ� is onto Y and open. Consequently, the
operators � and � satisfy the assumptions of Theorem 2.1, with D =]a, b[ and Sλ = Y .
Hence, the conclusion is directly ensured by Theorem 2.1.

Let us notice explicitly the following corollary of Theorem 1.1.

Corollary 3.1 Let X and Y be two real Banach spaces, with dim(Y ) ≥ 2, � : X → Y

a surjective continuous linear operator, � : X → Y a non-constant Lipschitzian operator
with Lipschitz constant equal to L, and [a, b] a closed sub-interval of [−1, 1].

Then, for each pair of continuous and convex functions θ : [0,+∞[→ R, η : [a, b] →
R, with θ strictly increasing, one has

min

{
sup
x∈X

θ

(∥∥∥∥�(x) + a

α�L
�(x)

∥∥∥∥
Y

)
+ η(a), sup

x∈X

θ

(∥∥∥∥�(x) + b

α�L
�(x)

∥∥∥∥
Y

)
+ η(b)

}

= sup
x∈X

inf
λ∈[a,b]

(
θ

(∥∥∥∥�(x) + λ

α�L
�(x)

∥∥∥∥
Y

)
+ η(λ)

)
.

Proof Since dim(Y ) ≥ 2, the norm on Y is a convex and sup-connected functional and
hence so is θ(‖·‖Y ). Then, we can apply Theorem 2.1 taking ϕ(·) = −θ(‖·‖Y ) and γ = −η,
and the conclusion follows.
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Remark 1 Notice that Corollary 3.1 does not hold, in general, if Y = R. In this connection,
it is enough to take X = R, �(x) = x, �(x) = |x|, [a, b] = [−1, 1], θ(t) = t , η = 0.
Hence, L = α� = 1 and we have

sup
x∈R

inf|λ|≤1
|x + λ|x|| = 0 < +∞ = inf|λ|≤1

sup
x∈R

|x + λ|x||.

4 Proof of Theorem 1.2

First, notice that, in view of the Rellich-Kondrachov theorem, for each u ∈ W 1,p(�),
we have ψ ◦ u ∈ L1(�) and for each α ∈ L∞(�) the functional u →∫
�

α(x)ψ(u(x))dx is sequentially weakly continuous. Moreover, by (i), the functional
u → ∫

�
ϕ(x, u(x),∇u(x)dx is sequentially weakly lower semicontinuous [2, Theorem

4.6.8]. Now, let V be a sequentially weakly closed subset of W 1,p(�) containing the
constants and let Y be a dense subset of L∞(�). Put

X =
{
u ∈ V :

∫
�

ϕ(x, u(x),∇u(x))dx < +∞
}
.

By (ii), the constants belong to X. Fix α ∈ L∞(�). By (i), there is δ > 0 such that

ϕ(x, ξ, η) − 2‖α‖L∞(�)|ψ(ξ)| ≥ 0

for all (x, ξ, η) ∈ � × R × Rn with |ξ | > δ. So, we have
c

2
|η|p − d − ‖α‖L∞(�) sup

|ξ |≤δ

|ψ(ξ)| ≤ ϕ(x, ξ, η) + α(x)ψ(ξ)

for all (x, ξ, η) ∈ � × R × Rn and, of course,

lim|ξ |→+∞ inf
(x,η)∈�×Rn

(ϕ(x, ξ, η) + α(x)ψ(ξ)) = +∞.

Consequently, in view of Proposition 2.1, we have, in W 1,p(�),

lim‖u‖→+∞

(∫
�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx

)
= +∞.

This implies that, for each r ∈ R, the set{
u ∈ V :

∫
�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx ≤ r

}

is weakly compact by reflexivity and Eberlein-Smulyan’s theorem. Of course, we also have{
u ∈ V :

∫
�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx ≤ r

}

=
{
u ∈ X :

∫
�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx ≤ r

}
.

Since the function
∫
�

ϕ(x, ·, 0)dx is not quasi-convex, there are ξ1, ξ2, ξ3 ∈ R, with
ξ1 < ξ2 < ξ3, such that

max

{∫
�

ϕ(x, ξ1, 0)dx,

∫
�

ϕ(x, ξ3, 0)dx

}
<

∫
�

ϕ(x, ξ2, 0)dx.

Now, observe that, if we put
A = {ξ1, ξ3}
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and
B = {ξ2},

and define f : X → R, g : X × Y → R by

f (u) =
∫

�

ϕ(x, u(x),∇u(x))dx, g(u, α) =
∫

�

α(x)(ψ(u(x)) − ψ(ξ2))dx

for all u ∈ X, α ∈ Y , we clearly have

sup
A

f < inf
B

f

and
inf
u∈B

sup
α∈Y

g(u, α) = 0.

Since ψ is strictly monotone, the numbers ψ(ξ1)−ψ(ξ2) and ψ(ξ3)−ψ(ξ2) have opposite
signs. This clearly implies that

sup
α∈Y

inf
u∈A

g(u, α) ≤ 0.

Furthermore, if u ∈ X \ {ξ2}, again by strict monotonicity, ψ ◦ u �= ψ(ξ2), and so, since Y

is dense in L∞(�), we have
sup
α∈Y

g(u, α) = +∞.

Therefore, the setsA andB and the functions f and g satisfy the assumptions of Proposition
2.2. Consequently, we have

sup
α∈Y

inf
u∈X

(∫
�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx

)

< inf
u∈X

sup
α∈Y

(∫
�

ϕ(x, u(x),∇u(x))dx +
∫

�

α(x)ψ(u(x))dx

)
.

Now, the conclusion is a direct consequence of Theorem 2.B. When Y = C∞
0 (�), the same

proof as above holds in view of Proposition 2.3.
We conclude presenting an application of Theorem 1.2 to the Neumann problem.
We denote by Ã the class of all Carathéodory functions ψ : � × R → R such that

sup
(x,ξ)∈�×R

|ψ(x, ξ)|
1 + |ξ |q < +∞,

where 0 < q <
pn−n+p

n−p
if p < n and 0 < q < +∞ if p = n. While, when n < p, Ã

stands for the class of all Carathéodory functions ψ : � × R → R. Given ψ ∈ Ã, consider
the following Neumann problem⎧⎨

⎩
−div(|∇u|p−2∇u) = ψ(x, u) in �
∂u

∂ν
= 0 on ∂�

(Pψ )

where ν is the outward unit normal to ∂�. Let us recall that a weak solution of (Pψ ) is any
u ∈ W 1,p(�) such that∫

�

|∇u(x)|p−2∇u(x)∇v(x)dx −
∫

�

ψ(x, u(x))v(x)dx = 0

for all v ∈ W 1,p(�).
If ψ ∈ Ã, we set �(x, ξ) = ∫ ξ

0 ψ(x, t)dt . Clearly, �(x, ·) lies inA.
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Theorem 4.1 Let f, g : R → R be two functions lying in Ã and satisfying the following
conditions:
(a1) The function g has a constant sign and int(g−1(0)) = ∅;
(a2) lim|ξ |→+∞ F(ξ)

|G(ξ)|+1 = +∞;
(a3) The function F − G is not quasi-convex.

Then, for each β ∈ L∞(�), with inf� β > 0, and for each convex set Y ⊆ L∞(�), dense
in L∞(�), there exists α ∈ Y such that the problem⎧⎨

⎩
− div(|∇u|p−2∇u) = α(x)g(u) − β(x)f (u) in �
∂u

∂ν
= 0 on ∂�,

(P)

has at least three weak solutions.

Proof Fix β ∈ L∞(�), with inf� β > 0, and a convex set Y ⊆ L∞(�), dense in L∞(�).
We are going to apply Theorem 1.2, defining ϕ,ψ by

ϕ(x, ξ, η) = 1

p
|η|p + β(x)(F (ξ) − G(ξ))

and
ψ(ξ) = −G(ξ)

for all (x, ξ, η) ∈ � ×R×Rn. It is immediate to realize that, by (a1)–(a3), the above ϕ,ψ

satisfy the assumptions of Theorem 1.2. Of course, the set Y − β is convex and dense in
L∞(�). Then, Theorem 1.2 ensures the existence of α ∈ Y such that the functional

u →
∫

�

ϕ(x, u(x),∇u(x))dx +
∫

�

(α(x) − β(x))ψ(u(x))dx

= 1

p

∫
�

|∇u(x)|pdx +
∫

�

β(x)F (u(x))dx −
∫

�

α(x)G(u(x))dx

has at least two global minima in W 1,p(�). But, by classical results, such a functional is
C1 and satisfies the Palais-Smale condition and hence, by [3, Corollary 1], has at least three
critical points which are weak solutions of problem (P).

In conclusion, we want to remark a feature of Theorem 2.A, the main tool that we used
to prove Theorem 1.1: the second variable of f runs over a real interval. An important
contribution to this kind of result has been provided by H. Tuy in [17].
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