
The Trojan Horse Method in Nuclear Astrophysics

Aurora Tumino1,2,�, Claudio Spitaleri2, Silvio Cherubini2,3, Giuseppe D’Agata2, Giovanni Luca 
Guardo2, Marisa Gulino1,2, Iolanda Indelicato2, Marco La Cognata2, Livio Lamia2, Rosario 
Gianluca Pizzone2, Giuseppe Gabriele Rapisarda2, Stefano Romano2,3, Maria Letizia Sergi2, 
and Roberta Spartá2

1Facoltá di Ingegneria e Architettura, Universitá degli Studi di Enna "Kore", Enna, Italy
2INFN-Laboratori Nazionali del Sud, Catania, Italy
3Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania, Catania, Italy

Abstract. The Trojan Horse Method (THM) represents the indirect way to measure
reactions between charged particles at astrophysical energies. This is done by measuring
the quasi free cross section of a suitable three body process. The basic features of the
THM will be presented together with some applications to demonstrate its practical use.

1 Introduction

The Trojan Horse Method (THM) has been introduced in nuclear astrophysics as an indirect approach
to determine low-energy cross sections overcoming the main issues of direct experiments, such as the
Coulomb repulsion and the electron screening [1, 2]. The first one is responsible for the exponential
decrease of the cross section at the relevant temperatures, while the electron screening, due to the
electrons surrounding the interacting ions, leads to an increased cross section compared to the one for
bare nuclei that is necessary to assess the reaction rate in astrophysical plasma.
The THM ([3–6] and references therein) makes use of a suitable A + a→b + B + s two-to-three body
process to measure the astrophysical A+ x→b+B two-body reaction of interest by means of a relation
between the two based on nuclear reaction theories. The choice of the three-body process is done in
such a way that target a (or equivalently the projectile) has a wave function with a large amplitude for a
x− s cluster configuration, x being the target (or equivalently the projectile) of the two-body reaction.
The selected part of the three-body phase space conveys with the quasi-free (QF) kinematics: the
other cluster s remains spectator to the process, and A+ x→b+B can be regarded as a half-off-energy-
shell (HOES) two-body reaction, usually referred to as a QF reaction. The QF reaction mechanism
is sketched in Fig.1 using a pole diagram with upper and lower vertexes describing the break-up of a
and the A + x→b + B two-body reaction, respectively.

Since the three-body process occurs at an energy above the Coulomb barrier, the main feature
is the real suppression of both Coulomb barrier and screening effects in the HOES two-body cross
section. Nevertheless, the quasi-free A + x process can occur even at very low sub-Coulomb energies
because the A + a relative motion is compensated for by the x − s binding energy. This is indeed a
different approach to the THM [3] compared to the original idea of Baur [7], where the initial velocity
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and do not depend on the geometrical parameters of the bound-
state potentials. Taking into account (2.47) and (2.53), we can
rewrite the DWBA cross section for the peripheral transfer in
the form
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is nearly independent of the single-particle ANCs bnalajaJa
and

bnF lF jF JF
for peripheral reactions. Thus the introduction of

condition (2.47) into the standard DWBA analysis guarantees
the correct absolute normalization of the peripheral reaction
cross section; it is actually parametrized in terms of the product
of the square of the ANCs of the initial and final nuclei
(CF

xAlF jF JF
)2 (Ca

sxlajaJa
)2, rather than SFs. Furthermore, in this

form, it is insensitive to the assumed geometries of the bound-
state potentials.

The angular distributions of the heavy ion induced
reactions at energies well above the Coulomb barrier are
forward peaked and reactions are peripheral near the main
peak in the angular distribution, where they are dominated
by the peripheral partial waves li > kiRi, lf > kf Rf .
Normalization of the DWBA differential cross section to the
experimental one in the region of the main peak in the angular
distribution allows one to determine (CF

xAlF jF JF
)2 (Ca

sxlajaJa
)2.

Equation (2.55) represents the basis for the determination of
the product of the ANCs involved in a transfer reaction. In
transfer reactions, two possibilities can occur. If a and F

are the same nuclei, that is, we have an elastic exchange
reaction, the DWBA cross section is expressed in terms of
(Ca

sxlajaJa
)4 and this ANC can be determined by normalizing

the DWBA cross section to the experimental one. If aand F are
different nuclei, then to determine CF

xAlF jF JF
, one has to know

Ca
sxlajaJa

from an independent measurement. Since the ANC is
a model independent quantity, the ANC Ca

sxlajaJa
found from

any other reliable experimental source—including those found
from transfer reactions involving light or heavy ions or from
analysis of elastic scattering—can be used in the subsequent
DWBA analysis. Besides the ambiguity of the optical potential
parameters, the ANCs determined from experiments using the
DWBA analysis can be affected by coupling of the different
channels which should be taken into account explicitly. It has
been investigated in Nunes and Mukhamedzhanov (2001) and
taken into account in Mukhamedzhanov et al (2003a).

2.2. Introduction to the THM

The THM is a powerful indirect technique that allows one to
determine the astrophysical factor for rearrangement reactions.
The THM, first suggested by Baur (1986), involves obtaining
the cross section of the binary process x + A → b + B

at astrophysical energies by measuring the Trojan Horse
(TH) reaction (the two-body to three-body process (2 → 3

Figure 2. The diagram describing the TH reaction
a + A → b + B + s in the QF kinematics.

particles)) a +A → b+B + s in the quasi-free (QF) kinematics
regime, where the ‘Trojan Horse’ particle, a = (s x), which
has a dominant cluster structure, is accelerated at energies
above the Coulomb barrier. After penetrating the barrier, the
TH-nucleus a undergoes breakup leaving particle x to interact
with target A while projectile s, also called a spectator, flies
away. From the measured cross section of TH reaction, the
energy dependence of the binary sub-process is determined.

The reaction used in the THM can proceed through
different reaction mechanisms. The TH reaction mechanism
shown schematically in figure 2, gives the dominant
contribution to the cross section in a restricted region of the
three-body phase space when the relative momentum of the
fragments s and x is zero (the QF kinematical condition) or
small compared to the bound state (s x) wave number. Since
the transferred particle x in the TH reaction is virtual, its
energy and momentum are not related by the on-shell equation
Ex = k2

x/(2mx).
In the THM the initial channel is a + A, where a = (sx),

rather than just x + A. This results in three particles in the
final state of the TH reaction, b + B + s, rather than the two-
particle final state b + B in the binary reaction. To increase the
TH triple differential cross section the relative kinetic energy
EaA in the initial channel of the TH reaction should be higher
than the Coulomb barrier between particles a and A. Then
the probability to find nucleus a near A, which is given by
the modulus square of the scattering wave function describing
their relative motion, is not suppressed by the Coulomb barrier,
leading to a finite probability that A can be in the proximity of
x. Thus there is no additional Coulomb barrier between A and
the constituent particle x of the TH-nucleus a, once the initial
kinetic energy of the TH reaction is chosen to be above the
a + A Coulomb barrier. Usually the TH process is described
as follows: the projectile a (or A), which is accelerated to an
energy above the Coulomb barrier in the initial state of the
TH reaction V CB

aA , approaches A and then breaks down in the
vicinity of A. Particle x remains to interact with A while s

leaves the scene as a spectator. To realize this, two additional
conditions should be fulfilled. First, QF kinematics must be
chosen so that the relative momentum of particles s and x is
close to zero. This provides the best condition to treat s as a
spectator because it minimizes the interaction between s and
x by favoring the maximal distance between these particles.
Second, the relative momentum kaA of nuclei a and A in the
entry channel of the TH reaction should be large enough that
A will probe distances smaller than the distance between s and
x available in the QF kinematics.
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Figure 1. Pole diagram describing the QF mechanism in the A + a→b + B + s reaction.

of the projectile A is compensated for by the x− s intercluster motion. In that framework a quite large
momentum of the order of 200 MeV/c or more is needed. But the relative yield of the experimental
momentum distribution at such momenta can be very small, in particular for a l=0 inter-cluster motion
(for example p-n motion inside 2H or α-d motion inside 6Li). This would complicate the separation
from other competitive reaction mechanisms. Moreover, the theoretical description of the tails of the
momentum distribution is a hard task, their shape being very sensitive to it. In our approach to the
THM, the intercluster motion is only needed to determine the accessible astrophysical energy region.
It corresponds to a cutoff in momentum distribution of s of few tens of MeV/c. In this framework, the
so called "quasi-free two-body energy" is given by:

EQF =
mx

mx + mA
EA − Bx−s. (1)

where EA represents the beam energy, mx and mA are the masses of x and A particles respectively, and
Bx−s is the binding energy for the x − s system.
In the Impulse Approximation, based essentially on the assumption that the interaction of the spectator
with particles b and B is neglected, the three body-cross cross section can be factorized as:

d3σ

dEbdΩbdΩB
∝ [KF |ϕa(psx)|2]

(
dσ

dΩc.m.

)HOES

(2)

where KF is a kinematical factor containing the final state phase-space factor. It is a function of the
masses, momenta and angles of the outgoing particles [25]; ϕa(psx) is proportional to the Fourier
transform of the radial wave function χ(r) for the x − s inter-cluster relative motion; (dσ/dΩc.m.)HOES

is the half-off-energy-shell (HOES) differential cross section for the binary reaction at the center of
mass energy Ec.m. given in post-collision prescription by

Ec.m. = EbB − Q2b . (3)

Here, Q2b is the Q-value of the binary reaction and EbB is the relative energy of the outgoing particles
c and C, which spans the accessible astrophysical region defined above.

The factorization of Eq.2 is strictly valid in Plane Wave Impulse Approximation, which changes
only the absolute magnitude but not the energy dependence of the two-body cross section.
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Figure 1. Pole diagram describing the QF mechanism in the A + a→b + B + s reaction.

of the projectile A is compensated for by the x− s intercluster motion. In that framework a quite large
momentum of the order of 200 MeV/c or more is needed. But the relative yield of the experimental
momentum distribution at such momenta can be very small, in particular for a l=0 inter-cluster motion
(for example p-n motion inside 2H or α-d motion inside 6Li). This would complicate the separation
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momentum distribution is a hard task, their shape being very sensitive to it. In our approach to the
THM, the intercluster motion is only needed to determine the accessible astrophysical energy region.
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so called "quasi-free two-body energy" is given by:
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where KF is a kinematical factor containing the final state phase-space factor. It is a function of the
masses, momenta and angles of the outgoing particles [25]; ϕa(psx) is proportional to the Fourier
transform of the radial wave function χ(r) for the x − s inter-cluster relative motion; (dσ/dΩc.m.)HOES

is the half-off-energy-shell (HOES) differential cross section for the binary reaction at the center of
mass energy Ec.m. given in post-collision prescription by

Ec.m. = EbB − Q2b . (3)

Here, Q2b is the Q-value of the binary reaction and EbB is the relative energy of the outgoing particles
c and C, which spans the accessible astrophysical region defined above.

The factorization of Eq.2 is strictly valid in Plane Wave Impulse Approximation, which changes
only the absolute magnitude but not the energy dependence of the two-body cross section.

2 How to apply the THM

In THM experiments, any two of the three particles in the exit channel are usually detected and
identified by means of telescopes (silicon detector or ionization chamber as ∆E detector and PSD
as E detector) placed in a phase space region where quasi free kinematics dominates. After the
reconstruction of the reaction channel, a critical point is the selection of the quasi free mechanism
from other reaction mechanisms feeding the same particles in the final state, e.g. sequential decay
and direct break-up. This is done investigating the shape of the experimental momentum distribution
Φ(ps) of the spectator by means of the energy sharing method [8], for example. The quasi-free
coincidence yield with a cutoff in relative energy of few tens of keV and in center of mass angle of
few degrees at most is divided by the kinematic factor, providing a quantity which is proportional
to the product of the spectator momentum distribution with the differential two-body cross section
(see Eq.2). The window is chosen in such a way that the differential two-body cross section in this
range can be considered almost constant. Thus, the quantity defined above represents essentially the
momentum distribution for the spectator that in PWIA can be compared with the Fourier transform of
the radial x − s bound state wave function.
Data analysis is limited to the region where the agreement between the two distributions is found.
Usually a window of few tens of MeV/c is chosen not to move too far from EQF , according to the
prescriptions reported in [15].
Therefore, (dσ/dΩcm)HOES can be extracted from the three-body coincidence yield by simply inverting
Eq.2. The Coulomb barrier in (dσ/dΩcm)HOES is suppressed [9] and this is due to the virtuality of
particle x. This seems to be the only consequence of off-energy-shell effects as suggested by the
agreement between HOES and OES cross-sections for the 6Li(n,α)3H reaction [10].
Thus, in a final step, to relate the HOES excitation function to the relevant on-energy-shell (OES) one,
Coulomb corrections have to be considered. If one looks at the angular distributions no correction is
needed because once the energy is fixed, it would mean to introduce simply a scaling factor. Thus,
the OES data are directly comparable with HOES ones projected onto the emission angle of C (or c)
in the C − c center of mass system, θc.m., as given by [14]:

θc.m. = arccos
(vA − vx) · (vc − vC)
|vA − vx||vc − vC|

(4)

where the vectors vA, vx, vc, vC are the velocities of projectile, transferred particle and outgoing nuclei
respectively. These quantities are calculated from their corresponding momenta in the lab-system,
where the momentum of the transferred particle is equal and opposite to that of s when the quasi-free
break-up takes place in the target, otherwise a little different formula has to be used [14]. If HOES
data are projected onto the ECc axis, Coulomb suppression has to be introduced before comparison
with OES data [11, 12]. In a simple approach, this is done by means of the penetrability factor:

Pl(kAxR) =
1

G2
l (kAxR) + F2

l (kAxR)
(5)

with Fl and Gl regular and irregular Coulomb wave functions and R the so called cutoff radius, which
is usually chosen as the sum of the radii of nuclei A and x. This procedure does not allow us to extract
the absolute value of the two-body cross section. However, this is not a real problem since the absolute
magnitude can be derived from a scaling to the direct data available at higher energies.
If a resonant two-body reaction is involved, a dedicated approach called Modified R-matrix ([16] and
references therein) has been developed to extract the resonance parameters from the THM reaction
yield. The considerable advantage is that they are the same needed to calculated the OES cross section.
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Table 1. Two-body reactions studied via the THM with measured two-to-three TH reaction and relevant
references for each reaction

Direct reaction TH reaction ref

7Li(p,α)4He 7Li(d,α α)n [17–19]
7Li(p,α)4He 7Li(3He,α α)2H [20]
6Li(d,α)4He 6Li(6Li,α α)4He [21]
6Li(p,α)3He 6Li(d,α 3He)n [22–24]
11B(p,α)8Be 11B(d ,8Be α)n [25, 26]
10B(p,α)7Be 10B(d,7Be α)n [27–29]
9Be(p,α)6Li 9Be(d,6Li α)n [30, 31]

2H(3He,p)4He 6Li(3He,p α)4He [32]
2H(d,p)3H 2H(6Li,t p)4He [33–35]

15N(p,α)12C 15N(p,α12C)n [36]
18O(p,α)15N 18O(p,α15N)n [37, 38]

1H(p,p)1H 2H(p,pp)n [11, 12]
2H(d,p)3H 2H(3He,t p)1H [39–41]

2H(d,n)3He 2H(3He,3He n)1H [39–41]
19F(p,α)16O 2H(19F,α16O)n [42, 43]
17O(p,α)14N 2H(17O,α14N)n [44]

4He(12C,12C)4He 6Li(12C,α12C)2H [45]
n(6Li,t)4He 2H(6Li,t4He)1H [10, 46]
13C(α,n)16O 6Li(13C,n16O)2H [16]
18F(p,α)15O 2H(18F,α15O)n [47]

19F(α,p)22Ne 6Li(19F,p22Ne)2H [48]
7Be(n,α)4He 2H(7Be,αα)1H [49]

12C(12C,α)20Ne 12C(14N,α20Ne)2H [50]
12C(12C,p)23Na 12C(14N,p23Na)2H [50]

3 Resent results

The THM has applied already many times to resonant and non resonant charged particle reactions
connected with fundamental astrophysical problems, from primordial to stellar nucleosynthesis. A list
of reactions studied by means of the THM is given in Table 1 together with the relevant references.

Given the well assessed THM experimental and theorerical methodology to investigate low-energy
nuclear reactions, applications in the near future are forseen for neutron induced reactions on radioac-
tive nuclei. Having a radioactive beam, deuteron targets will serve as a virtual source of neutrons.
This turns out to be a unique way to investigate such reactions. Moreover, after the very successful
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3 Resent results

The THM has applied already many times to resonant and non resonant charged particle reactions
connected with fundamental astrophysical problems, from primordial to stellar nucleosynthesis. A list
of reactions studied by means of the THM is given in Table 1 together with the relevant references.

Given the well assessed THM experimental and theorerical methodology to investigate low-energy
nuclear reactions, applications in the near future are forseen for neutron induced reactions on radioac-
tive nuclei. Having a radioactive beam, deuteron targets will serve as a virtual source of neutrons.
This turns out to be a unique way to investigate such reactions. Moreover, after the very successful

work to determine the C-burning reaction rate, accepted for publication in Nature [50], the THM will
be further applied to other key processes triggering the evolution of massive stars, such as 12C+16O
and 16O+16O.
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