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Abstract: The ornamental plant production in greenhouses is widespread. A quantitative assessment
of greenhouse energy consumption and its variability in space and time is strategic to improve the
sustainability of the cultivation. The specific environmental features of the cultivation areas can
strongly affect the sustainability of the production. A dynamic simulation model of greenhouse
energy balance with an hourly time step was developed and parameterized for a state-of-the-art
greenhouse to evaluate the heating requirements for cut-flower roses. This ornamental crop has been
used as model species for its high energy requirement for flower production. The energy demand for
rose production has been analyzed with an energy balance model with an hourly time step. After a
preliminary analysis on the period 1973–2019, the final analysis was carried out on the 30-year period
(1990–2019), representative of the current climate. Results show a gradient southwest–northeast of
energy needs with relevant effects on economic and environmental sustainability. More specifically,
four large sub-areas are identified, namely the central-southern Mediterranean (yearly requirements
below 600 MJ m−2 year), the northern Mediterranean, and the area influenced by the mitigating effect
of the Atlantic Ocean (600–1200), the central-European area (requirements of 1200–1800), and the
Northern European area (above 1800).
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1. Introduction

Greenhouse rose cultivation is worldwide as well as the commercialization of cut-flower roses
(Table 1). Rose flowers are the most appreciated among the cut flowers. The demand follows a
specific trend during the year with the increase on the occasion of specific fests (e.g., Valentine’s Day,
Mother’s Day, etc.) [1]. The satisfaction of the consumer’s demand requires accurate planning and
management of the cultivation. The rose crops can be cultivated for at least two years in intensive
protected cultivations. The rose cultivation can be directly carried out in soil or in soilless systems [2].
The planning of rose production can be performed by monitoring the environmental conditions
(temperature, relative humidity, light intensity) and controlling them. In different geographical areas,
the winter cultivation can be carried out with adequate temperature control inside the greenhouse.
During winter, the optimal temperature to maintain continuous flower production is between 16
and 22 ◦C. The growing temperature is very important for flower development and morphological
parameters [3]. In general, the temperature during the night should be lowered to reduce the crop
metabolism, since respiration consumes sugars that could be used for growth and flower production.
On the contrary, during daytime, temperature should be increased up to the optimal for the best
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photosynthesis activity. The highest performance of crops should be obtained by combining the
optimal temperature with optimal light availability.

Table 1. Cultivated areas (ha) of cut roses in different Mediterranean and European countries 1.

Countries
Areas (ha)

Year
Total In the Open Under Protection

Belgium 10 10 2012
Finland 4.5 4.5 2012
Germany 323 224 99 2017
Greece 90 1995
Hungary 25 2006
Israel 214 2004
Italy 1221 2005
Morocco 82 73 9 2007–2008
Netherland 300 300 2018
Poland 185 185 2016
Spain 127 12 115 2016
Turkey 210 210 2017
TOTAL 2791.5 309 932.5

1 Source: International Statistics flower and plants [4].

Several models have been used for monitoring and controlling the rose production under protected
cultivations. There are models that work on mineral nutrition and others related to temperature or
radiation [5–7].

The greenhouse area destined to rose cultivation increased significantly during the previous
decades, and at present, it is estimated at 405,000 ha, spread over all continents except Antarctica [8].
The protected cultivation allows the control of environmental parameters and enhances the yield and
quality of cut flowers. Therefore, it is very important to assess, at a territorial scale, the impact of
climate variability and change on greenhouse cultivation and the energy requirements for heating
and cooling during cultivation. Protected cultivations are extremely important for winter cut flower
production to maintain constant market supply. The high energy demand for cut rose production
induced different farms to delocalize the cultivation to warmer areas, especially for the winter market
supply. At present, most of the cultivation has been delocalized to Africa and Latin America, where the
most important cut flower production countries are Kenya, Ethiopia, Ecuador, and Colombia. The cut
flower production in developing countries shows important social benefits regarding the employment
of local people and technology transfer in agriculture [9]. Europe’s cut flower imports mainly come
from Africa and South America [10]. The environmental impact of rose production in Northern Europe
and South America were compared and evaluated using a Life Cycle Assessment (LCA). The LCA,
revealed that, in Ecuador, rose production is environmentally friendlier compared to the Netherlands
productions, especially in winter when heating and lighting are required [11]. Rose production in the
Netherlands has negative ecological consequences due to high-energy consumption of the greenhouses.
On the contrary, in Ecuador, the favorable environmental conditions, in terms of thermal and radiative,
reduce the heating costs, with positive effects on environment. The heating requirement is one of the
major limiting factors in rose production and climate plays an important role in the production costs.
The energy balance modeling can be useful for rose production and flowering prediction.

The most limiting factor of protected crops is the heating cost [12]. In fact, a substantial requisite
for greenhouses, in order to guarantee the growth and development of crops, is an efficient control of
temperature, which can be obtained using active modifiers (heating and cooling devices) and light in
winter (using supplemental lighting).

The sustainability of rose production depends on the environmental conditions and the energy
requirements for maintaining the temperature in the optimal range. The climatization costs depend
also on the fuel used and the efficiency of the heating system. The rose cultivation is often delocalized
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to areas with lower climatization needs and lower labor costs. The cultivation in warmer areas can be
economically convenient, but environmental sustainability depends on the transportation system and
the distance to the target market. The aim of this work was to evaluate the energy requirement for
climatization of greenhouse with optimized temperature range for rose cultivation.

2. Materials and Methods

2.1. Meteorological Data

The greenhouse energy balance needs hourly values of temperature and global solar radiation.
Fifty-six weather stations, representative of different environmental conditions, were chosen

from the Global Summary of the Day dataset (GSOD) from the National Oceanic and Atmospheric
Administration of the United States (NOAA) [13], collecting daily maximum and minimum
temperatures for the period 1973–2019.

Missing data were reconstructed with the geostatistical approach described in Mariani et al. [14].
For each unknown missing point, neighbor points temperatures were homogenized to the same
altitude of the unknown point (−0.5 ◦C for 100 m increase in altitude) and then the missing temperature
was obtained with a weighted average of the values available at the known points using an inverse
squared-distance weight.

The hourly values of air temperature were obtained with the Parton and Logan generator [15].
Following the approach proposed by Cola et al. [16], the daily global solar radiation (GSR)

was estimated by means of the Hargreaves model [17] on the basis of the daily thermal range and
site-specific geographic coordinates and height, while hourly values were obtained with the sinusoidal
approach of Williams et al. [18].

The analysis was referred (i) to the longer period 1973–2019 in order to highlight recent trends in
energy requirements for rose greenhouses and (ii) to the last 30 years (1990–2019) in order to obtain the
most recent climate normal [19].

2.2. The Greenhouse Energy Balance

The physical properties of the glass covering strongly affects the greenhouse radiation balance.
In fact, the glass covering transmittance (GCT) is about 70% in the visible (VIS) and near infrared
(NIR) wavelengths, but only 3% in the far infrared (IR). As a result, while a relevant part of the global
solar radiation (GSR) enters the greenhouse, the sky long waver radiation (SKLR) cannot enter and is
discarded from the radiation balance. In the same way, Albedo (A – the fraction of GSR reflected by
surfaces inside the greenhouse) can exit without interference, while the long wave radiation emitted
inside cannot exit from the greenhouse. Therefore, used in place of the SKLR, is the greenhouse
cladding long wave radiation (GCLR) emitted toward the ground from the upper and sidewalls of the
greenhouse (cladding surface). Cladding surface emits in function of its temperature, according to the
Stefan–Boltzmann law. The latter will be partly balanced by the radiation emitted upward from the
surface (SULR), which is also estimated with the Stefan–Boltzmann law.

The greenhouse energy balance model applied in this work is based on the former work of
Mariani et al. [14]. The model works with an hourly time step and all the fluxes are expressed in Wm−2.
The fluxes directed towards the greenhouse ground surface are assumed positive.

The greenhouse net radiation (GNR) at the ground surface inside the greenhouse is expressed as:
GNR = CTGSR GSR (1 − A) − CTLR SULR + GCLR

Where:
GNR is the greenhouse net radiation and is used in place of the standard radiation budget of

earth’s surface suitable for field crops.
CTGSR is the transmittance for global solar radiation
CTLR is the transmittance for far infra-red radiation.
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The term GNR is used both for the energy balance of the greenhouse and as a term of net radiation
equation of the Penman–Monteith model, for the simulation of the reference crop evapotranspiration (ET0).

More specifically, the energy balance equation (all terms are in W m−2) is expressed as:
GNR + G + LE + FV + FW = ∆QS + ∆QP
where G is the ground heat flux, LE is the latent heat evapotranspiration flux, FV is the flux

through the vent-holes (term of flow by convection—chimney effect—and advection through the
openings in a closed greenhouse), and FW is the flux through the windows (heat flow through the
cladding surface of the greenhouse). Finally, ∆QS is the accumulation of heat in the greenhouse and
∆QP is the accumulation term of photosynthesis.

The convention adopted is that fluxes directed towards the greenhouse ground surface are positive
while the others are negative. To moderate the excessive summer heat, the aeration (term Qvent) is
adopted, while shading is avoided.

The equations adopted to simulate the different terms of the energy balance are hereafter described.
G is expressed as function of GNR:
G = − 0.05 × GNR for GNR > 0 while G = − 0.5 × GNR for GNR < 0.
FW = Kr Sc (t2 − t1) /S [W m−2]
Where:
Sc is the greenhouse cover area,
S is the greenhouse floor area,
Kr is the coefficient of heat transmission [W m−2 ◦C−1],
t1 and t2 are the temperatures, respectively, inside and outside the greenhouse [◦C] (being the

working hypothesis, outer surface with t = t2 while inner surface t = t1).
FV = (R V (t2 − t1) Cs/3600)/S [W m−2]
Where:
V is the greenhouse volume [m−3],
R is the number of air volumes exchanged per hour
Cs is the specific heat of the humid air [J kg−1 ◦C−1] and is calculated with the equation Cs = cpm

rom where cpm is the enthalpy of the humid air (cpm = 1005 + 1820 rms), rms is the mixing ratio
[kg of water vapor per kg of air], and rom is the density of the humid air [kg m−3] (rom: = ro × (1 +

rms(1013,t1)/1000)/(1 + 1.609 × rms(1013,t1)/1000).
The latent heat flux equation is:
LE0 = − ET0 kc ((2450 1000)/3600)
where:
ET0 is the Penman–Monteith reference crop evapotranspiration [mm h−1] [17]
kc is the crop coefficient for rose.
The terms of the balance described above are used for the following equations
Ie_min = GNRTLn + FWTLn + FVTLn + GTLn + LETLn + AW
Ie_max:= GNRTLx + FWTLx + FVTLx + GTLx + LETLx + AC
where TLn and TLx are equal to 21 and 23 ◦C during day (period between sunrise and sunset) and

to 15 and 17 ◦C during night. AW and AC [W m−2] are air heating and air conditioning of the previous
hour. The operational rule adopted is that if Ie_min < 0 the negative value is compensated by heating,
while if Ie_max is >0 the positive value is compensated by air conditioning.

In the present work, only the heating needs will be considered. The model works with an hourly
step due to the fact that the variability of rate variables is strong enough to request an hourly approach.

The scheme described was already calibrated and validated by Mariani et al. [14] in order to
obtain the heating requirements for tomato production.

2.3. Model Test

The model was tested in a farm dedicated to rose cultivation and located close to Vittoria
(South-East of Sicily, Italy, −36◦55′19.2” N, 14◦32′56.7” E), where heating requirement data were
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available (Table 2). The validation was performed on the growing cycle from October 2018 to March
2019, covering the colder period.

Table 2. Monthly consumption of methane [m3] in 2018–2019 season.

Month Methane [m3] Energy [MJ m−2] % of Total

November 4380 21.5 4.96
December 15,520 72.9 17.57
January 40,383 193.1 45.71
February 16,843 80.6 19.06
March 11,229 53.7 12.71

The total greenhouse area where the study was conducted has an area of 7000 m2, with a single
module of 200 m × 35 m. The height is 6 m at the top and 4.3 m at the eaves (see Figure S1 as pictured,
is semi-circular).

The greenhouses were covered with an 18-month polyethylene film with a thickness of 0.1 mm.
The study was conducted with the 5-year-old-roses pink ‘Red Naomi’ in 30-L perlite bags (8 plants/sack).
Plants were daily treated with a nutrient solution that consisted of potassium, potassium nitrate,
calcium nitrate, nitro34, monopotassium, magnesium sulfate, iron, and microelements; conductivity:
2 mS cm−1. Temperatures were kept at 16 ◦C at night and at more than 22 ◦C during the day.

2.4. Analysis of Energy Requirements for Heating

The World Meteorological Organization (WMO) states the current climate can be obtained by
analyzing for the following statistical analysis of weather over a 30-year, usually starting with the first
year of a decade (from 1 January, 1981 to 31 December, 2010; from 1 January, 1991 to 31 December, 2020,
and so on) [20]. In light of these regulations, the following steps were carried out:

- the hourly greenhouse energy balance model was applied to the temperature time series of the 56
sites for the period 1973–2019;

- the analysis of the heating requirements of the 56 sites was presented and discussed, focusing on
the heating requirements for the 30 years 1990–2019, very close to the 1991–2020 period adopted
by the WMO;

- a comparison with the former phase (1973–1989) was carried out to show the changes in terms of
energy requirements for climatization;

- an analysis of the cost of fuel for the period 1990–2019 concerning to the site of Vittoria (Italy).

3. Results

3.1. Model Validation on a Rose Production Farm Located in Sicily

The sum of the simulated daily energy requirements from October 2018 to March 2019 reached
546 MJ m−2 2018–2019, while the observed requirement was of 421.3 MJ m−2. The model showed a
monthly average overestimation of 25 MJ m−2 month−1. The seasonal course of consumption was
simulated very well, as highlighted by the correlation between observed and simulated monthly energy
requirements (R2 = 0.9031).

The difference between the model output and greenhouse farm consumption can be explained,
considering the model works with a single greenhouse while the greenhouse used for validation
is a multi-greenhouse with lower dispersal surface. This may explain the lower energy request
for climatization.

3.2. European Energy Requirements for Greenhouse Climatization

The growing environmental conditions affect rose production and cultivation costs. Temperature
is one of the most important parameters affecting the plant growth and quality of cut roses [3,21,22].
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The climatic data collected in different European and Mediterranean countries (Figure S2) showed the
northern geographical areas require a high amount of energy for heating. This energy request explains
the cultivation areas distributed in different European countries (Figure 1). During the first days of
the year in Tallin (Estonia), the cultivation of roses on average required 10 MJ m−2, with maximum
requirements that can reach 20 MJ m−2 (Figure 1).
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Figure 1. The energy requirements for growing rose plants for cut rose flowers in protected cultivation
with the temperature set at the optimal range for this floriculture crop in different Euro-Mediterranean
countries. Values reported are minimum, maximum, average ± 1 SD.

From May, day of the year (DOY) 161, to August (DOY 231), the environmental conditions are
favorable for rose cultivation, demonstrating greenhouse climatization is not necessary. In winter, from
DOY 231 to 365, the energy requirements progressively increased up to 10 MJ m−2. Similarly, the energy
requirements ranged from 5 to 10 MJ m−2 during winter in Friheim (Norway), Wroclaw (Poland),
Haarlem (The Netherlands), and Constanta (Romania), (Figure 2, Figure 3 and Figure S2). In these
countries, the maximum energy requirement ranged between 15 and 20 MJ m−2. Moving towards
southern countries, the energy requirements for the rose cultivation progressively declined. In Paimpol,
France, the average energy required for heating was 5 MJ m−2. In Albenga, Italy, the requirements
calculated were 3–4 MJ m−2 in the first days of the year (and November–December). These requirements
were similar to those found in Antalya, Turkey, which energy requirements were comprised between
2 and 3 MJ m−2. In Sicily, South Italy, the values were comprised from 2 to 3 in January, February,
and March, whereas from April to October the heating requirements were limited if not unnecessary.
The lowest energy requirements were found in Vittoria (Sicily, Italy), Almeria (Spain), Maadi (Egypt),
Sous-Massa (Morocco), in the 1–3 MJ m−2 range.
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Figure 2. The cumulative energy requirements for growing rose plants for cut rose flowers in protected
cultivation with the temperature set at the optimal range for this floriculture crop in different European
countries. The years with the three highest levels of consumption are colored red, orange, and yellow
for the 1st, 2nd and 3rd position respectively from 1990 to 2019. In order to make the interannual
variability clear for each site, the range of y axis changes for each line of the figure, according to the
average level of energy requirement of the site.

3.3. Highest Energy Requirements Recorded in Different Locations

The rose cultivation has a production cycle that normally lasts two years. Therefore, the best
locations are those that do not show strong oscillation in energy need from one year. The increase
of heating requirements can make rose production not sustainable with economic losses and higher
environmental impact. Therefore, it is important to analyze the oscillations and the peaks of the
highest energy needs. The analysis of climatic data and energy requirements calculated resulted
that in Tallin the highest energy requirements were observed in 1994, 1996, and 2010 with a range of
2100–2300 MJ m−2 (Figure 2). The oscillations were comprised from 1800 to 2300 MJ m−2. In Friheim,
the highest energy requirement was found in 2010, followed by 1996 and 1993. The amount of energy
requested for the rose cultivation was comprised from 1400 to 2000 MJ m−2. In Wroclaw, Haarlem,
and Constanta the highest energy needs were recorded in 1996, with values comprised from 1450
to 1800 MJ m−2. In these countries, the energy requirements never dropped below the 1000 MJ m−2

threshold. In Paimpol, the coldest years were 2010, 1991, and 2013. In these years, the energy needs
were above 1000 MJ m−2, but did not overcome the 1100 MJ m−2. The energy requirements were
below 1000 MJ m−2 in the Southern countries and in Albenga and Antalya the values were comprised
between 290 and 700 MJ m−2 year−1. Vittoria and Almeria showed similar energy needs between 150
and 300 MJ m−2. In Maadi and Sous-Massa, values are below 100 MJ m−2 year−1 in recent years.
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3.4. Comparison with Past Energy Requirements

Analyzing the whole period of available data (1973–2019), it is possible to highlight how the change
of the European climate that occurred at the end of the 1980s [14] affected the heating requirements
with a clear shift around 1990 (Figure 3). The lower temperatures of the previous climatic phase (here
represented by the period 1973–1989) determined higher heating requirements. During the current
climatic phase (1990–2019), the higher temperatures allow the cultivation in Northern countries, where
in the past the costs of heating were high and not competitive with Southern regions.
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Figure 3. (a) Average yearly heating requirements for the period 1973–1989, (b) average yearly heating
requirements for the period 1990–2019, (c) yearly requirements from 1973 to 2019 (average of the 56 sites).

The maps of Figure 3a,b show a gradient southwest–northeast of energy requirements.
More specifically four large sub-areas can be identified, namely the central-southern Mediterranean
(yearly requirements below 600 MJ m−2 year), the northern Mediterranean and the area influenced by
the mitigating effect of the Atlantic ocean (600–1200 MJ m−2 year), the central-European area (above
1200–1800 MJ m−2 year) and the northern European one (above 1800 MJ m−2 year). The two maps
reported in Figure 3 show the concomitant effects of the Mediterranean Sea (source of hot air in all
seasons), Atlantic (source of oceanic mild air in all seasons), Arctic (source of cold air in all seasons),
and Siberian area (source of continental air, very cold in winter) [23]. For example, the oceanic effect of
the Atlantic Ocean deflects the isolines of 600, 1200, and 1800 northwards in the west part of the map,
while the continental effect of Siberia deflects the islands themselves south in the east part of the map.

The diagram of Figure 3c shows then yearly heating requirements from 1973 to 2019 (average of
the 56 sites). The black line shows the average 1973–1989 (944 MJ m−2) and the average 1990–2019
(861 MJ m−2). This latter is about 9% lower than that of the previous period.

3.5. Fuel Requirements for the Greenhouse Climatization

The amount of fuel consumption per year needed to maintain the optimal environmental
conditions in the greenhouse had an oscillation trend during the 1990–2019 period in Sicily. Diesel fuel
consumption was higher than methane. Diesel fuel consumption oscillated from 15 to 23 kg year−1,
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while the methane was between 13 and 20 kg year−1. The highest amount of fuel utilization was
recorded in 2005 (Figure 4).
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The fuel consumption followed the energy requirements observed in the colder months of the
year. The higher fuel consumption calculated on a monthly basis for 2018 and 2019 showed that the
higher energy requests were found in January, February, March, and December. The average from 1990
to 2019 was higher compared to the values of 2018 or 2019 in January and December. Considering the
recent years, the gasoline consumption is comprised of 3–4 kg m−2 month−1, while the average of the
period 1990–2019 the amount of gasoline has been 5 kg m−2 month−1 (Figure 5).
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The cost of fuel consumption expressed as €m−2 declines during spring-summer and increases
during autumn–winter. The cost of heating using diesel in coldest months ranged from 3 to 5.3 €m−2

and the price of cut rose flower per stem increased during winter. The price of cut rose per stem ranged
from 0.41 to 0.70 €. The profit per square meter ranged from 3.28 to 5.60 €m−2 considering a flower
production of 8 stems m−2. These results showed that during the coldest period the heating costs are
almost equal to the profit of flower production (Figure 6).
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4. Discussion

Rose cultivation is spread worldwide and the location of production depends on logistic aspects,
labor cost, and energy requirements for heating the greenhouse during the winter. Energy requirements
in greenhouses mainly depend on the cover materials and their thermal conductivity. In northern
countries, insulant materials should be used, such as such as glass with low thermal conductivity
coefficient, and in southern countries, plastic films with high thermal conductivity. This means
that different cover materials have different energy consumption [24]. The energy losses must be
compensated by heating systems, which can use diesel or methane as fuel. Each fuel has different
energy content and the amount of energy released depends on the engine efficiency [25]. The economic
sustainability of diesel or methane depends on their costs. Moreover, the effective energy released
for heating depends on the power station efficiency that is different from those fueled with diesel or
methane. The energy needs in winter are the most important cost that must be accurately estimated.
The cost of heating of the greenhouse has been estimated using different mathematical models [14,26,27].

These models can be useful for rose production planning, and increase production when the
market demand is high. The commercialization of this cut flower is constant all year round, but the
highest prices are linked to special ‘fests’, such as Valentine’s Day, Mother’s Day, Christmas, and other
special events [1]. Temperature is directly connected to physiological processes, such as respiration
and photosynthesis, which are responsible for the plant growth rate and rose production [28]. Several
mathematical models for rose production have been developed and calibrated, such as ROSGRO [29],
ROSESIM [30], and other empirical models [6]. All these models have the aim to monitor and guide the
plant growth, development, and flower production. Growers following the greenhouse environmental
conditions can use specific models to adjust the production time. The energy model can be also used
for estimating the heating costs and make the economic evaluation on crop production.

The simulation and calculation performed resulted when moving the cultivation from Southern
to Northern countries the energy consumption for the greenhouse climatization strongly increased,
reducing the production sustainability. The same trend has been observed for tomato cultivation in the
Euro-Mediterranean areas [14].

It is important to consider that along with heating costs there are also labor costs that must
be considered. In Dutch environmental conditions with advanced and technologically equipped
greenhouses, the labor represents almost 50% of production costs [31]. In the low-technology
greenhouses, the labor costs significantly increase, therefore it is important to reduce other costs such
as heating requirements. These considerations explain the delocalization of roses to warmer countries
such as Tanzania, Kenya, etc. [32]. In these countries, rose cultivation is carried out in low-cost
greenhouses covered with plastic films that can be removed during summer to reduce the excessive
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temperature [33]. This procedure is commonly used in cheap greenhouses and plastic tunnels located
in Mediterranean areas.

The reduction in heating costs due to climate change is at least partially offset by the increase in
summer conditioning costs, which were not considered in our work. Similarly, lighting costs were not
considered, which in the winter period see the most northerly areas of the territory under investigation
more disadvantaged.

5. Conclusions

In conclusion, data obtained suggest that environmental control can strongly increase the energy
requirements and hence the production costs. The analysis performed on energy consumption reveals
methane is the more cost-effective fuel for the energy supply. However, the reduction of the production
costs can be achieved by combining the cheapest fuel availability with high-efficiency power engines
and location with mild climate. Therefore, the estimation of heating needs is crucial for the economic
and environmental sustainability of rose greenhouse production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/3/422/s1,
Figure S1: Characteristics of greenhouse located close to Vittoria (South-East of Sicily–Italy −36◦55′19.2” N,
14◦32′56.7” E) with a single module of 200 m × 35 m. The height is 6 m at the top and 4.3 m at the eaves.
The greenhouses were covered with an 18-month polyethylene film with a thickness of 0.1 mm, Figure S2: Map
with the geographic location of the analyzed sites (red circle).
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