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Abstract We give a sufficient criterion for a lower bound of the cactus rank of a tensor.
Then we refine that criterion in order to be able to give an explicit sufficient condition for a
non-redundant decomposition of a tensor to be minimal and unique.
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1 Introduction

The study of minimal decompositions of a given tensor T as a linear combination of rank one
tensors is a hot topic in many areas, ranging from pure algebraic geometry to applications to
signal processing, big data analysis, quantum information, etc.
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Vectors v j,i ∈ C
n j+1, j = 1, . . . , k, i = 1, . . . , r , such that

T =
r∑

i=1

λiv1,i ⊗ · · · ⊗ vk,i (1)

for some λi ∈ C\{0} determine a decomposition of T . We will say that the decomposition
is non-redundant (cf. Definition 2.1) if we cannot extract any proper subset of {v1,i ⊗ · · · ⊗
vk,i }i=1,...,r which generates T .

Since we will use geometric arguments through the paper, we use a geometric notation.
Thus we identify (up to scalar multiplication) a tensor T with a point in the projective space
P(Cn1+1 ⊗ · · · ⊗ C

nk+1) and a decomposition of T with a finite subset S of the Segre
embedding of the abstract product P(Cn1+1) × · · · × P(Cnk+1) = P

n1 × · · · × P
nk , such that

T belongs to the linear span of S.
Clearly, having a non-redundant decomposition of a given tensor T does not imply that

such a decomposition is minimal, i.e., it has a minimal number of addenda (so that r is the
rank rk(T ) of T , cf. Definition 2.3).

In this paper, we give a criterion that certifies if a non-redundant decomposition of a
general tensor T is also minimal, thus that it computes the rank of T (cf. Theorem 3.1).
Moreover, under certain conditions, we can also show that a decomposition is the unique
minimal decomposition of T (cf. Theorem 4.6).

These two facts rely on our main result Theorem 3.1, where we give a criterion to find a
lower bound for the cactus rank (cf. 2.3). The idea is geometrically quite simple: assume one
has a non-redundant decomposition S of a tensor T ∈ P(Cn1+1 ⊗ · · · ⊗ C

nk+1), then one
can flatten the product P

n1 × · · · × P
nk in a partition of two factors and study the geometry

of the two projections of S, to get the result.
One can easily compare our result with the Kruskal’s result on the identifiability of tensors

([15]), which implies a criterion for the minimality of a decomposition. It turns out that our
criterion is geometrically simpler, and it applies in a wider range of numerical cases.

Certainly the idea of considering projections of tensors to factors of some partition of the
Segre product is not new. What we would like to propose here is a systematic analysis of
the geometry of these projections (e.g., an analysis of the Segre function, see Definition 4.1)
which, as we demonstrate with our results, can determine new information on deep properties
of tensors.

Theorem 3.1 has the consequence that if a non-redundant decomposition projects onto
two linearly independent subset in the flattening, then it is also a minimal one (cf. Example
3.6). This can be considered as a step toward the celebrated Strassen’s conjecture on the rank
of a block tensor (cf. [19]).

Although we are well aware of the recent announcement of a counterexample ([17]) on
the so-called Comon’s conjecture (the equality between the rank and the symmetric rank of
a symmetric tensor T ), we like to emphasize that our Theorem 3.1 provides new examples
where such a conjecture holds. In a wide numerical range, if we know the existence of
a symmetric decomposition of T with sufficiently general geometric properties, then the
conjecture holds for T (cf. Corollary 3.10). For instance, the Corollary applies for general
tensors in P(Sym6(C3)) and P(Sym8(C3)), i.e., for general forms of degree 6 and 8 in three
variables. See also [7], for general criteria of identifiability for symmetric tensors.

Another consequence of Theorem 3.1 is described in Theorem 3.8. Given a minimal
decomposition with r addenda, then for any integer r ′ such that r ≤ r ′ < −1 + ∏

(ni + 1),
it is always possible to find a non-redundant decomposition with r ′ addenda. We notice that
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Bounds on the tensor rank 1773

this happens to be false for symmetric decompositions of a symmetric tensor, even in the
case of Sd(C2) with d ≥ 4 (cf. Sylvester theorem in, e.g., [3,9]).

In Sect. 4, we focus on the identifiability of aminimal decomposition, meaning the unique-
ness of a decomposition of a tensor T with exactly rk(T ) addenda. The main result of this
section is Theorem 4.6 (that is again a consequence of Theorem 3.1), where we point out a
sufficient condition for a non-redundant decomposition to be minimal and unique. Again we
compare our result with Kruskal’s bound ([15]). Since Kruskal’s bound is sharp ([11,18])
and since our geometric assumptions are weaker, and then easier to verify, than Kruskal’s
ones, we cannot hope to produce applications outside Kruskal’s numerical range. There are
few cases in which our the numerical range of application matches with Kruskal’s range.
One of them, e.g., is given by tensors of type 3 × 2 × 2 × 2.

Let us spend some words on the effectiveness of our criteria for minimality and identifi-
ability. They often require the computation of the dimension h1 of a cohomology group of
the ideal sheaf of a projection of the inverse image A of a decomposition of the tensor T .
The computation is a simple algorithm of elementary linear algebra, once one knows A. In
practice, we require that the projection of A is linearly independent in its Segre embedding,
which can be computed straightforwardly from the coordinates of the points of A and hence
from the decomposition of T . If one does not know a decomposition, only facts about generic
tensors T can be derived from our criteria. Let us point out that there are several applications
in which the coordinates of the points of A are known. For instance, this can be assumed,
as mentioned before, either when one wants to compute the rank of a block tensor, or when
one wants to construct examples of tensors of given rank. We also notice the most famous
criterion for the study of the identifiability of tensors, namely the Kruskal’s criterion, applies
only if one knows the Kruskal’s rank of a decomposition, which can be computed only if one
knows the coordinates of the points of A.

2 Notation and preliminaries

For a subscheme Z ⊂ P
m , we indicate with 〈Z〉 the linear span of Z and with deg(Z) its

length (when it is finite). If Z is finite and reduced, we indicate with �Z the cardinality of Z .
For any product of projective spaces P

n1 × · · · × P
nk call ν the Segre map

ν : P
n1 × · · · × P

nk → P
M , M = −1 +

∏
(ni + 1).

In order to have a more compact notation, we will always write

Y := P
n1 × · · · × P

nk

for the abstract product, and

X := ν(Y ) ⊂ P
M

for the Segre variety.
For any i = 1, . . . , k, call πi the projection of P

n1 × · · · × P
nk to the i th factor.

We can generalize this notation by setting, for any collection of sub-indices u =
{u1, . . . , ui } ⊂ {1, . . . , k},

πu = projection to the product of the factors u1, . . . , ui .

In particular π{1,...,i} is the projection to the product of the first i factors.
For any subset u = {u1, . . . , ui } ⊂ {1, . . . , k}, we will denote with Ou(1, . . . , 1) the

line bundle on P
n1 × · · · × P

nk pull back of the hyperplane bundle on ν(πu(Y )). The line
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1774 E. Ballico et al.

bundle O{1,...,k}(1, . . . , 1) is the pull back of the hyperplane bundle in the Segre embedding
of P

n1 × · · · × P
nk .

For any subset Z of P
n1 × · · · × P

nk we will write consequently

Iu
Z (1, . . . , 1) := IZ ⊗ Ou(1, . . . , 1), Ou

Z (1, . . . , 1) := OY ⊗ Ou(1, . . . , 1).

Notice that the dimension h0
(Iu

Z (1, . . . , 1)
)
corresponds then to the co-dimension of the

linear span of ν(πu(Z)).
Then h1

(Iu
Z (1, . . . , 1)

)
is the difference between the degree of the scheme ν(πu(Z))

and the affine dimension of its span. Clearly once h0
(Iu

Z (1, . . . , 1)
)
is known, then also

h1
(Iu

Z (1, . . . , 1)
)
is known.

Obviously, if Z is a zero-dimensional scheme and h1
(Iu

Z (1, . . . , 1)
) = 0, then also

h1
(
Iu′
Z (1, . . . , 1)

)
= 0 for all u′ ⊇ u.

We will say that a finite subset S ⊂ P
n1 × · · · × P

nk has different coordinates if, for all
i = 1, . . . , k, the projection πi to the i th factor is an embedding of S into P

ni .
We will need the process of residuationwith respect to a divisor. We can state this process

in complete generality for any projective variety X . For any zero-dimensional scheme, Z ⊂ X
and for any effective divisor D on X the “residue of Z w.r.t. D” is the scheme ResD(Z)defined
by the ideal sheaf IZ : ID , where IZ and ID are the ideal sheaves of Z and D, respectively.
The multiplication by local equations of D defines the exact sequence of sheaves:

0 → IResD(Z)(−D) → IZ → ID∩Z ,D → 0 (2)

where the rightmost sheaf is the ideal sheaf of D ∩ Z in D.
Wewill identify elementsT ∈ P

M ,which is the spaceof embeddingofY = P
n1×· · ·×P

nk ,
as tensors of type (n1 + 1) × · · · × (nk + 1) (modulo scalars).

Definition 2.1 A finite reduced subset S ⊂ Y = P
n1 × · · · × P

nk is a decomposition of
T ∈ P

M if T ∈ 〈ν(S)〉 (with an abuse of notation sometime we will say that also ν(S) ⊂ X is
a decomposition of T ). If moreover T /∈ 〈ν(S′)〉 for any S′

� S, the decomposition S is said
to be not-redundant. Finally, if �S = min{�S′ | S′ ⊂ Y and T ∈ 〈ν(S′)〉} then S is called a
minimal decomposition of T .

Remark 2.2 Clearly “not-redundant” does not imply “minimal”.Aswewill detail inTheorem
3.8, it is always possible to build a non-minimal non-redundant decomposition.

Our target is to study the identifiability of a tensor T ∈ P
M (i.e., when T has only

one minimal decomposition) by means of the knowledge of the numbers h0
(Iu

A

)
, for all

u ⊂ {1, . . . , k}, where A⊂ Y is a finite set which corresponds to a decomposition of T .
We will use the following notions for the rank of T (see [4,5,16] for cactus rank and

cactus variety definitions).

Definition 2.3 The rank, rk(T ), of T is the minimum r for which there exists a minimal
decomposition of T .

The cactus rank of T is the minimum r for which there exists a zero-dimensional sub-
scheme � ⊂ X with deg(�) = r and T ∈ 〈�〉.

Clearly:

rank of (T ) ≥ cactus rank of (T ).
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Bounds on the tensor rank 1775

In analogy to the rank case, we will say that a zero-dimensional scheme Z ⊂ Y is a “minimal
cactus decomposition” of T ∈ P

M if Z is of minimal degree among the zero-dimensional
schemes Z ′ ⊂ Y such that T ∈ 〈ν(Z ′)〉.

If σr is the r -secant variety of X , then all tensors of rank r belong to σr .
For any tensor T of rank r , let S(T ) denote the set of all (reduced) finite subsets S ∈ Y

of cardinality r such that T ∈ 〈ν(S)〉. Of course for all S ∈ S(T ) the image ν(S) is linearly
independent, for otherwise T is contained in the span of a subset of cardinality r ′ < r ; thus,
it has rank smaller than r .

A tensor T is identifiablewhen S(T ) is a singleton. The abstract product Y = P
n1 ×· · ·×

P
nk is “generically identifiable in rank r” if the general T ∈ σr is identifiable.
The main tool for our analysis of the identifiability of a tensor T ∈ P

M relies in the
following proposition that is an immediate consequence of [2, Lemma 1] if we consider the
residue exact sequence of A ∪ B cut by a linear space containing A.

Proposition 2.4 Consider linearly independent zero-dimensional schemes A, B ⊂ Y . Then
the linear spans of the images ν(A), ν(B) in the Segre map satisfy

dim(〈ν(A)〉 ∩ 〈ν(B)〉) = dim(〈ν(A ∩ B)〉) + h1
(
I{1,...,k}
A∪B (1, . . . , 1)

)
.

3 Rank

If we know a decomposition T = T1 + · · · + Tr of T in terms of tensors Ti of rank 1, in
general we cannot directly conclude that r is the rank of T .

Our analysis will prove that, for small values of r , the rank of T is r provided that the
summands correspond to points in a suitably general geometric position. We will give a
criterion to find a lower bound for the cactus rank (and therefore also for the rank).

Theorem 3.1 Fix a partition E � F = {1, . . . , k} of the k factors of the abstract product
Y = P

n1 × · · · × P
nk , i.e., E = {a1, . . . , ak−h} and F = {b1, . . . , bh} for some fixed

0 < h < k. Let MF := ∏h
i=1(nbi + 1) be the affine dimension of the ambient space of

the Segre embedding of the F-factors YF := P
b1 × · · · × P

bh . Now fix 0 < c < MF

and let A ⊂ Y be a zero-dimensional scheme which satisfies h1
(IE

A (1, . . . , 1)
) = 0 and

h0(IF
A (1, . . . , 1)) < MF − c. Take any T ∈ 〈ν(A)〉 such that T /∈ 〈ν(A′)〉 for any A′

� A.
Then there are no zero-dimensional schemes B ⊂ Y with deg(B) ≤ c such that T ∈ 〈ν(B)〉.
Proof Notice that the Segre embedding of the projection πF maps Y to P

MF−1.

Since h1(IE
A (1, . . . , 1)) = 0, we have h1

(
I{1,...,k}
A (1, . . . , 1)

)
= 0. The condition

h0
(IF

A (1, . . . , 1)
)

< MF − c implies that deg(A) > c. Assume that the theorem fails
and take B ⊂ Y with deg(B) ≤ c and T ∈ 〈ν(B)〉. Since deg(A) > deg(B) and T /∈ 〈ν(A′)〉
for any A′

� A, we have B � A. Moreover h1
(
I{1,...,k}(1,...,1)
A∪B

)
> 0, by Proposition 2.4.

More precisely, since T ∈ 〈ν(B)〉 and T /∈ 〈ν(A′)〉 for any A′
� A, we have

h1
(
I{1,...,k}
A∪B (1, . . . , 1)

)
> h1

(
I{1,...,k}
A′∪B (1, . . . , 1)

)
(3)

for all A′ ⊂ A with A ∪ B �= A′ ∪ B.
Since deg(B) ≤ c < MF , we have h0(IF

B (1, . . . , 1)) > 0. Take a general divisor
D ∈ |IF

B (1, . . . , 1)|. In other words, D is the inverse image in Y of a hyperplane in the Segre
embedding of YF and B ⊂ D. Since h0(IF

A (1, . . . , 1)) < MF − c ≤ h0(IF
B (1, . . . , 1)),
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1776 E. Ballico et al.

then A � D, so that (D ∩ A) ∪ B is strictly contained in A ∪ B. Hence by (3) we

get h1
(
I{1,...,k}

(D∩A)∪B(1, . . . , 1)
)

< h1
(
I{1,...,k}
A∪B (1, . . . , 1)

)
. The residual exact sequence (2)

applied to D gives h1
(
IE
ResD(A∪B)(1, . . . , 1)

)
> 0. Since ResD(A ∪ B) ⊆ A, we get a

contradiction. ��
Observe that the condition h1(IE

A (1, . . . , 1)) = 0 can be satisfied only when deg(A) ≤∏k−h
i=1 (nai + 1), the affine dimension of the ambient space of the Segre embedding of the

E-factors YE = P
a1 × · · · × P

ak−h .
We can rephrase Theorem 3.1 to produce results on the rank of tensors.

Corollary 3.2 With the previous notation, if T sits in the linear span of a scheme A ⊂ Y
which satisfies the assumptions of Theorem 3.1, then the cactus rank of T is a least c + 1.
Hence also the rank of T cannot be smaller than c + 1.

Corollary 3.3 Let A ⊂ Y be a zero dimensional scheme of deg(A) = c+1 (resp. a finite set
with �(A) = c + 1). With the Notation of Theorem 3.1, assume that h1(IE

A (1, . . . , 1)) = 0
and h1(IF

A (1, . . . , 1)) = 0. Then any T ∈ 〈ν(A)〉 such that T /∈ 〈ν(A′)〉 for any A′
� A has

cactus rank (resp. cactus rank and rank) equal to c + 1.

Proof It is straightforward from Theorem 3.1 ��
Let we point out an application to the case of 3-way tensors.

Proposition 3.4 Consider k = 3 and let T be a tensor of type (n1+1)× (n2+1)× (n3+1),
which has a not-redundant decomposition T = T1+· · ·+Tr ,where the Ti ’s are tensors of rank
1. Identify each Ti with a point in X = ν(Pn1 × P

n2 × P
n3) and set A = {T1, . . . , Tr } ⊂ X.

Call AE (resp. AF ) the projection of A to YE = P
n1 × P

n2 (resp. YF = P
n3).

Assume that A has different coordinates, AE is linearly independent and AF is contained
in no hyperplanes of P

n3 . Then the rank of T is at least n3 + 1.

Proof In the notation of Theorem 3.1, take E = {1, 2} and F = {3}. Then our assumptions
on AE , AF imply that A satisfies h1(IE

A (1, . . . , 1)) = h0(IF
A (1, . . . , 1)) = 0. Thus T cannot

have a decomposition with MF − 1 = n3 summands. ��
Example 3.5 Kruskal’s Theorem for the identifiability of tensors ([15]) provides results sim-
ilar to the previous proposition for the rank.We notice that the numerical range of application
of Proposition 3.4 is sometimes wider than Kruskal’s range.

For instance, consider a tensorT of type3×4×6having adecompositionwith 6 summands.
If the decomposition determines a subset A satisfying the assumptions of Proposition 3.4, we
can conclude that the rank of T is 6.We cannot get the same conclusion directlywithKruskal’s
Theorem because we are outside Kruskal’s numerical range, since 6 > (3 + 4 + 6 − 2)/2.

The following example should be considered as a step toward the Strassen’s Conjecture
on the rank of a block tensor (see [19]).

Example 3.6 Proposition 3.4 can give results on the rank of a sum of tensors, when we have
some information on the decompositions of the summands.

For instance, consider again tensors of type 3 × 4 × 6 and take a tensor T which is the
sum T = T ′ + T ′′ of two tensors of rank 3. Consider a decomposition of T ′ (resp. T ′′) in
a sum of three tensors of rank 1 and call S′ (resp. S′′) the set of cardinality 3 in the product
P
2 × P

3 × P
5 determined by the decomposition.
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Bounds on the tensor rank 1777

If the set S = S′ ∪ S′′ has cardinality 6 and satisfies the assumptions of Proposition 3.4
(i.e., both π{1,2}(ν(S)) and π{3}(ν(S)) are linearly independent), then we can conclude that
the rank of T is 6.

We show below that, on the contrary, if we increase the cardinality of a decomposition,
we can always construct new non-redundant decompositions of a tensor T .

Example 3.7 Fix P ∈ Y and write P = (p1, . . . , pk) with pi ∈ P
ni . Assume ni > 0. Take

two points bi , ci ∈ P
ni such that pi �= bi , ci but pi is contained in the line of P

ni spanned by
bi and ci . Let Oi := (u1, . . . , uk), Qi := (v1, . . . , vk) be the points of Y with u j = v j for all
j �= i , ui = bi and vi = ci . We have ν(P) ∈ 〈{ν(Oi ), ν(Qi )}〉, and of course ν(P) /∈ 〈ν(S′)〉
for any S′

� {Oi , Qi }.
We show that indeed the previous construction can yield a non-redundant decomposition.

Moreover the following results also show that having found a non-redundant decomposition
does not imply that it is a minimal one.

Theorem 3.8 Assume ni > 0 for at least one i . Take a finite set A ⊂ X of cardinality r ≤ M,
such that ν(A) ⊂ X is linearly independent. Take a general T ∈ 〈ν(A)〉. Then there exists a
non-redundant decomposition S ⊂ Y of T of cardinality r + 1.

Proof Fix P = (p1, . . . , pk) ∈ A and take Q1, O1 as in Example 3.7, with i = 1, and with
the additional condition that O1, Q1 /∈ (A\{P}). We may take O1 to be a general point of
P
n1 × {p2} × · · · × {pk}. Hence we may take O1 = (a1, p2, . . . , pk), with a1 general. Set

A′ := A\{P}.
(a) Assume ν(O1) /∈ 〈ν(A)〉. This is always possible unless 〈ν(A)〉 contains P

n1 ×{p2}×
· · ·×{pk}. Since P ∈ A, this is equivalent to ν(Q1) /∈ 〈ν(A)〉. Set S := (A\{P})∪{O1, Q1}.
We have �(S) = r +1 and 〈ν(S)〉 ⊇ 〈ν(A)〉 so that T ∈ 〈ν(S)〉. The set S does not depend on
Q1, but only on A and P . To prove that S satisfies the claim, it is sufficient to prove that for a
general T ∈ 〈ν(A)〉 there is no S′

� S with T ∈ 〈ν(S′)〉. It is sufficient to test all subsets of
S with cardinality r . Take S′ ⊂ S with �(S′) = r . If S′ ⊃ A′, i.e., if either S′ = A′ ∪ {O1} or
S′ = A′∪{Q1}, then 〈ν(S′)〉∩〈ν(A)〉 = 〈ν(A′)〉, because {ν(O1), ν(Q1)}∩〈ν(A)〉 = ∅. Thus
T cannot stay in 〈ν(S′)〉 because it cannot stay in 〈ν(A′)〉 for a proper subset A′ of A. Hence
S′

� A′. Since �(S′) = r , we have S′ = A′′ ∪ {O1, Q1} with A′′ ⊂ A′ and �(A′′) = r − 2.
If T ∈ 〈ν(S′)〉, then 〈ν(S′)〉 ∩ 〈ν(A)〉 ⊇ 〈ν(A′′) ∪ {T }〉. Since ν(O1) /∈ 〈ν(A)〉, we get:

〈ν(S′)〉 ∩ 〈ν(A)〉 = 〈ν(A′′) ∪ {T }〉.
The left hand side of this equality does not depend on the choice of T . Varying T ∈
〈ν(A)〉\〈ν(A′)〉 we get 〈ν(S′)〉 ⊇ 〈ν(A)〉. Since �(S′) = �(A) and ν(A) is linearly inde-
pendent, we get 〈ν(S′)〉 = 〈ν(A)〉 and hence ν(O1) ∈ 〈ν(A)〉, a contradiction.

(b) If n j = 0 for all j > 1 we are done. Assume for instance that n2 > 0 and that
〈ν(A)〉 ⊃ P

n1 × {p2} × · · · × {pk}, so that we cannot take ν(O1) /∈ 〈ν(A)〉. Since ν(P) ∈
〈{ν(O1), ν(Q1)}〉, we get 〈ν({O1} ∪ A′)〉 = 〈ν(A)〉. Replace thus A with A′ ∪ {O1} and
P by O1. Then take the construction of Example 3.7 with i = 2. If the new general point
O2 satisfies ν(O2) /∈ 〈ν(A)〉, then we conclude as in step (a). Otherwise we have 〈ν(A)〉 ⊃
P
n1 × P

n2 ×{p3}× · · ·× {pk} Then continue with i = 3 in the construction of Example 3.7,
and so on. After at most k steps, we must conclude by step (a), because 〈A〉 cannot contain
the whole product Y , since �(A) ≤ M . ��
Remark 3.9 Take P = (p1, . . . , pk), i ∈ {1, . . . , k} with ni > 0 and bi , ci as in Example
3.7. Notice that in the previous proof we can choose for ci any point (different from bi ) in the
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1778 E. Ballico et al.

line spanned by bi , pi . Thus, in Theorem 3.8 we get a positive-dimensional family of sets
S ⊂ Y such that �(S) = r + 1, T ∈ 〈ν(S)〉 and T /∈ 〈ν(S′)〉 for any S′

� S.

We end this section with a discussion on some consequence of Theorem 3.1 on symmetric
tensors.

Assume n := n1 = · · · = nk so that Y is a product of k copies of P
n . The Segre map

restricted to the diagonal � ⊂ Y can be identified with the Veronese map vk : P
n → P

D

where D + 1 = (k+n
n

)
. The space P

D parameterizes symmetric tensors T , which in turn can
be identified with homogeneous polynomials (forms) of degree k in n + 1 variables. The
symmetric rank is the minimum r for which there exists a finite subset A ⊂ P

n of cardinality
r with T ∈ 〈vk(A)〉.

A conjecture raised in [10] and well known as Comon’s conjecture predicts that the
symmetric rank of a symmetric tensor T always coincides with the rank of T as a normal
tensor in the span of ν(Y ). The first counterexample to the complete validity of that conjecture
is due to Shitov [17], and it is a polynomial of degree 3 in 800 variables that has symmetric
rank strictly bigger than 903 which is its rank.

The following corollary of Theorem 3.1 implies that, if some assumptions on a minimal
symmetric decomposition A of a symmetric tensor T are satisfied, that the symmetric rank
of T coincides with its rank (and cactus rank).

Corollary 3.10 With the previous notation, consider a zero-dimensional scheme A ⊂ P
n of

degree deg(A) = c + 1. Call JA the ideal sheaf of A in P
n and assume that h1(JA(e)) = 0

for some e ≤ k/2. Take T ∈ 〈vk(A)〉 such that T /∈ 〈vk(A′)〉 for any A′
� A. Then T has

cactus rank equal to c + 1. If A is reduced (i.e., it is a finite set of points), then T has also
rank c + 1.

Proof Consider any subset E ⊂ {1, . . . , k} of cardinality e and take F = {1, . . . , k}\E .
Notice that f := �F ≥ e, so that also h1(JA( f )) = 0. This implies that, considering A
as a subset of � ⊂ Y , in the notation of Theorem 3.1, we have h1(IE

A (1, . . . , 1)) = 0 and
h0(IF

A (1, . . . , 1)) < MF − c. The claim follows from Theorem 3.1. ��
We show that Corollary 3.10 provides new range where Comon’s conjecture holds: such a

range is sometimes even larger than the ones considered in previous works devoted to prove
the validity of Comon’s conjecture (e.g., [12,20]); Shitov’s example [17] is out of our range.

Remark 3.11 Assume k = 2e even. Then by Corollary 3.10, the Comon’s conjecture holds
for symmetric tensors T having a minimal symmetric decomposition A with h1(JA(e)) = 0.

The condition h1(JA(e)) = 0 holds for general subsets A ⊂ P
n , as soon as c + 1 = �A

satisfies

c + 1 ≤ r0 :=
(
n + e

e

)
. (4)

So Comon’s conjecture holds for general tensors whose symmetric rank c+ 1 is bounded by
r0.

When k = 2e + 1 is odd, a similar conclusion holds with r0 := 1 + (n+e
e

)
.

Clearly, this remark does not apply to [17] since in that case it is e = 1 and 903 >(800−1+1
1

) = 800. Moreover, Shitov’s example is far from being a general one.

Example 3.12 After theAlexander–Hirschowitz classificationof defectiveVeronesevarieties
([1]), a general symmetric tensor in the span of vk(P

n) is known to have symmetric rank

rg =
⌈ (n+k

k

)

n + 1

⌉
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except for a list of few exceptional cases.
In general rg is bigger than our bound r0 of Remark 3.10, since, for fixed e, rg grows

asymptotically as (2nen)/(n + 1)! while r0 grows like en/n!.
Nevertheless, there are cases in which rg and r0 coincide. This happens for (k, n) = (6, 2)

or (k, n) = (8, 2). Since these two cases are not in the list of exceptional Veronese varieties,
we can conclude that Comon’s Conjecture holds for general forms of degree 6 and degree 8
in 3 variables.

Example 3.13 Take (k, n) = (4, 3). Then Remark 3.11 tells us that the Comon’s conjecture
holds for general symmetric tensors in the span of v4(P

3) with a decomposition with 10
summands. On the other hand, in this case the number rg is 9, smaller than r0.

Indeed (k, n) = (4, 3) is in the list of exceptional cases in the Alexander–Hirschowitz
theorem, so that a general form of degree 4 in P

3 has symmetric rank 10 > rg . Thus Comon’s
conjecture also holds for such general forms.

In some sense, Theorem 3.1 provides a new heuristic reasonwhy the case (k, n) = (4, 3) is
exceptional: a general tensor with a non-redundant decomposition with 10 summands cannot
have a decomposition with 9 summands. A similar remark holds for the other exceptional
cases of even degree: quadrics in any P

n and quartics in P
2 and P

4.

4 Identifiability

In order to get results on the identifiability of a tensor T , we need to refine the previous
analysis, and we are going to do that in this section.

We will need the following terminology for the Segre function of a finite subset of the
product, introduced in [8].

Definition 4.1 For any set of points S ⊂ Y , the Segre function SFS : {1, . . . , k} → N is
defined by:

SFS(i) = 1+ the dimension of the linear span of ν(π{1,...,i}(S)).

Remark that the knowledge of the sequence h0
(
I{1,...,i}
S (1, . . . , 1)

)
, i = 1, . . . , k, is

equivalent to the knowledge of the Segre function SFS .
More precisely, the definition of Segre function depends on the ordering of the factors of

the product. The knowledge of h0(Iu
S (1, . . . , 1)), for all possibleu ⊂ {1, . . . , k}, is equivalent

to the knowledge of the Segre functions of S under all possible re-arrangements of the factors.
Let us recall the following definition for a minimal dependent set of point (the same can

be found in [8, Definition 2.9], while where in [13, Chap.7 Sec.1] a minimal dependent set
of points is called a circuit).

Definition 4.2 A set of points S ⊂ P
m is minimally dependent, if S is linearly dependent,

but any proper subset of S is linearly independent.

We need now a list of results on the cohomology of IS(1, . . . , 1), for finite sets S in a
product of projective spaces.

Definition 4.3 We say that a finite subset S ⊂ Y is concise if for all indexes i the set πi (S)

spans P
ni , i.e., there are no hyperplanes H ⊂ P

ni such that

S ⊂ P
n1 × · · · × P

ni−1 × H × P
ni+1 × · · · × P

nk .
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1780 E. Ballico et al.

We say that T ∈ P
M is concise if there are no non-concise subsets A ⊂ ν(Y ) such that

T ∈ 〈A〉.
Notice that if S ⊂ Y is concise, then necessarily �S > max{ni }.
The two results below are mainly an extension to the non-symmetric case of results in [6]

and [2].

Lemma 4.4 Fix a finite set S ⊂ Y = P
n1 × · · · × P

nk such that x := �(S) ≤ k + 1,

h1
(
I{1,...,k}
S (1, . . . , 1)

)
> 0 and h1

(
I{1,...,k}
S′ (1, . . . , 1)

)
= 0 for each S′

� S. Then there

is E ⊂ {1, . . . , k} such that �(E) = k + 2 − x and �(πi (S)) = 1 for all i ∈ E.

Proof The lemma is trivial if x = 2, because O{1,...,k}
Y (1, . . . , 1) is very ample and so the

assumptions of the lemma are never satisfied in this case. Thus we may assume x > 2 and
use induction on the integer x .

Now assume x = 3. By assumption ν(S) is contained in a line L ⊂ X , i.e., there is a curve
D ⊂ Y such that ν(D) is a line, i.e., deg(OD(1, . . . , 1)) = 1.We have deg(OD(1, . . . , 1)) =∑k

i=1 deg(πi |D). Hence there is E ⊂ {1, . . . , k} such that �(E) = k − 1 and deg(πi |D) = 0
for all i ∈ E , i.e., πi (D) is a point. Thus πi (S) is a point for all i ∈ E .

Thus we assume x > 3 (and so k ≥ 3).
Assume �(π1(S)) ≥ 2, so that the Segre function of S satisfies SFS(1) ≥ 2. Notice

that the assumptions on S imply that SFS(k) = x − 1. Take points P = (a1, . . . , ak),

Q = (b1, . . . , bk) ∈ S with P �= Q. Since h1
(
I{1,...,k}
S′ (1, . . . , 1)

)
= 0 for all S′

� S and

x > 3, we may find A ⊃ {P, Q} with �(A) = x − 1 and h1
(
I{1,...,k}
A (1, . . . , 1)

)
= 0.

Since x ≤ k + 1, there is a minimal integer i ∈ {2, . . . , k} such that SFS(i − 1) = SFS(i).
By [8, Proposition 2.5] for every minimally dependent S′ ⊆ S with respect to the line
bundle O{1,...,i}(1, . . . , 1), we have �(πi (S′)) = 1. Since i ≥ 2 and P �= Q, we have

h1
(
I{1,...,i}

{P,Q} (1, . . . , 1)
)

= 0. Hence we may find a minimally dependent set containing

{P, Q}. Thus ai = bi . Take any C = (c1, . . . , ck) ∈ S\{P, Q}. If c1 �= a1, we may take
minimally dependent S′′ ⊆ S with respect to the line bundleO{1,...,i−1}(1, . . . , 1) containing
{P,C} and hence ci = ai . If c1 = a1, we may take minimally dependent S′′ ⊆ S with
respect to the line bundle O{1,...,i−1}(1, . . . , 1) containing {Q,C} and hence ci = bi = ai .
Thus πi (S) = {ai }. The lemma is now proved when x = k + 1, by setting E = {i} .

If x < k + 1, we apply the same proof to the projection πu(X) where u = {1, . . . , k}\{i}
and conclude by descending induction on the integer k + 1 − x . ��
Lemma 4.5 Fix a finite set S ⊂ Y such that x := �(S) ≤ k + n1, 〈π1(S)〉 = P

n1 ,

h1
(
I{1,...,k}
S (1, . . . , 1)

)
> 0 and h1

(
I{1,...,k}
S′ (1, . . . , 1)

)
= 0 for each S′

� S. Then there

is E ⊂ {2, . . . , k} such that �(E) = k + 2 − x and �(πi (S)) = 1 for all i ∈ E.

Proof Take n1 + 1 points A1, . . . , Ani+1, say A j = (a j,1, . . . , a j,k), 1 ≤ j ≤ n1 + 1, with
the property that the set {a1,1, . . . , an1+1,1} spans P

n1 . Then just repeat the proof of Lemma
4.4. ��

Now, with the aid of Proposition 2.4, we are ready to prove the following theorem where
we explicit a sufficient condition for a non-redundant decomposition to be minimal and
unique.

Theorem 4.6 Fix an element T ∈ P
M and a non-redundant decomposition S ⊂ Y of T and

let �(S) = r . If m := max{n1, . . . , nk}, then
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(a) If 2r ≤ k + m, then the rank of T is r .
(b) If moreover 2r < k + m, then S(T ) = {S}, i.e., T is identifiable.

Proof By permuting the factors of Y , we may assume that n1 = m.
The assumptions on T imply in particular that ν(S) is linearly independent, i.e.,

h1
(
I{1,...,k}
S (1, . . . , 1)

)
= 0. Let S′ ⊂ Y be a minimal decomposition of T such that �S′ ≤ r

and S′ �= S. Then, by Proposition 2.4, h1
(
I{1,...,k}
S∪S′ (1, . . . , 1)

)
> 0.

Let S̃ ⊆ S ∪ S′ be a minimal subset of S ∪ S′ containing S and such that

h1
(
I{1,...,k}
S̃

(1, . . . , 1)
)

> 0. Since S̃ ⊇ S, and S is concise, the set π1(S̃) spans P
n1 .

By Lemma 4.5, we have �(S̃) ≥ k + ni + 1 and hence �(S′) + r ≥ k + m + 1.
If 2r = k + m we get �(S′) ≥ r . This proves that T has rank r . If 2r < k + m we get a

contradiction. ��
Corollary 4.7 Set m := max{n1, . . . , nk}. Take a concise T ∈ P

M. If 2rk(T ) < k+m, then
T is identifiable.

Proof Take S ∈ S(T ). Since S ⊂ Y and T ∈ 〈ν(S)〉, then X is the minimal multiprojective
space containing S. Then apply part (4.6) of Theorem 4.6. ��
Remark 4.8 One cannot give a result on the identifiability of tensors without comparing it
with the celebrated Kruskal’s bound ([15]), which is known to be sharp ([11,18]).

Our condition on the decomposition S of the tensor T is weaker than the condition imposed
by Kruskal, which requires to compute the span of any subset of πi (S) up to cardinality ni +1
(in order to determine the Kruskal’s rank), while we only need to check that πi (S) generates
P
ni . Since the Kruskal’s rank of the projections of S in principle can be even 1 (when πi is

not injective), for low values of the rank our result determines the identifiability of T under
weaker assumptions.

Of course, as our assumptions are weaker thanKruskal’s ones, we cannot give applications
outside Kruskal’s numerical range. There are few cases in which the numerical range of
application of our result matches with Kruskal’s range. One of them, e.g., is given by tensors
of type 3 × 2 × 2 × 2.

We notice that tensors of format 3× 2 × 2 × 2 and of generic rank 4 are also generically
identifiable. This has been discovered in Theorem 1.2 of [14], still by using projections onto
different factors.

Next, we show that under some condition on the decomposition S of a tensor T , we can
prove that any other decomposition S′ of cardinality smaller or equal than �S must have
projections in special position.

Definition 4.9 Azero-dimensional scheme Z ⊂ Y is said to be curvilinear if each connected
component of Z has embedding dimension 1, i.e., there exists a smooth curve in Y containing
Z .

We will indeed prove the result even when S′ is non-reduced, provided that S′ is curvilin-
ear.

Notice that, of course, any reduced finite subset of Y is curvilinear.

Theorem 4.10 Set m′ := min{n1, . . . , nk}. Fix integers s > 0, 0 < x < k such that
(m′ + 1)k−x ≥ r . Let B ⊂ Y be zero-dimensional curvilinear scheme and S ⊂ Y be a finite
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set with different coordinates such that �(S) = r , deg(B) = x and h1(Iu
S (1, . . . , 1)) = 0 for

any subset u ⊂ {1, . . . , k} of cardinality k − x.
Assume that each projectionπi is an isomorphismwhen restricted to B (when B is reduced

this is equivalent to say that also B has different coordinates).

Then, h1
(
I{1,...,k}
S∪B (1, . . . , 1)

)
= 0.

Proof Set Z := S ∪ B and assume h1
(
I{1,...,k}
Z (1, . . . , 1)

)
> 0. Taking S\(B ∩ S) instead

of S we reduce to the case S ∩ B = ∅. Fix u = {2, . . . , k} so that πu is the projection to the
last k − 1 factors and write Yu = P

n2 × · · · × P
nk

(a) First assume k = 2 and hence x = 1, u = {2} and �(S) ≤ m + 1. Write B = {O}
with O = (O1, O2). Take a general hyperplane H1 ⊂ P

n1 such that O1 ∈ H1 and set
W1 := H1 × P

n2 . Since H1 is a general hyperplane containing O1 and S has different
coordinates, either W1 ∩ S = ∅ or W1 ∩ S is the unique point whose image by π1 is O1.
Hence �(W1 ∩ Z) ≤ 2.

Since O{1,...,k}(1, . . . , 1) is very ample, then h1
(
I{1,...,k}
W1∩Z (1, . . . , 1)

)
= 0, so

h1
(
W1, I{1,...,k}

W1∩Z ,W1
(1, . . . , 1)

)
= 0. The residual exact sequence of W1 in Y gives

h1
(
Iu
Z\(Z∩W1)

(1, . . . , 1)
)

> 0. Since Z\(Z ∩ W1) ⊆ S, we get h1
(Iu

S (1, . . . , 1)
)

> 0,

a contradiction.
(b) Now assume k ≥ 3 and assume that the claim holds for multiprojective spaces with

k−1 factors.Write {P(1), . . . , P(y)} for the points of the reduced set Bred, where 1 ≤ y ≤ x .
For any i ∈ {1, . . . , k} letAi be the set of all pairs (P(u), Q(u)) ∈ Bred × S such that all the
coordinates of P(u) and Q(u) are the same, except the i th one (which is different, because
S ∩ B = ∅). Assume the existence of (P(u), Q(v)) ∈ Ai and (P(u), Q(v)) ∈ A j . Since
S ∩ B = ∅, Q(u) (resp. Q(v)) has all coordinates equal to the one of P(u), except the
i th (resp. j th) one, which is different. Since k ≥ 3 and S has different coordinates, we get
Q(u) = Q(v). Hence i = j . Since y ≤ x < k, there is h ∈ {1, . . . , k} with Ah = ∅.
Permuting the factors of Y , we may assume h = 1, i.e., A1 = ∅. This is equivalent to the
injectivity of themapπ1|S∪Bred . Sinceπ1|B is an embedding,we get thatπ1|Z is an embedding.

Fix P ∈ Bred and call P1, . . . , Pk its components. Take a general hyperplane H1 of P
n1

containing P1. Since π1(B) is curvilinear and H1 is general, we have π1(B) ∩ H1 = {P1}
(scheme-theoretic intersection). Set W1 := H1 × Yu. W1 is an element of |OY (1, 0, . . . , 0)|.
Since π1|B is an embedding and π1(B) ∩ H1 = {P1} (scheme-theoretic intersection), we
have B ∩ W1 = {P} (scheme-theoretic intersection). Since H1 is general and S has dif-
ferent coordinates, either W1 ∩ S = ∅ or W1 ∩ S is the unique point of S with P1 as its
first coordinate. Hence Z1 := Z ∩ W1 is always reduced, it contains P and at most another
point, which is in S. Set Zu := ResW1(Z), B1 := ResW1(B) and S1 := ResW1(S) =
S\(S ∩ W1). We have Zu = B1 ∪ S1, deg(B1) = x − 1, B1 ⊂ B, S1 ⊆ S. Since

�(Z1) ≤ 2 and O{1,...,k}(1, . . . , 1) is very ample, we have h1
(
I{1,...,k}
Z1

(1, . . . , 1)
)

= 0.

Hence h1(W1, I{1,...,k}
Z1

(1, . . . , 1)) = 0. The residual exact sequence of W1 in X gives

h1
(
I{1,...,k}
Zu

(1, . . . , 1)
)

> 0. Since π1|Z , is an embedding, then πu|Zu is an embedding.

Hence h1
(
I{1,...,k}
Zu

(1, . . . , 1)
)

= h1
(
Yu, Iu

Zu
(1, . . . , 1)

)
. The inductive assumption on the

number of factors of the multiprojective space gives h1
(
Yu, Iu

Zu
(1, . . . , 1)

)
= 0, a contra-

diction. ��
Mixing the previous theorem with Proposition 2.4, we get the following.
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Corollary 4.11 Set m′ := min{n1, . . . , nk} and fix integers s > 0, 0 < x < k such that
(m′ + 1)k−x ≥ r . Take a tensor T ∈ P

M with a non-redundant decomposition S ⊂ Y such
that �S = r and S has different coordinates. Assume h1

(Iu
S (1, . . . , 1)

) = 0 for any subset
u ⊂ {1, . . . , k} of cardinality k − x.

Then any other non-redundant decomposition S′ ⊂ X of T of cardinality ≤ x cannot
have different coordinates.

The statement of Theorem 3.1 cannot produce corollaries on the identifiability, because
the assumptions do not include the case �A = �B.

We can however modify the proof of Theorem 3.1, adding some assumptions on the
decomposition S, which produces results which bound different the decompositions of a
tensor T . Recall that a projective varietyW is degenerate if it is contained in some hyperplane.

Definition 4.12 LetW ⊂ P
r be an integral and non-degenerate projective variety. A finite set

(resp. zero-dimensional scheme) S ⊂ W is said to be set-theoretically quasi-general (resp.
scheme-theoretically quasi-general) if the set-theoretic (resp. scheme-theoretic) intersection
W ∩ 〈S〉 is set-theoretically (resp. scheme-theoretical) equal to S.

Lemma 4.13 Let W ⊂ P
M be an integral and non-degenerate variety of dimension n. Fix

a general reduced subset S ⊂ W with �S ≤ M − n − 1. Then S is the scheme-theoretic
base locus of the linear system on Y induced by H0(I{1,...,k}

S (1, . . . , 1)), i.e S is scheme-
theoretically quasi-general.

Proof Let L ⊂ P
M be a general linear space of dimension M − r − 1. By Bertini’s theorem,

the scheme L ∩ W is a finite set of deg(Y ) points; moreover, the set L ∩ W is in linearly
general position in L . Hence for any S ⊂ L ∩ W with �S ≤ M − r − 1, the restriction of

U := H0
(
I{1,...,k}
S (1, . . . , 1)

)
to L ∩ W has S as its set-theoretic base locus. Since L is a

linear space, the restriction ofU toW has base locus contained in L ∩W . Thus S is the base
locus of the restriction of U to W . Since W is integral and non-degenerate, a general subset
A ⊂ W with cardinality at most M − n spans a general subspace of P

M with dimension
�(A) − 1. The claim follows. ��
Proposition 4.14 Fix a partition E � F = {1, . . . , k} with E = {a1, . . . , an−h} and F =
{b1, . . . , bh} for some 0 < h < k, and a positive integer c < MF = ∏h

i=1(nbi + 1). Let
Z ⊂ Y be a zero-dimensional scheme such that �(Z) = c, h1

(IE
Z (1, . . . , 1)

) = 0 and
h1

(IF
Z (1, . . . , 1)

) = 0. Assume that πF (Z) is set-theoretically (resp. scheme-theoretically)
quasi-general. Take any T ∈ 〈ν(Z)〉 such that T /∈ 〈ν(Z ′)〉 for any Z ′

� Z.
If S is a finite set (resp. zero-dimensional scheme) such that S �= Z, deg(S) ≤ b and

T ∈ 〈ν(S)〉, then deg(S) = b and πF (S) = πF (Z).

Proof By Theorem 3.1, it is sufficient to do the case in which deg(S) = c and
h0

(IF
S (1, . . . , 1)

) = h0
(OF

Y (1, . . . , 1)
) − b. In particular πF induces an embedding of

S into YF = P
b1 × · · · × P

bk .
The proof of Theorem 3.1 works verbatim, if there is H ∈ |OF

Y (1, . . . , 1)| containing
S, but not containing Z . Since h0(IF

S (1, . . . , 1)) = h0(IF
Z (1, . . . , 1)), this is equivalent to

require that H0(IF
S (1, . . . , 1)) �= H0(IF

Z (1, . . . , 1)), i.e., that πF (S) is not contained in the
base locus of πF (Z). Since πF (Z) is the set-theoretic (resp. scheme-theoretic) quasi-general,
the base locus of |OYF (1, . . . , 1)| is πF (Z). Thus we get πF (S) = πF (Z). ��
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Corollary 4.15 For each i ∈ {1, . . . , k} fix a set Fi ⊂ {1, . . . , k} such that i ∈ Fi and set
Ei := {1, . . . , k}\Fi . Let S ⊂ Y be a finite set such that �(S) = r , where:

r <
∏

j∈Fi
(n j + 1) and r ≤

∏

h∈Ei

(nh + 1).

Take any T ∈ 〈ν(S)〉, such that T /∈ 〈ν(S′)〉 for any S′
� S. Assume that:

h0
(
IFi
S (1, . . . , 1)

)
= h0

(
OFi

Y (1, . . . , 1)
)

− r

and

h0
(
IEi
S (1, . . . , 1)

)
= h0

(
OEi

Y (1, . . . , 1)
)

− r

for all i = {1, . . . , k}. Assume moreover that each πFi (S) is set-theoretically (resp. scheme-
theoretical) quasi-general.

If S′ �= S is a zero-dimensional subscheme of degree ≤ r such that 〈ν(S′)〉 contains T ,
then S′ is a finite set, �(S′) = r and πi (S′) = πi (S) for all i .

Notice that (unfortunately) we are not able to conclude that S = S′: they can be different
even if πi (S′) = πi (S) for all i . Namely the points can differ by a rearrangement of the
coordinates.

Proof Since h0
(
IFi
S (1, . . . , 1)

)
= h0

(
OFi

Y (1, . . . , 1)
)

− �(S), each πFi |S is injective.

Assume that S′ exists. By Proposition 4.14 applied to Fi , S′ is a finite set with �(S′) = r ,
πFi |S′ injective and πFi (S

′) = πFi (S). Thus πi (S′) = πi (S) for all i . ��
Remark 4.16 Corollary 4.15 does not provide the identifiability of a tensor T : it simply
bounds strictly the locus where different decompositions of the same tensor T could lie. We
observe that, on the other hand, the numerical range of application of Corollary 4.15 is wider
than the range of Kruskal’s criterion of identifiability.

Just to give an example, consider tensors of type 3 × 3 × 6, corresponding (mod scalars)
to points in the space P

53 which contains the Segre embedding of P
2 × P

2 × P
5. Kruskal’s

criterion for the identifiability applies only when the rank r is bounded by r ≤ (3+ 3+ 6−
2)/2 = 5. Our Corollary 4.15 applies, taking F1 = F2 = {1, 2}, F3 = {3} and checking the
geometric assumptions, even for r = 6.
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