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We prove that if a Banach space admits a biorthogonal system whose dual part is 
norming, then the set of norm-attaining functionals is lineable. As a consequence, 
if a Banach space admits a biorthogonal system whose dual part is bounded and 
its weak-star closed absolutely convex hull is a generator system, then the Banach 
space can be equivalently renormed so that the set of norm-attaining functionals is 
lineable. Finally, we prove that every infinite dimensional separable Banach space 
whose dual unit ball is weak-star separable has a linearly independent, countable, 
weak-star dense subset in its dual unit ball. As a consequence, we show the existence 
of linearly independent norming sets which are not the dual part of a biorthogonal 
system.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Filling subspaces of �∞ have been studied in [9] where it is shown that, whereas not every subspace of 
�∞ verifies that the set of its norm-attaining functionals is lineable, filling subspaces do.

Following the notion of a “big set” in the measure theory sense (the complementary of a measure zero 
set) and in the Baire theory sense (a comeager set), Gurariy coined in 1991 (see [11]) a new version of this 
notion in the linear sense: lineability and spaceability. However, this did not appear in the literature until the 
early 2000’s in [3,12]. For the last decade there has been an intensive trend to search for large algebraic and 
linear structures of special objects. We would like to mention the nice survey paper [6] related to this topic 
and the very recent monograph [2]. Let us introduce what we are meaning: A subset M of a Banach space 
X is said to be lineable (spaceable) if M ∪ {0} contains an infinite dimensional (closed) vector subspace. By 
λ-lineable (λ-spaceable) we mean that M ∪ {0} contains a (closed) vector subspace of dimension λ.

Throughout this paper, we will deal with a special friend: NA (X), the set of norm-attaining functionals on 
a Banach space X. By a classical Bishop–Phelps’s theorem it is known that NA (X) is always “topologically 
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generic”, that is, dense in X∗, therefore it seems natural to raise the following question (originally posed by 
Godefroy in [10]).

Problem 1.1. (See Godefroy, [10].) Given an infinite dimensional Banach space X, is NA (X) always line-
able?

Very recently, Rmoutil in [14] observed that the example of Read [13] of a Banach space with no proximinal 
subspaces of codimension 2 is also an example of a Banach space whose set of norm-attaining functionals 
does not contain subspaces of dimension 2. In [1] it has been shown that the above question has a positive 
answer for some classical Banach spaces like the C(K) and the L1(μ) spaces. Concerning Question 1.1 in 
terms of spaceability, the main effort has been done by Bandyopadhyay and Godefroy in [5], where it was 
shown that Asplund Banach spaces with the Dunford–Pettis property cannot be equivalently renormed to 
make the norm-attaining functionals spaceable. In particular, if K is an infinite Hausdorff scattered compact 
topological space, then NA (C(K)) is lineable but not spaceable.

As far as we know, the main result obtained until now concerning the isomorphic lineability of NA (X)
was obtained in [8], where it is shown that every Banach space admitting an infinite dimensional sep-
arable quotient can be equivalently renormed so that the set of its norm-attaining functionals is line-
able.

All the Banach spaces throughout this manuscript will be considered infinite dimensional.

2. Filling subspaces of �∞(Λ)

We refer the reader to [9, Definition 2.4] for the original definition of filing subspace of �∞. Here we will 
generalize it for �∞(Λ). From now on and unless explicitly stated, Λ will stand for an infinite set.

Given a subset V of �∞(Λ), we define the supporting set of V as

supp(V ) :=
⋃

{supp(v) : v ∈ V } ,

where as expected supp(v) := {λ ∈ Λ : v(λ) �= 0}. Observe that if supp(V ) is finite and V is a subspace, 
then V is finite dimensional.

An infinite dimensional closed subspace V of �∞(Λ) is said to be filling provided that for every infinite 
subset A of supp(V ) there exists x ∈ SV with supp(x) ⊆ A and x attains its sup norm.

It is not hard to see that every infinite dimensional closed subspace of �∞(Λ) containing c00(Λ) is filling.
Also recall that for every λ ∈ Λ, the evaluation functional δλ on �∞(Λ) is defined by δλ(x) = x(λ). It is 

not hard to see that δλ ∈ S�∞(Λ)∗ , and if λ1, . . . , λp ∈ Λ are all different, then

‖α1δλ1 + · · · + αpδλp
‖ = |α1| + · · · + |αp|.

Theorem 2.1. Every filling subspace V of �∞(Λ) verifies that the set of its norm-attaining functionals is 
card(supp(V ))-lineable.

Proof. Since supp(V ) is infinite, we can decompose it as supp(V ) =
⋃̇

λ∈supp(V )Aλ with card(Aλ) = ℵ0 for 
all λ ∈ supp(V ). By hypothesis, for every λ ∈ supp(V ), there exists xλ ∈ SV such that supp(xλ) ⊆ Aλ and 
there exists γλ ∈ Aλ with |xλ (γλ)| = 1. We will show now that span{δγλ

: λ ∈ supp(V )} ⊆ NA(V ). Indeed, 
let λ1, . . . , λp ∈ supp(V ) all different and α1, . . . , αp ∈ K. By keeping in mind that the Aλ’s are all disjoint, 
note that

∥∥sgn(α1)xλ1 + · · · + sgn(αp)xλp

∥∥ = 1
∞
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and
(
α1δγλ1

+ · · · + αpδγλp

) (
sgn(α1)xλ1 + · · · + sgn(αp)xλp

)

= |α1| + · · · + |αp|

=
∥∥∥α1δγλ1

+ · · · + αpδγλp

∥∥∥ . �
Corollary 2.2. Every infinite dimensional closed subspace of �∞(Λ) containing c00(Λ) verifies that the set of 
its norm-attaining functionals is card(Λ)-lineable.

3. Main results

This section is devoted to find isometric and isomorphic conditions to accomplish the lineability of the 
norm-attaining functionals.

3.1. Biorthogonal systems

A biorthogonal system in a vector space X is a family of the form (xi, x∗
i )i∈I ⊆ X × X∗ such that 

x∗
i (xj) = δij . Notice that we do not require any norm-condition. Biorthogonal systems allow the construction 

of filling subspaces associated to a Banach space.

Theorem 3.1. Let X be a Banach space and consider a biorthogonal system (xi, x∗
i )i∈I ⊆ X ×X∗ such that 

{x∗
i : i ∈ I} is bounded. If Λ := {x∗

i : i ∈ I}, then the subspace V :=
{
(x∗

i (x))i∈I ∈ �∞(Λ) : x ∈ X
}

contains 
c00(Λ) and thus is filling.

Proof. We will show that the canonical basis 
(
ex∗

i

)
i∈I

of �∞(Λ) is contained in V . Indeed, fix an arbitrary 
i0 ∈ I. Then ex∗

i0
= (x∗

i (xi0))i∈I ∈ V . �
Recall that, given a Banach space X, a subset Λ of X∗ is said to be separating provided that the 

pre-annihilator of Λ is null, that is,

Λ� := Λ⊥ ∩X =
⋂

x∗∈Λ

ker (x∗) = {0} .

The dual part {x∗
i : i ∈ I} of a biorthogonal system (xi, x∗

i )i∈I does not necessarily need to be separating 
unless, for instance, X = span{xi : i ∈ I}.

On the other hand, a subset Λ := {x∗
i : i ∈ I} ⊆ X∗ is the dual part of a biorthogonal system if and 

only if 
⋂

i∈I\{i0} ker(x∗
i ) � ker(x∗

i0
) for all i0 ∈ I. In particular, Λ \ {x∗

i0
} is not separating for all i0 ∈ I. 

Conversely, if Λ is separating and Λ \ {x∗
i0
} is not separating for all i0 ∈ I, then Λ is the dual part of a 

biorthogonal system.

Theorem 3.2. If V is a filling subspace of �∞(Λ), then there exists a biorthogonal system (vi, v∗i )i∈I ⊆ V ×V ∗

such that {v∗i : i ∈ I} is norming.

Proof. We use the same decomposition as in the proof of Theorem 2.1 to write supp(V ) =
⋃̇

λ∈supp(V )Aλ

with card(Aλ) = ℵ0 for all λ ∈ supp(V ). By hypothesis, for every λ ∈ supp(V ), there exists xλ ∈ SV such 
that supp(xλ) ⊆ Aλ and there exists γλ ∈ Aλ with xλ (γλ) = 1. The biorthogonal system that we will 
consider is (xλ, δγλ

)λ∈supp(V ). Finally, note that {δλ : λ ∈ Λ} is norming on �∞(Λ), so {δγλ
: λ ∈ supp(V )}

is norming on V . �
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3.2. Norming sets

We recall the reader that a subset Λ of the dual X∗ of a Banach space X is norming, that is, ‖x‖ =
sup {|y∗ (x)| : y∗ ∈ Λ} for all x ∈ X, if and only if the linear operator

X → �∞ (Λ)

x 
→
Λ → K

y∗ 
→ y∗ (x)

is an isometry over its range. Norming sets are separating and always contained in the dual unit ball.
We also recall the reader about the polar set Λ0 of a subset Λ of X, that is,

Λ0 := {x∗ ∈ X∗ : |x∗(x)| ≤ 1 for all x ∈ Λ}.

If Λ ⊆ X∗, then Λ0 := Λ0 ∩X.

Theorem 3.3. Let X be a Banach space. Let Λ be a subset of X∗. The following conditions are equiva-
lent:

(1) Λ is norming.
(2) cow∗ (Λ) = BX∗ .
(3) Λ0 = BX .
(4) acow∗ (Λ) = BX∗ .

Proof.

(1) ⇒ (2) Let x∗ ∈ BX∗ \ cow∗ (Λ). By the Hahn–Banach Theorem there exists x ∈ SX such that

x (x∗) > supx
(
cow

∗
(Λ)

)
= 1,

which is impossible.
(2) ⇒ (3) Observe that

BX = (BX∗)0 =
(
cow

∗
(Λ)

)
0

= Λ0.

(3) ⇒ (4) Note that

BX∗ = (BX)0 = (Λ0)0 = acow
∗
(Λ) .

(4) ⇒ (1) Finally

‖x‖ = sup {x∗ (x) : x∗ ∈ BX∗}

= sup
{
x∗ (x) : x∗ ∈ acow

∗
(D)

}

= sup {x∗ (x) : x∗ ∈ D}

for all x ∈ X. �
Theorem 3.4. Let X be a Banach space. Let Λ be a subset of X∗. Then following conditions are equiva-
lent:
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(1) Λ is bounded.
(2) Λ0 is a neighborhood of 0.
(3) span (Λ0) = X.

Proof.

(1) ⇒ (2) If Λ is bounded, then Λ ⊆ αBX∗ for some α > 0, so αBX = (αBX∗)0 ⊆ Λ0.
(2) ⇒ (3) It is clear.
(3) ⇒ (2) Observe that Λ0 is absolutely convex and a generator system, therefore we are entitled to apply 

[7, Lemma 2.4] to conclude that Λ0 is absorbing, which makes it a barrel of X. Since X is 
complete, we deduce that Λ0 is a neighborhood of 0.

(2) ⇒ (1) If Λ0 is a neighborhood of 0, then we can find β > 0 so that βBX ⊆ Λ0, which means that

Λ ⊆ acow
∗
(Λ) = (Λ0)0 ⊆ (βBX)0 = βBX∗ . �

Theorem 3.5. Let X be a Banach space. Let Λ be a subset of X∗. Then following conditions are equivalent:

(1) Λ0 is bounded.
(2) acow∗ (Λ) is a neighborhood of 0.
(3) span

(
acow∗ (Λ)

)
= X∗.

Proof.

(1) ⇒ (2) If Λ0 is bounded, then Λ0 ⊆ αBX for some α > 0, so

αBX∗ = (αBX)0 ⊆ (Λ0)0 = acow
∗
(Λ) .

(2) ⇒ (3) It is clear.
(3) ⇒ (2) Observe that acow∗ (Λ) is absolutely convex and a generator system, therefore we are entitled to 

apply [7, Lemma 2.4] to conclude that acow∗ (Λ) is absorbing, which makes it a barrel of X∗. 
Since X∗ is complete, we deduce that acow∗ (Λ) is a neighborhood of 0.

(2) ⇒ (1) If acow∗ (Λ) is a neighborhood of 0, then we can find β > 0 so that βBX∗ ⊆ acow∗ (Λ), which 
means that

Λ0 =
(
acow

∗
(Λ)

)
0
⊆ (βBX∗)0 = βBX . �

Corollary 3.6. Let X be a Banach space. Let Λ be a subset of X∗. The following conditions are equivalent:

(1) Λ and Λ0 are both bounded.
(2) There exists an equivalent norm on X that makes Λ is norming.

Now we are ready to state and prove the main result in this subsection.

Theorem 3.7. Let X be a Banach space.

(1) There exists a biorthogonal system (xi, x∗
i )i∈I such that {x∗

i : i ∈ I} is norming if and only if X is 
linearly isometric to a filling subspace of �∞ (Λ). In this situation, NA(X) is card(Λ)-lineable.

(2) There exists a biorthogonal system (xi, x∗
i )i∈I such that {x∗

i : i ∈ I} is bounded and span
(
acow∗{x∗

i :
i ∈ I}

)
= X∗ if and only if X is isomorphic to a filling subspace of �∞ (Λ). In this situation, X can be 

equivalently renormed to make NA(X) be card(Λ)-lineable.
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Proof.

(1) Assume first that there exists a biorthogonal system (xi, x∗
i )i∈I such that Λ := {x∗

i : i ∈ I} is norming. 
Then X is linearly isometric to {(x∗

i (x))i∈I : x ∈ X}, which is a filling subspace of �∞(Λ) in virtue of 
Theorem 3.1. Theorem 2.1 assures that NA(X) is card(Λ)-lineable. Conversely, in virtue of Theorem 3.2
we deduce that there exists a biorthogonal system (xi, x∗

i )i∈I such that {x∗
i : i ∈ I} is norming.

(2) Assume first that there exists a biorthogonal system (xi, x∗
i )i∈I such that Λ := {x∗

i : i ∈ I} is bounded 
and span

(
acow∗(Λ)

)
= X∗. By applying Theorem 3.5 we have that Λ0 is bounded. Now, it suffices to call 

on Corollary 3.6 to conclude that there exists an equivalent norm on X for which Λ is norming. The first 
item of this theorem applied to this new equivalent norm allows us to deduce that X is isomorphic to a 
filling subspace of �∞ (Λ) and thus X can be equivalently renormed to make NA(X) be card(Λ)-lineable. 
Conversely, if X is isomorphic to a filling subspace of �∞ (Λ), then in accordance with Theorem 3.2 X can 
be equivalently renormed to have a biorthogonal system (xi, x∗

i )i∈I such that {x∗
i : i ∈ I} is norming. 

Then in the original norm of X, {x∗
i : i ∈ I} is bounded and span

(
acow∗{x∗

i : i ∈ I}
)

= X∗ (recall 
Corollary 3.6 and Theorem 3.5). �

We would like to make the reader beware that Rmoutil example of a Banach space whose set of norm-
attaining functionals is not even 2-lineable is an equivalent renorming of c0, thus we are talking about a 
Banach space with a Schauder basis, which will not be monotone in virtue of [1, Theorem 3.1]. As a conse-
quence, the existence of a biorthogonal system is not enough to assure the lineability of the norm-attaining 
functionals.

3.3. w∗-Separable sets

Notice that if BX∗ is w∗-separable, then X∗ is w∗-separable. Indeed, let Λ be a countable w∗-dense set 
in BX∗ , then

⋃
n∈N

nΛw∗ ⊆
⋃
n∈N

nBX∗ = X∗

and 
⋃

n∈N
nΛ is countable. However, the converse to the previous assertion does not hold in virtue of [4].

Theorem 3.8. Let X be an infinite dimensional Hausdorff locally convex topological vector space. If D is a 
separable, first countable, bounded and absolutely convex subset of X, then there exists Λ ⊆ D countable, 
dense in D, and linearly independent.

Proof. Let (Vn)n∈N be a nested basis of open neighborhoods of 0 in D in such a way that Vn = Un ∩ D, 
where Un is an open absolutely convex and absorbing neighborhood of 0 in X, for every n ∈ N. Observe 
that by hypothesis, we have that 

( 1
nVn

)
n∈N

is a basis of open neighborhoods of 0 in D. Let (dn)n∈N be a 
dense sequence in D. We will follow an inductive process:

• For n = 1, we take z1 = d1.
• For n = 2, since 1

2d2 + 1
2V2 � Kz1, there exists z2 ∈

( 1
2d2 + 1

2Vk

)
\Kz1.

• For n = k, since 
(
1 − 1

k

)
dk + 1

kVk � span{z1, . . . , zk−1}, there exists zk ∈
((

1 − 1
k

)
dk + 1

kVk

)
\

span{z1, . . . , zk−1}.

Following this process we obtain a sequence (zn)n>1 verifying the following conditions:

(1) zn ∈
(
1 − 1 ) dn + 1Vn ⊆ D due to the convexity of D.
n n



F.J. García-Pacheco, D. Puglisi / J. Math. Anal. Appl. 445 (2017) 1321–1327 1327
(2) (zn)n∈N is dense in D. Indeed, write zn =
(
1 − 1

n

)
dn + 1

nvn with vn ∈ Vn. Fix an arbitrary m ∈ N. 
We can find nm > m such that dnm

∈ Vm. Then znm
∈ Vm by the convexity of Vm and the fact that 

Vnm
⊆ Vm.

(3) zn /∈ span{z1, . . . , zn−1}.

Now it is easy to understand that Λ := {zn : n ∈ N} verifies the desired properties. �
As a direct consequence of Theorem 3.8 we obtain the following result.

Corollary 3.9. If X is an infinite dimensional separable Banach space such that BX∗ is w∗-separable, then 
there exists Λ ⊆ BX∗ countable, w∗-dense in BX∗ , and linearly independent.

The final example in this section shows the existence of countable norming linearly independent sets 
which are not the dual part of a biorthogonal system.

Example 3.10. Let X be c0 endowed with the norm given in [14], which makes NA(X) not even 2-lineable. 
According to Corollary 3.9, there exists Λ ⊆ BX∗ countable, w∗-dense in BX∗ , and linearly independent. 
We clearly have that Λ is norming by Theorem 3.3, and thus separating. However, Theorem 3.7 allows us 
to conclude that Λ cannot be the dual part of a biorthogonal system.
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