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ABSTRACT

Despite serious threats as to their soundness, the adoption of composite indicators is constantly growing

alongside their popularity, especially when it comes to their adoption in policy-making exercises. This study

presents a robust non-compensatory approach to construct composite indicators that is mainly based, at least

with respect to the basic ideas, on the classic Borda scoring procedure. The non-compensatory indicators we

are proposing can be seen as aggregation of ordinal non-compensatory preferences between considered units

supplying a numerical cardinal comprehensive evaluation. For this reason, we define our methodology, the

ordinal input for cardinal output non-compensatory approach for composite indicators. To take into account

hesitation, imprecision and ill-determination in defining preference relations with respect to the elementary

indices, we adopt the PROMETHEE methods, whose net flow score can be seen as an extension to the fuzzy

preferences of the Borda score. Moreover, we systematically deal with robustness of the results with respect

to weighting and parameters such as indifference and preference thresholds, allowing to define preference

relations of elementary indices. In this regard, we couple PROMETHEE methods with the recently proposed

σ−µ approach, which permits to explore the whole domain of feasible preference parameters mentioned

above, giving a synthetic representation of the distribution of the values assumed by the composite indicators

in terms of mean, µ, and standard deviation, σ. µ and σ are also used to define a comprehensive overall

composite indicator. Finally, we enrich the results of this analysis with a set of graphical visualizations based on

principal component analysis applied to the PROMETHEE methods with the GAIA technique, providing better

understanding of the outcomes of our approach. To illustrate its assets, we provide a case study of inclusive

development evaluation, based on the data of the homonymous report produced by the World Economic

Forum.
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1 Introduction
The adoption of composite indicators in policy analysis and public communication is constantly growing in

popularity (OECD, 2008). Their use by global institutions (e.g. the OECD, World Bank, EU, etc.) and the interest

shown by the media and policy-makers around the globe gave rise to their adoption in several domains of

academic research, as this is witnessed by the exponential increase of studies in the literature (Greco et al., 2019a).

As their name suggests, these measures provide a value that encompasses in itself the information of a set of

underlying sub-indicators. Understandably, these synthetic and opaque measures could sweep methodological

issues in their underlying framework under the carpet that can nonetheless largely distort the outcome. This

could result in sending “misleading, non-robust policy messages” if they are poorly constructed (Saisana et al.,

2005, p.308), while there is considerable room in their framework for “manipulation” (Grupp and Schubert, 2010,

p.69). This is detrimental for an analysis based on such measures, and it comes naturally given the plethora of

steps needed to be meticulously followed in their construction (see ‘checklist’ in the construction handbook

provided by the OECD, 2008, p.20). Nonetheless, two steps in this checklist are arguably of utmost importance

when it comes to the development process of a composite index, and these are namely the weighting (and, more

in general, selection of the parameters required by the composite index) and aggregation of the sub-indicators.

These two steps are intrinsically related under some aggregation settings, and choices as to their method-

ological aspects may radically alter the results. The reason is that composite indicators are ultimately sole values,

produced under a type of aggregation, the form of which deems which Decision Making Unit (DMU) evaluated

could be ‘under’, or ‘over’-represented (always subject to the hypotheses of the type of aggregation chosen).

When it comes to choosing the type of aggregation, the difference between compensatory and non-compensatory,

(Fishburn 1974; 1975; 1976, Plott 1975, Bouyssou and Vansnick 1986, Bouyssou 1986) simply boils down to whether

one permits compensation among attributes, i.e. a unit can ‘offset’ a loss in a sub-indicator with a gain in another.

Despite the so many proposals of non-compensatory composite indices (see e.g. Munda and Nardo 2009, Mazz-

iotta and Pareto 2016, Attardi et al., 2018) in the literature, we believe that this point is rather delicate and deserves

an accurate discussion.

Munda (2012, p.338) considers an example of a hypothetical sustainability index, in which a classic composite

indicator setting (i.e. that of a weighted additive model) could allow trade-offs among economic growth and

environmental destruction; or, a more ‘extreme’ case within the latter dimension, he adds: ‘clean air’ could

compensate for a loss in ‘potable water’. Understandably, and as the author acknowledges, these situations are not

desirable, and this takes a developer of an index to another route: considering a non-compensatory aggregation

model. Despite the prior urge of several advocates in the literature (see Munda, 2007; 2009; 2012; Billaut et

al., 2010; Paruolo et al., 2013), the domain of composite indicators remained resilient, holding onto the typical

weighted average (see Bandura, 2011, for an inventory of over 400 documented composite indicators evaluating a

single or a group of countries jointly or individually on a socio-economic, political or environmental aspect). Still,

recent proposals employing composite indicators to assess urban planning (Attardi et al., 2018) and low-carbon

performance (Zhang and Zhou, 2018) offer a viable alternative to this classic setting. Both studies use ELECTRE

methods (Roy, 1990; Figueira et al., 2013; 2016) as a non-compensatory aggregation method in their evaluation;

though unless someone is interested in outranking relationships (as it is indeed the case in the Multiple Criteria

Decision Aiding (MCDA) environment), they do not provide a sole value acting as an estimation -i.e. a literal

meaning of a ‘composite index’.

In this study, we introduce a novel definition of non-compensatory composite indicators based on the classic

axiomatic foundations of non-compensatory preferences. In this perspective, we propose the use of an MCDA

method that can be interpreted as an extension of the classic Borda score (Borda, 1781); that is the PROMETHEE

family of methods (Brans and Vincke, 1985; Brans and De Smet, 2016; see Marchant, 1998 for the identification of

PROMETHEE net flow score in terms of Borda score) as an effective option for constructing non-compensatory
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composite indicators. Let us point out that our approach is based on the aggregation of ordinal preferences on

elementary indices to get basically cardinal numerical overall evaluations. The ordinal preferences in input permit

us to define this approach as non-compensatory, while the cardinal nature of the overall evaluations in output -in

agreement with the basic intuitive idea of composite indicators-, allows for comparison of the difference in the

overall evaluations of considered units, going far beyond their merely ordinal final ranking. We believe that these

are essential characteristics of a genuine non-compensatory composite indicator and, consequently, we define

our proposal as the ordinal input for cardinal output approach.

We also advocate the adoption of the SMAA-PROMETHEE variant (Corrente et al., 2014) to take into account

any sources of uncertainty arising during the development of a composite index, some conceptual issues regarding

the representation of the population interested in the index (Greco et al., 2018), or simply to further enhance

the transparency of these opaque measures in general. In addition, we present another SMAA variant of GAIA

(Mareschal and Brans, 1988) delineating cardinal information, which is well in line with the meaning of composite

indicators (Booysen, 2002). To illustrate the assets of the proposed method over its compensatory alternatives,

we apply it to a case study evaluating the inclusive growth and development of 108 economies based on the

homonymous index produced by the World Economic Forum (WEF) (Samans et al., 2017).

The remaining of this paper is structured as follows: Section 2 provides the necessary preliminaries for this

study with a discussion of the nature of non-compensatory composite indicators. Section 3 contains the proposal

for a non-compensatory setting for composite indicators based on SMAA-PROMETHEE as well as a modification

of SMAA-GAIA for analytical visuals. Section 4 contains a case study on the World Economic Forum’s ‘Inclusive

Development Index’, and Section 5 contains a discussion and some concluding remarks about the future direction

of research.

2 Non-compensatory composite indicators
Consider a set of units A = {a1, . . . ,an} to be evaluated on a set of elementary indicators G = {g1, . . . , gm}, where

g j : A → X j ⊆ R, j ∈ J = {1, . . . ,m}. Without loss of generality, one can assume that criteria g j ∈G are increasing

with respect to preferences. Each unit a ∈ A is associated with a vector g(a) of performances with respect to

the elementary indicators, that is, g(a) = [
g1(a), . . . , gm(a)

] ∈ X , with X denoting the set of all feasible vectors of

evaluations, that is, X = X1× . . .×Xm . For each g j ∈G , a valued preference function is a function P j : A× A → [0,1]

such that, for all a,a′ ∈ A, P j (a,a′) = f j (g j (a), g j (a′)) with f j : X j ×X j → [0,1] being a function non-decreasing in

its first argument, non-increasing in its second argument and, such that if f (x j , x ′
j ) = 1, then f (x ′

j , x j ) = 0 for all

x j , x ′
j ∈ X j , so that, if P j (a,a′) = 1, then P j (a′,a) = 0, and such that f j (x j , x j ) = 0 for all x j ∈ X j ; that is P j (a,a) = 0

for all a ∈ A. For all a,a′ ∈ A, P j (a,a′) expresses the credibility of the preference of a over a′ with respect to the

elementary indicator g j . If function f j can take only values 0 or 1, then P j is a crisp preference relation, otherwise

it is a valued or fuzzy preference relation. An overall preference is a function P : A× A → [0,1], such that there exist

F : [0,1]2m → [0,1] for which P (a,a′) = F (P1(a,a′), . . . ,Pm(a,a′),P1(a′,a), . . . ,Pm(a′,a)). It is reasonable to require

following conditions for function F :

• F is non-decreasing in its first m arguments, that is, for all a,a′ ∈ A and for all g j ∈ G , the increase in the

preferences P j (a,a′) cannot decrease the overall preference P (a,a′),

• F is non-increasing in its second m arguments, that is, for all a,a′ ∈ A and for all g j ∈ G , the increase in the

preferences P j (a′,a) cannot increase the overall preference P (a,a′),

• F (1, . . . ,1︸ ︷︷ ︸
m

,0, . . . ,0︸ ︷︷ ︸
m

) = 1, so that, for all a,a′ ∈ A, if P1(a,a′) = 1, . . . ,Pm(a,a′) = 1, then P (a,a′) = 1, that is, if there is

full preference for a over a′ with respect to all g j ∈G , then there is also full overall preference for a over a′,

• F (0, . . . ,0︸ ︷︷ ︸
m

,a1, . . . ,am︸ ︷︷ ︸
m

) = 0, for all [a1, . . . ,am] ∈ [0,1]m , so that, for all a,a′ ∈ A, if P1(a,a′) = 0, . . . ,Pm(a,a′) = 0, then
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P (a,a′) = 0, that is, if there is null preference for a over a′ with respect to all g j ∈G , then there is also null overall

preference for a over a′,

• if F (a1, . . . ,am︸ ︷︷ ︸
m

,b1, . . . ,bm︸ ︷︷ ︸
m

) = 1, then F (b1, . . . ,bm︸ ︷︷ ︸
m

,a1, . . . ,am︸ ︷︷ ︸
m

) = 0, for all [a1, . . . ,am], [b1, . . . ,bm] ∈ [0,1]m , that is, if

there is full preference for a over a′, there must be a null preference for a′ over a.

For all a,a′ ∈ A, P (a,a′) expresses the credibility of the comprehensive preference of a over a′.
According to the definition proposed independently by Fishburn (1974; 1975; 1976) and Plott (1975) and

further extensively discussed in Bouyssou (1986) and Bouyssou and Vansnick (1986), an aggregation procedure

is non-compensatory if in the overall final ranking % the comparison of the two alternatives a and a′ depends

only on the two sets of criteria P (a,a′) for which a is preferred to a′ and P (a′,a) for which a′ is preferred to a. This

amounts to the following assumptions:

• P j (a,a′) ∈ {0,1} for all g j ∈G and all a,a′ ∈ A,

• P (a,a′) ∈ {0,1} for all a,a′ ∈ A,

• a Â a′ if and only if P (a,a′) = 1 (with Â being the asymmetric part of %, that is, for all a,a′ ∈ A,a Â a′ if and ony if

a% a′ and not a′ % a).

Observe, however, that both Fishburn (1975) and Plott et al. (1975) proved that, under some mild assumptions,

the only aggregation procedure providing a weak order -that is a strongly complete and transitive binary preference

relation- on the set of alternatives is the lexicographic order. This seems a rather restrictive result that would

definitely close the discussion on interesting non-compensatory scoring procedures; particularly if they should be

used to define a composite indicator. Indeed, giving such a great importance to the most important criterion seems

to be contradicting the general philosophy of composite indicators that, instead, aims to give a comprehensive

synthesis of the evaluations the units of interest get on all the elementary indicators. In this perspective, with

the aim of constructing composite indicators maintaining the initial idea of non-compensatory preferences, we

propose a definition of non-compensatory composite indicator U (a),a ∈ A, as aggregation for all a′ ∈ A− {a} of

the overall non-compensatory preferences P (a,a′) and P (a′,a). As definition of non-compensatory preference

we assume only the essential point thatΠ(a,a′) =V (P1(a,a′), . . . ,Pm(a,a′),P1(a′,a), . . . ,Pm(a′,a)) with V being non-

decreasing in its first m arguments and non-increasing in its second m arguments, with V : [0,1]2m →R such that

Π(a,a′) =−Π(a′,a), withΠ(a,a′) measuring the overall preference of a over a′ ifΠ(a,a′) > 0, and |Π(a,a′)| =Π(a′,a)

measuring the overall preference of a′ over a ifΠ(a,a′) < 0. On this basis, a non-compensatory composite indicator

is a function U : A → R for which there is a function H : [0,1]n−1 → R such that, for all a ∈ A

U (a) = H
(
Π(a,a′)a′ 6=a

)
with H satisfying the following conditions:

• H is non-decreasing in its arguments, so that, for all a, the increase ofΠ(a,a′),a′ 6=,a cannot decrease the overall

evaluation U (a),

• for any permutation π on {1, . . . ,n} and for all [a1, . . . ,an−1] ∈Rn−1,

H
(
aπ(1), . . . ,aπ(n−1)

)= H (a1, . . . ,an−1)

so that for any permutation σ on A, puttingΠσ(σ(a),σ(a′)) =Π(a,a′) for all a,a′ ∈ A, we have

Uσ(σ(a)) = H
(
Πσ(σ(a),σ(a′))a′ 6=a

)= H
(
Π(a,a′)a′ 6=a

)=U (a).
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The last condition expresses neutrality, according to which the overall evaluation given by the composite indicator

U does not discriminate between units because of their labels.

Observe that, the above definition of non-compensatory composite indicator can be extended considering

fuzzy preferences P j (a,a′), as well as fuzzy overall preferences P (a,a′),a,a′ ∈ A, in which case we can speak of

generalized non-compensatory composite indicators.

To illustrate the idea of the non-compensatory composite indicator we are proposing, let us consider the

Borda rule (Borda, 1781), according to which each alternative a ∈ A is assigned the following evaluation (Nitzan

and Rubinstein, 1981) called Borda score:

UBor d a(a) = ∑
g j∈G

∣∣{a′ ∈ A : g j (a) > g j (a′)
}∣∣ , (1.1)

which, in case there are no ex-aequo in the order established by g j , j = 1, . . . ,m -that is there is no a,a′ ∈ A for

which g j (a) = g j (a′) for all j = 1, . . . ,m-, can be rewritten as in Black (1976)

UBor d a(a) =
∑

a′∈A\{a}Π(a,a′)
2

+ n(m −1)

2
, (1.2)

with

Π(ai ,ai ′) =
∑

g j∈G
P j (ai ,ai ′)−

∑
g j∈G

P j (ai ′ ,ai )

and P j (ai ,ai ′) = 1 if g j (ai ) > g j (ai ′), and P j (ai ,ai ′) = 0 otherwise.

In fact (1.2) holds also in case there are ex-aequo in the order established by g j , j = 1, . . . ,m, provided that

UBor d a is opportunely extended (Black 1976). Therefore, since it gives the same ranking, in the following, when

considering the Borda rule, we shall refer to the following formulation of the Borda score:

U∗
Bor d a(a) = ∑

a′∈A\{a}
Π(a,a′), (1.3)

Observe that, according to the above definition, the Borda score U∗
Bor d a(a) is a non-compensatory composite

indicator and, in particular, we have

H
(
Π(a,a′)a′ 6=a

)= ∑
a′∈A\{a}

Π(a,a′).

Some remarks are now in order:

• Borda score has been already used in the domain of composite indicators since the work of Dasgupta and

Weale (1992), which clearly explains the reason to prefer such aggregation procedure as follows:

“The nature of the data being what it is for a great many of the countries, it is unwise to rely on their cardinal

magnitudes. We will therefore base our comparison on ordinal measures. This way, systematic biases in claims

about achievement across countries will not affect the international comparison. But first, we need an ordinal

aggregator. Of the many we may devise, the one most well known and most studied is the Borda Rule.”

• One can imagine to generalize the concept of non-compensatory composite indicators taking into account

imprecision and inaccurate determination in the decision model, so that it is reasonable to define fuzzy

preference relations P j : A × A → [0,1], g j ∈ G on considered criteria. Thus, for (a,a′) ∈ A × A,P j (a,a′) gives

the credibility that a is preferred over a′ on criterion g j . In this context, we can extend the concept of non-

compensatory aggregation procedure admitting that the overall preference of a over a′ depends on the values

P j (a,a′) and P j (a′,a) for all g j ∈G . In this perspective the Borda score can be reformulated as follows:
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Ũ∗
Bor d a(a) = ∑

a′∈A\{a}

[ ∑
gi∈G

Pi (a,a′)− ∑
gi∈G

Pi (a′,a)

]
. (1.6)

• In the domain of social choice, where the Borda procedure has been mainly studied, anonymity is a basic

assumption, so that all the “criteria” -that is, all the voters- have the same importance. Of course, this is not the

case in multiple criteria decision-making situations, such as the case of definition of composite indicators. In

this context, to give a specific weight to each criterion seems definitely appropriate, so that, supposing one

gives the weights w j ≥ 0, j = 1, . . . ,m, w1 + . . . wm = 1, to the criteria g1, . . . , gm , we can redefine the Borda score

U∗
Bor d a as follows:

U∗
Bor d a(a) = ∑

a′∈A\{a}

[ ∑
g j∈P (a,a′)

w j −
∑

g j∈P (a′,a)
w j

]
, (1.7)

and, also taking into account valued preferences,

Ũ∗
Bor d a(a) = ∑

a′∈A\{a}

[ ∑
g j∈G

w j P j (a,a′)− ∑
g j∈G

w j P j (a′,a)

]
, (1.8)

Since formulation 1.7 is a particular case of formulation 1.8 when P j (a,a′) can only take values 0 or 1 for all

g j ∈G and for all (a,a′) ∈ A× A, in the following we shall refer only to 1.8.

• Considering some psychological aspects of decision making such as regret (Bell, 1982; Loomes and Sugden,

1982), the specific formulation of the Borda score suggests to split the value ŨBor d a(a) in the two components

Ũ+
Bor d a(a) = ∑

a′∈A\{a}

∑
g j∈G

w j P j (a,a′) and Ũ−
Bor d a(a) =− ∑

a′∈A\{a}

∑
g j∈G

w j P j (a′,a), (1.9)

and interpret Ũ+
Bor d a(a) and Ũ−

Bor d a(a) as levels of rejoice and regret derived from preferring alternative a to

other alternatives (see, e.g., Özerol and Karasakal, 2008).

• In fact, ŨBor d a(a),Ũ+
Bor d a(a) and Ũ−

Bor d a(a) are the net flow score, the outflow and the inflow of the PROMETHEE

methods (Brans and Vincke, 1985; Brans and De Smet, 2016), being a very well-known and appreciated family

of methods for Multiple Criteria Decision Aiding (MCDA; see Ishizaka and Nemery, 2013; Greco et al., 2016).

In fact, the identification of the net flow score of PROMETHEE methods with the Borda score is proposed for

the first time in Marchant (1998), where a discussion on the cardinal nature of the Borda score is proposed. In

this perspective, the Borda score can be seen as a function returning a real valued evaluation of considered

alternatives on an interval scale, so that, if for alternatives a,b,c,d ∈ A one has

ŨBor d a(a)−ŨBor d a(b) = ζ
(
ŨBor d a(c)−ŨBor d a(d)

)
,

hence, it is meaningful (in the sense of measurement theory, see Roberts, 1985) to say that the preference of a

over b is ζ times, ζ ∈R+, greater than the preference of c over d. This cardinal property of the net flow score of

PROMETHEE methods seems quite important for composite indicators that aim to give a numerical evaluation

-and not only an ordinal ranking- to the alternatives under analysis (for a further discussion on the cardinal

properties of net flow score of PROMETHEE see also Marchant, 2000). In this perspective, the approach we are

proposing seems quite appealing, because it conjugates the basic ordinality of the inputs (that can be mitigated

with fuzzy preferences to take into account imprecision) with basic cardinality of the output, which seems quite

relevant because of the evaluations on a numerical scale expected from composite indicators. For this reason,

we shall refer to our definition of non-compensatory composite indicators with the expression “ordinal input
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for cardinal output approach”, which, in our opinion, expresses well the basic idea and the main advantages of

the proposed methodology.

On the basis of the above remarks, we propose to use PROMETHEE methods to construct non-compensatory

composite indicators as detailed in the following section.

3 Basic concepts of PROMETHEE

3.1 The PROMETHEE methods

Let us briefly describe the PROMETHEE methods I & II (Brans and Vincke, 1985; Brans et al., 1986) that consist

the base of our proposal and, as such, preliminaries for the upcoming sections. Consider a set of alternatives

A = {a1, . . . ,an} to be evaluated according to criteria G = {g1, . . . , gm}, where g j : A →R, j ∈ J = {1, . . . ,m}. For each

criterion g j ∈G , PROMETHEE methods use a function P j (ai ,ai ′), i 6= i ′ that represents the degree of preference of

ai over ai ′ on criterion g j being a non-decreasing function of d j (ai ,ai ′) = g j (ai )− g j (ai ′). There are six different

functions that could be chosen for each criterion by the decision-maker (hereafter, ‘DM’) (see Brans and De

Smet, 2016, for a recent review of the PROMETHEE methods), but for the sake of simplicity we will only use the

commonly-used piecewise linear function defined as follows:

P j (ai ,ai ′) =


0 if d j (ai ,ai ′) É q j

d j (ai ,ai ′ )−q j

p j−q j
if q j < d j (ai ,ai ′) < p j

1 if d j (ai ,ai ′) Ê p j

 , (3.1.1)

where q j and p j are the indifference and preference thresholds accordingly, as these are set by the DM for each

criterion g j ∈ G . Given that each criterion g j is assigned a weight w j (reflecting its importance instead of a

trade-off in this exercise), with w j Ê 0 and
∑m

j=1 w j = 1; for each pair of alternatives (ai ,ai ′) ∈ A× A, PROMETHEE

methods compute how much ai is preferred over ai ′ taking into account all criteria g ∈G as follows:

π(ai ,ai ′) =
m∑

j=1
w j P j (ai ,ai ′),

with values of π(ai ,ai ′) ranging between 0 and 1. Moreover, higher values denote higher preference of ai over ai ′

and vice versa. To compare an alternative, say ai , with all other alternatives ai ′ , i 6= i ′, PROMETHEE methods

compute the positive and negative flows as follows:

φ−(ai ) = 1

n −1

∑
ai ′∈A\{ai }

π(ai ′ ,ai ) and φ+(ai ) = 1

n −1

∑
ai ′∈A\{ai }

π(ai ,ai ′),

where φ−(ai ) (negative flow) shows how much all the other alternatives, ai ′ ∈ A \ {ai }, are preferred over ai on

average, and φ+(ai ) (positive flow) shows how much ai is preferred over the others instead. Understandably,

the smaller an alternative’s, say ai , φ−(ai ) and the larger its φ+(ai ), the better is its performance over all other

alternatives ai ′ ∈ A \ {ai } and vice versa. Understandably, PROMETHEE I gives us two bipolar scores that show the

dominating and dominated status of each alternative. Ordinal inferences can be made on the basis of these two

scores through the PROMETHEE I partial ranking (P I ,I I ,R I ). For instance, suppose that we would like to infer

some ordinal information about two alternatives, say ai and ai ′ on the basis of the PROMETHEE I partial ranking.

That could be accomplished as follows:
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

ai P I ai ′ iff


φ+(ai ) >φ+(ai ′) and φ−(ai ) <φ−(ai ′),or

φ+(ai ) =φ+(ai ′) and φ−(ai ) <φ−(ai ′),or

φ+(ai ) >φ+(ai ′) and φ−(ai ) =φ−(ai ′)

ai I I ai ′ iff φ+(ai ) =φ+(ai ′) and φ−(ai ) =φ−(ai ′)

ai R I ai ′ iff

{
φ+(ai ) >φ+(ai ′) and φ−(ai ) >φ−(ai ′)

φ+(ai ) <φ+(ai ′) and φ−(ai ) <φ−(ai ′)

, (3.1.2)

where P I , I I and R I denote preference, indifference and incomparability respectively. When incomparabilities

among alternatives (see aR I b above) exist, the use of PROMETHEE II alleviates this issue by providing a unipolar

scoring. More detailed, PROMETHEE II method computes the net-flow of bipolar (PROMETHEE I) scores for each

alternative ai as follows:

φ(ai ) =φ+(ai )−φ−(ai ), (3.1.3)

which permits the ranking of alternatives in a complete pre-order based on the preference and indifference (P I ,I I )

among them as follows: {
ai P I I ai ′ iff φ(ai ) >φ(ai ′)

ai I I I ai ′ iff φ(ai ) =φ(ai ′)
. (3.1.4)

PROMETHEE II score (net-flow) is defined in the range [−1,1], and essentially shows on average how much an

alternative ai is preferred over all other the others ai ′ , taking into account how much it is dominated at the same

time. This offers a score that can be used as ordinal information (i.e. to provide a ranking) showing a complete

pre-order of each alternative. However, as it will be shown in Section 5, one could use the scores instead as a

means to provide cardinal information. Obviously, the higher the score the better an alternative is performing and

thus preferred over the rest.

3.2 The SMAA-PROMETHEE method

Developed by Corrente et al. (2014), the SMAA-PROMETHEE method is a fusion of the classic PROMETHEE and

the SMAA (see Lahdelma and Salminen, 1998; 2001) methods, designed to deal with uncertainty and imprecisions

in real world decision-making problems. SMAA considers a probability distribution fw over the space of all

possible weight vectors, and two probability distributions fq and fp over the space of potential dominance d ⊂R
in the elementary set of indicators (i.e. d comprised of: d j (ai ,ai ′) = g j (ai )− g j (ai ′), i 6= i ′, j ∈ J). Of course,

imprecisions in the criteria could be modelled accordingly considering a probability distribution fχ over the

space χ⊂Rm×n of the alternatives’ evaluations g j (ai ), with j ∈ J and ai ∈ A. However, in this paper we are solely

engrossed with the former three sources of uncertainty, and as such, we leave this case outside the scope of this

analysis.

The above-mentioned sources of uncertainty could be handled in two distinct ways. First, in the lack of

information regarding the preferences of the DM, all three sources could be declared as uncertain, and thereby

randomly estimated (uniformly, in the lack of information from the DM to suggest otherwise) in a Monte Carlo

simulation environment. This would imply the creation of the following three m× s matrices to be used as inputs1,

where m is the number of criteria and mc = 1, . . . , s is the number of Monte Carlo simulations2:

1Understandably, if one considers more sources of uncertainty (e.g. functions, imprecisions in the data etc.), the number of matrices
grows accordingly.

2While there is no standard practice to choosing the number of simulations, i.e. parameter s, Tervonen and Lahdelma (2007) suggest a
value of 10,000 simulations to be adequate for robust results.
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• an m × s matrix W containing the weight vectors

W =
{

w = [w1, . . . , wm] : w j Ê 0, j = 1, . . . ,m,
m∑

j=1
w j = 1

}
, (3.2.1)

• an m × s matrix P containing the vectors of the preference thresholds

P =
{

p = [
p1, . . . , pm

]
: min

ai ,ai ′
|d j (ai ,ai ′)| ≤ p j , j = 1, . . . ,m

}
, (3.2.2)

• an m × s vector Q containing the vectors of the indifference thresholds

Q = {
q = [

q1, . . . , qm
]

: q j ≤ p j , j = 1, . . . ,m
}

. (3.2.3)

The second case regards a DM that is able to provide some information about the sources of uncertainty.

This information could then be used to adjust the above-mentioned inputs, and could regard anything from the

distribution to be chosen, to restrictions in the space of possible outcomes. For instance, the DM could provide

information regarding the weighting preferences among the criteria at hand. This could happen e.g. in the form

of linear inequalities (e.g. w1 > w2 > . . . > wm), or assurance regions (e.g. a É w j É b, where a, b ∈ [0,1], a < b)

etc.3 Of course, this would adjust the space of weights accordingly. For instance, in the case of the DM providing

information in the form of linear inequalities, as in the example above, the space of weights would be transformed

and thus matrix W would be adjusted as follows:

W =
{

w = [w1, . . . , wm] : wg1 > ... > wgm , w j ≥ 0, j = 1, . . . ,m,
m∑

j=1
w j = 1

}
. (3.2.4)

Turning to the output of the SMAA-PROMETHEE method, becauseφ+(ai ) andφ−(ai ) (in the case of PROMETHEE

I) or φ(ai ) (in the case of PROMETHEE II), ai ∈ A, provide a ranking for each w in W , q in Q and p in P , SMAA gives

the ranking of each alternative ai for every mc = 1, . . . , s. This permits computing the rank acceptability index, the

central weight vector and the pairwise winning index. We give a brief description of their use below, though for a

detailed analysis and their computation process, we refer the reader to the studies of Lahdelma and Salminen

(1998; 2001) for the SMAA, and Corrente et al. (2014) for the SMAA-PROMETHEE method in particular.

• Rank acceptability index

The rank acceptability index (RAI) essentially shows the shares of parameters (in this case q j , p j and w j , j ∈ J )

that give an alternative, ai , the rth place. Suppose that we annotate RAI with br
i ; then b1

i shows the shares of

parameters giving the alternative ai the 1st place. The RAIs of all alternatives are typically presented in an

n ×n table, where each row is an alternative and each column is the probability of it attaining a given rank, i.e.

r = 1, . . . ,n, in the s simulations.

• Central weight vector

The central weight vector (CWV) illustrates the weight preferences of a typical DM (w) that makes an alternative,

ai , the most preferred. The CWVs of all alternatives are typically disclosed in an n ×m table, where rows point

to the alternative ai , i = 1, . . . ,n and columns illustrate the weight of criterion j = 1, . . . ,m.

• Pairwise winning index

3Obviously, the other two sources of uncertainty, namely the indifference and preference thresholds, could be treated similarly.
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The pairwise winning index (PWI) is used to compare an alternative ai to another one, say ai ′ , showing the

probability the former is preferred to the latter. It is typically disclosed in an n ×n table, where each row shows

the probability that this alternative beats its counterpart in a given column.

To better understand the above three SMAA outputs, we give three visuals (Figs. 1, 2, 3) reflecting the outputs

of SMAA in the case of the G-10 countries’ evaluation in the WEF’s Inclusive Development Index (IDI) that will

be formally discussed in Section 4 where we introduce the case study. For reasons of simplicity, the only source

of uncertainty remains the criteria weights, while the preference function is the piecewise linear, described in

eq.(3.1.1), with indifference thresholds set to 0, and preference ones set to max |d j (ai ,ai ′)| for each criterion g j .

Figure 1. Central Weight Vector (CWV) for Switzerland and Sweden.

This figure shows the preferences of a typical DM as to the choices that will make Switzerland or Sweden the best-performing
country (i.e. ranked 1st ). The horizontal axis shows the typical weight (%) of each criterion g j portrayed on the vertical axis.
Indicators are coloured based on the higher dimension in which they belong (See Table 4 for more details).

3.3 GAIA

GAIA, developed by Mareschal and Brans (1988), is a visual interactive module often implemented alongside

PROMETHEE methods, and recently migrated to the AHP family of methods (Ishizaka et al., 2016). It provides

DMs with a clear view of how each alternative performs in each of the considered criteria. Essentially, GAIA is

an implementation of Principal Component Analysis (PCA) on the unicriterion net-flow matrix4. In particular,

the two eigenvectors with the two largest values are selected and plotted on a 2-dimensional (most common)

or a 3-dimensional (3D) plot, thus collapsing the m-dimensional space in a plot that is visually clearer to make

inferences from. The 3D plot is usually preferred in cases that one may wish to explore the m-dimensional space

in three coordinates (x, y, z) and get a better grip of the dynamics from the inclusion of the z-th dimension, or

when the explained variance of the two eigenvectors alone is not enough by the standards of PCA to explain the

original m-dimensional space; that is, the explained variance from the two principal components is less than 60%.

4As it is briefly introduced in Section 4.3, this is a n ×m matrix showing the non-weighted net flows of each alternative with respect
to the remaining n −1 alternatives (diagonal of this matrix equals 0), in each criterion g j . Essentially, it represents how an alternative
outranks (u(a) > 0; eq.4.3.1) or is outranked (u(a) < 0; eq.4.3.1) by the remaining n −1 alternatives in each criterion g j .
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Figure 2. Pairwise Winning Index (PWI) for the G-10 countries.

This figure shows the probability that an alternative (row) beats the rest of the alternatives (in columns) (%).

Figure 3. Rank Acceptability Index (RAI) for the G-10 countries.

This figure shows the probability (%) that an alternative (row) is positioned in the r-th
place.
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Figure 4. GAIA plane for the G-10 countries’ evaluation on WEF’s IDI.
This figure shows the 2D (left) and 3D (right) version of the GAIA plane. Triangles reflect the alternatives (G-10 countries).
Dotted lines reflect the attributes (see Table 4 for more information). The ‘decision stick’ is a vector of equal weights (8.25%
per criterion).

We give an example of the GAIA plane in the case of the G-10 evaluation on WEF’s Inclusive Development Index

(IDI) in Fig.4.

Dashed lines show the direction of each criterion g j . If an alternative is close to or towards the same direction

of a criterion, it means that it performs well on it. On the contrary, if it is plotted the opposite way (180 degrees),

it means that its performance is poor on this criterion. Criteria extending in an orthogonal way between them

seem to be simply unrelated to each other. The solid plotted line with the square marker reflects the ‘decision

stick’, and is essentially the weight vector (hereby set to equal weights) of the criteria. To give an example, in Fig.

4, Switzerland (SWI) seems to perform well on criterion ‘PD’, and adequately well on criteria towards the same

direction (i.e. ‘GDP’, ‘MI’, ‘ANS’)5. Last but not least, the variance explained with the 2D visualisation is 79.5% and

just over 89.5% for the 3D version.

Given that uncertainties may arise in the decision-making process, thus making SMAA-PROMETHEE crucial

in such respect, a GAIA variant dealing with uncertainty followed suit (see e.g. Hubinont, 2016; Arcidiacono

et al., 2018, for extentions of GAIA to the SMAA variant of PROMETHEE and the bipolar PROMETHEE methods

accordingly). Hubinont (2016) applies a bivariate kernel density on the stochastic net flows for each alternative,

estimating the proportions of the projections around each noodle with the Parzen method. Arcidiacono et al.

(2018) shows how a cloud of points could be plotted on the GAIA plane symbolizing the weight vectors taken into

account in the SMAA evaluation. As the latter version is the one we will build upon later on in Section 4.3, we

show an example of its output and a couple extensions of its reasoning in Fig. 5.

More detailed, there are two versions provided in Fig. 5 (left and right column sub-plots). The left one shows

the unconstrained weight space (matrix W - eq.3.2.1), whereas the right shows how the same space is constrained

as discussed in the same section (i.e. dimension 3 is more important than dimension 2, which in turn is more

important than dimension 1 - eq.3.2.4). The bottom part of the figure (i.e. bottom sub-plots) show how ordinal

information could enrich the SMAA-GAIA plane, illustrating for instance the weight space for which Belgium

5For more insights of the GAIA plane, we refer the interested reader to the paper of Mareschal and Brans (1988).
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(blue) or Switzerland (green) is 1st.

4 PROMETHEE methods for scoring
While PROMETHEE methods are often implemented to provide ordinal information, e.g. in the form of a

ranking of the considered alternatives and as discussed up to this point; they could equally be used to provide

cardinal information that conveys more information about the magnitude of each alternative’s performance.

Composite indicators are based on this property, as they are cardinal in nature (Booysen, 2002), and as such,

PROMETHEE methods could be another tool in their toolbox. In particular, PROMETHEE methods have recently

been used in the field of composite indicators for robustness purposes, or to choose among alternatives of

composite indicators constructed with other methods (see, e.g., De Mare et al., 2015; Antanasijevic et al., 2017;

Rosic et al., 2017). Nonetheless, we would like to highlight in more detail first (subsection 4.1), how PROMETHEE

methods could be used for scoring in this domain and second (subsection 4.2), and most importantly, to extend

this to the case of the SMAA-PROMETHEE method that takes into account crucial issues in the construction of

composite indicators. Before we begin our analysis, let us give some brief remarks/caveats that the DM should

have in mind when designing composite indicators with the PROMETHEE methods.

First and foremost, we should note that the PROMETHEE methods will ensure that weights will act as ‘im-

portance coefficients’ rather than trade-offs, contrary to other types of aggregation approaches (e.g. the simple

additive model). This essentially eliminates the conceptual issue apparent in the development of composite

indicators using additive utility aggregators, in which DMs are setting the weights as importance coefficients, while

they end up being used as trade-offs between pairs of indicators. Moreover, the full compensation among criteria

(apparent in the additive utility function) is now moderated according to our definition of non-compensatory

aggregation given in Section 2. Nonetheless, such benefits come at a trade-off. In particular, the input required on

behalf of the DM in the construction of the index is enlarged as opposed to other aggregation approaches. The

reason being PROMETHEE methods require three additional choices besides the weights of the attributes; these

are namely the choice of a preference function and the indifference and preference thresholds6. These shall be set

individually for every attribute. Thus, the DM should be carefully choosing these three inputs in the creation of

the index and justify them accordingly.

4.1 Developing composite indicators with the PROMETHEE I & II methods

4.1.1 Bipolar Scoring

PROMETHEE I provides a bipolar type of scoring. In particular, two outputs namely, the positive outranking

flow or outflow (φ−(ai )) and the negative outranking flow or inflow (φ+(ai )) are obtained, showing two distinct

scores for each alternative ai ∈ A for two different in principle, but essentially complementary concepts. For

instance, the negative flow (φ−(ai )) expresses in a [0,1] scale how much an alternative is dominated by the

remaining n −1 alternatives on average. A unity score in this output would indicate complete domination by all

alternatives in all criteria, whereas a zero value would imply zero domination accordingly. This indicator would

be in line with the theory of regret aversion or anticipated regret (see e.g. Loomes and Sugden, 1982; Bell, 1982;

Fishburn, 2013), in the sense that the higher this output, the higher the regret of an individual choosing this

alternative over a different option. On the other hand, the positive flow (φ+(ai )) shows the degree of preference of

an alternative over the remaining ones. Similarly to the inflow, outflow is expressed in a [0,1] scale, with higher

values exhibiting higher preference and vice versa.

6We should note that these are only used in five out of the six preference functions. For instance, the ’Usual’ preference function does
not require any kind of threshold, though it is mainly used for qualitative attributes. Additionally, in the ‘Gaussian’ preference function an
intermediate value between q and p (namely, ‘s’) has to be set as well to shape the curve of the Gaussian function. For a more detailed
analysis, we refer the interested reader to Brans and De Smet (2016).

13



Figure 5. SMAA-GAIA plane for the G-10 countries’ evaluation on WEF’s IDI.

This figure shows the unconstrained (left) SMAA-PROMETHEE evaluation, in which all set of plausible weight vectors are
sampled randomly and unconditionally, the constrained (right) evaluation, in which dimension 3 is weighted higher than
dimension 2 and in turn dimension 1. Finally, the sub-figures at the bottom shows the weight vectors for which Belgium is
ranked 1st, in comparison to the weight vectors for which Switzerland is ranked 1st.
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Understandably, it is not necessary that both types of flows will give the same results. If someone is solely

interested in insights from the one or the other, then one could observe either. Nonetheless, if the desire is to make

inferences based on these, e.g. to get an insight on the preference of an alternative over another, the intersection

of the two flows should be considered to provide a ‘unipolar’ scoring. This is abridged in the following section.

4.1.2 Unipolar Scoring

Following on from the output of PROMETHEE I, the PROMETHEE II method provides the unipolar scoring

(eq.3.1.3). It essentially consists a global score that provides a balance between the positive and the negative flows,

in a sort of a net (unipolar) scoring that encapsulates both types of information discussed above; namely, the

“regret” factor of choosing an alternative (i.e. φ−(ai )) and the benefit of doing so without considering the regret

factor (i.e. φ+(ai )). The unipolar (PROMETHEE II) score bears the following two properties:{
−1 ≤φ(ai ) ≤ 1,∀ ai ∈ A∑

ai∈Aφ(ai ) = 0
. (4.1.2.2)

There is a trade-off inherent in using PROMETHEE II. That is one gains incomparability to cease, but at the

cost of loss of information. For instance, considering the PROMETHEE II score of two alternatives, say ai and ai ′ :

is the former preferred to the latter due to its superior performance or its lower regret? By looking at the two flows,

one may infer such information (always in case of comparable alternatives (see eq.3.1.2)). As Brans and De Smet

(2016, p.174) argue: “In real-world applications, we recommend to both the analysts and the decision-makers to

consider both PROMETHEE I and PROMETHEE II.” In fact, it is reasonable to use both types of information to get

some inferences out of how the global score was constructed. Such an example can be given by looking at the

PROMETHEE I & II results7 for the G-10 countries in Table 1.

Table 1: PROMETHEE I & II scores for the G-10.

Country φ φ+ φ−

Switzerland 0.090 0.100 0.009
Netherlands 0.039 0.058 0.019

Sweden 0.034 0.067 0.033
Belgium 0.014 0.051 0.037
Canada 0.008 0.040 0.032

Germany 0.003 0.039 0.036
France -0.012 0.031 0.043

United Kingdom -0.028 0.023 0.051
United States -0.040 0.033 0.073

Japan -0.045 0.035 0.080
Italy -0.064 0.020 0.084

Seemingly, United Kingdom performs better than the United States in terms of the unipolar score (that is φ),

though we can see that this comes from its lower regret factor (φ−(U K ) < φ−(U S)) rather than its superior

performance in the attributes (φ+(U S) >φ+(U K )). Of course, in the case of PROMETHEE I, we wouldn’t be able

7For reasons of simplicity, we have used equal weights across all dimensions, piecewise linear function with zero indifference thresholds
(q) for all criteria, and pg j = max |(dg j (ai ,ai ′ ))|. For an outline of the criteria (formally to be discussed in Section 5) see Table 4.
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to make inferences about a preference relationship, as this is an example of an incomparability situation (i.e. UK

R I US ).

4.2 Developing composite indicators with the SMAA-PROMETHEE methods

The issue with using the classic PROMETHEE I and II methods to construct composite indicators is that of

using a precise set of parameters (i.e. w, p, q: eq. 3.1.1). First, it is very difficult for a DM to come up with a very

precise such set of parameters for every criterion. Second, even if the DM does indeed come up with a set of

parameters, this is supposed to be representative of the whole population interested in the composite indicator

being provided. In brief8, the considered set of parameters, even if it is fully justifiable by the DM setting it, remains

subjective to its full extent. Of course, we should note here that MCDA is in itself inherently subjective. We are not

to argue against subjectivity, rather the contrary; in exercises where it is needed, we want to make it transparent by

increasing that subjectivity to involve all potential parties interested in this evaluation. As the example mentioned

in Greco et al. (2019b), in an exercise involving the evaluation of a country’s performance in a socio-economic

aspect, the set of potential decision-makers could involve policy-makers, analysts and practitioners, or even

citizens to whom the evaluation is targeted at and concern. That said, we do support, in this section and onward,

that a multiplicity of viewpoints should be considered when it comes to such evaluation practices.

Generally speaking, the utilization of the SMAA variant of PROMETHEE (Corrente et al., 2014) permits the

inclusion of a plethora of weight vectors, indifference and preference thresholds. In particular, as many as the

number of simulations. Understandably, at the same time it creates as many outcomes and, of course, as many

rankings accordingly for each unit evaluated. This is both an advantage and a drawback of this method for the

creation of composite indicators. On the one hand, this increases the transparency of the evaluation process,

showing the larger picture, along with which parameters give each alternative a specific place (probabilistic

outcomes, see Section 4.2). This is of utmost importance in the development of composite indicators, and in

fact, it is a special case of uncertainty analysis (Saisana et al., 2005) that should be accompanying the results of

every composite index (OECD, 2008; Doumpos et al., 2016; Greco et al., 2019a). Indeed, the use of SMAA in this

case seems alluring as it encapsulates a type of uncertainty analysis, but -perhaps most importantly- it permits

dealing with the issue of the representative agent (see Greco et al., 2018, p.587) inherent in the development

process of a composite index. On the other hand, this creates an issue as to the consolidation of these results

into a single index that encompasses all this information. Towards the solution of this issue, Greco et al. (2019b)

propose another variant in the family of SMAA called “σ−µ−SMAA”. We abridge its preliminaries in Subsection

4.2.1, though for a detailed analysis we refer the reader to the original study. Subsections 4.2.2 and 4.2.3 build

upon the preceded preliminaries, adjusting the σ−µ approach to the PROMETHEE methods I & II respectively.

4.2.1 The Sigma-Mu approach: Preliminaries and intuition

Starting from a theoretical point of view, unlike other variants in the SMAA family, the σ−µ variant does not

focus on probabilistic outcomes or shares of inputs leading to these outcomes accordingly. Rather, it takes into

account the distribution of composite indicator values collected within SMAA for each alternative, considering its

arithmetic average, µ, and its standard deviation,σ, to use those for the subsequent part of the analysis. Essentially,

these two parameters illustrate the typical evaluation of an alternative -taking into account all potential decision-

makers’ preferences- (using µ), and the inverse robustness of that measure (using σ), larger values of which

denote greater instability as to the degree of dominance of an alternative in question. To better understand the

intuition behind these two parameters, Greco et al. (see 2019b, Section 5) give an example on how they could be

conceptualised from a neo-Benthamite perspective in a case of a socio-economic cross-country evaluation. In

particular, given that the end evaluation in their case study concerns the well-being of countries in which citizens

live, one may consider each simulation mc = 1, . . . , s as an alternative set of preferences that is expressed from

8For a more detailed conversation about this issue, we refer the interested reader to the studies of Greco et al. (2018, 2019b).
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different citizens. As such, s subjective evaluations occur from s different preferences, with their average score per

country (µ) illustrating its typical well-being, and the standard deviation (σ) denoting a measure of well-being

inequality for that country. The higher the latter is, the higher that country’s inequality as regards its citizens’

well-being, as there is huge dispersion to how much its citizens are satisfied.

Turning to the computation aspects, these two parameters of interest (σ,µ) can be adjusted to the SMAA-

PROMETHEE outputs as follows. Assuming here a piecewise linear preference PROMETHEE function (although,

without loss of generality, other preference functions can be used accordingly), and given the spaces of weights

(W ), preferences (P ) and indifferences (Q) (see eqs.3.2.1 to 3.2.3); one may consider for each alternative ai ∈ A the

PROMETHEE’s positive, negative and net flows (i.e. φ+(ai ),φ−(ai ),φ(ai )) in this space and compute the respective

arithmetic average, µ, to define a typical flow, as shown in equations 4.2.1.4a to 4.2.1.4c) below:

µ
φ+

i =
∫

p∈P
f (p)

∫
q∈Q

f (q)
∫

w∈W
f (w)φ+(ai ,p,q,w)dpdqdw, (4.2.1.4a)

µ
φ−

i =
∫

p∈P
f (p)

∫
q∈Q

f (q)
∫

w∈W
f (w)φ−(ai ,p,q,w)dpdqdw, (4.2.1.4b)

µ
φ

i =
∫

p∈P
f (p)

∫
q∈Q

f (q)
∫

w∈W
f (w)φ(ai ,p,q,w)dpdqdw, (4.2.1.4c)

and the standard deviation, σ, to measure the overall dispersion as in equations 4.2.1.5a to 4.2.1.5c below:

σ
φ+

i =
√∫

p∈P
f (p)

∫
q∈Q

f (q)
∫

w∈W
f (w)

[
φ(ai ,p,q,w)−µφ+

i

]2
dpdqdw, (4.2.1.5a)

σ
φ−

i =
√∫

p∈P
f (p)

∫
q∈Q

f (q)
∫

w∈W
f (w)

[
φ(ai ,p,q,w)−µφ−

i

]2
dpdqdw, (4.2.1.5b)

σ
φ

i =
√∫

p∈P
f (p)

∫
q∈Q

f (q)
∫

w∈W
f (w)

[
φ(ai ,p,q,w)−µφi

]2
dpdqdw. (4.2.1.5c)

Of course, in real-world situations, these integrals can be approximated via the use of a Monte-Carlo simulation.

Assuming complete lack of information from the decision-maker(s), three m × s matrices RW, RP and RQ can be

defined through unconditional random sampling, showing the attribute weights, preference and indifference

thresholds in the mc = 1, . . . , s simulations (according to eqs.3.2.1 to 3.2.3), with s being a relatively large number,

as follows:

RW
m×s

=


w11 w12 · · · w1s

w21 w22 · · · w2s
...

... · · · ...

wm1 wm2 · · · wms

 , RP
m×s

=


p11 p12 · · · p1s

p21 p22 · · · p2s
...

... · · · ...

pm1 pm2 · · · pms

 , RQ
m×s

=


q11 q12 · · · q1s

q21 q22 · · · q2s
...

... · · · ...

qm1 qm2 · · · qms

 .

Understandably, any information about the distribution or potential constraints among the attributes can shape

these matrices respectively. Following their computation, they will consist the inputs to the creation of the

following three n × s matrices that collect the results of PROMETHEE I & II methods accordingly:
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Φ+
n×s

=


φ+(a1,w1,p1,q1) φ+(a1,w2,p2,q2) · · · φ+(a1,ws ,ps ,qs)

φ+(a2,w1,p1,q1) φ+(a2,w2,p2,q2) . . . φ+(a2,ws ,ps ,qs)
...

... · · · ...

φ+(an ,w1,p1,q1) φ+(an ,w2,p2,q2) · · · φ+(an ,ws ,ps ,qs)

 , (4.2.1.6a)

Φ−
n×s

=


φ−(a1,w1,p1,q1) φ−(a1,w2,p2,q2) · · · φ−(a1,ws ,ps ,qs)

φ−(a2,w1,p1,q1) φ−(a2,w2,p2,q2) . . . φ−(a2,ws ,ps ,qs)
...

... · · · ...

φ−(an ,w1,p1,q1) φ−(an ,w2,p2,q2) · · · φ−(an ,ws ,ps ,qs)

 , (4.2.1.6b)

Φ
n×s

=


φ(a1,w1,p1,q1) φ(a1,w2,p2,q2) · · · φ(a1,ws ,ps ,qs)

φ(a2,w1,p1,q1) φ(a2,w2,p2,q2) . . . φ(a2,ws ,ps ,qs)
...

... · · · ...

φ(an ,w1,p1,q1) φ(an ,w2,p2,q2) · · · φ(an ,ws ,ps ,qs)

 . (4.2.1.6c)

Essentially, these matrices collect a representative sample of all potential values (for all three types of flows) based

on all potential preferences (from weights to preference and indifference thresholds where applicable) for every

alternative ai ∈ A. Then, one may simply approximate the integrals in equations (4.2.1.4) and (4.2.1.5) for each

alternative ai , i ∈ I computing the arithmetic mean (µ̃i ) and standard deviation (σ̃i ) of each row of the matrices

(4.2.1.6a) to (4.2.1.6c) accordingly (
˜
µ
φ

i ≈µ
φ

i and
˜
σ
φ

i ≈σ
φ

i ). For instance, for the case of φ,
˜
µ
φ

i and
˜
σ
φ

i would equal:

˜
µ
φ

i = 1

s

s∑
mc=1

φ(ai ,wmc ,pmc ,qmc ),∀i = 1, . . . ,n, (4.2.1.6d)

˜
σ
φ

i =
√

1

s

s∑
mc=1

(
φ(ai ,wmc ,pmc ,qmc )− ˜

µ
φ

i

)2
,∀i = 1, . . . ,n. (4.2.1.6e)

The next step builds on these two parameters to arrive at an overall score by considering a definition of dominance.

In particular, plotting each alternative on a 2-dimensional plane (called the σ−µ plane) with coordinates (σi ,

µi ), on the basis of the concept of Pareto-Koopmans efficiency and the objective to maximize µ and minimize σ;

through a set of linear programming (LP) formulations, Greco et al. (2019b) provide two types of estimators, each

denoting a different concept of efficiency. These are the local and global efficiency scores, the intuition of which is

explained on abstract grounds below, whilst we adjust them to the PROMETHEE I & II methods shortly afterwards.

The local scores (δi h) are essentially collected in vectors of efficiency measures (one vector for each unit). In

particular, by decomposing theσ−µplane into a family of Pareto-Koopmans frontiers (PKF = {PK F1,PK F2, . . . ,PK Fk })

it is straightforward to measure the efficiency of each unit i ∈ I with respect to each PK Fh , h = 1, . . . ,k in the

plane. This is based on the concept of ‘context-dependent Data Envelopment Analysis’ originally developed by

Seiford and Zhu (2003). Generally speaking, the local σ−µ efficiency scores are found by solving the following LP

formulation:
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δi h = Max
α,β

δ

s.t.
αµi −βσi ≥αµi ′ −βσi ′ +δ,∀i ′ ∈ I \

⋃k−1
h=1 PK Fh

α,β≥ 0

α+β= 1

. (4.2.1.7)

A positive value (i.e. δi h > 0) denotes efficiency of a unit i with respect to PK Fh , whilst negative values (i.e. δi h < 0)

denote inefficiency respectively, the magnitude of which is |δi h |. Of course, the larger the positive (negative) value

of δi h is the greater its (in)efficiency. Solutions to the LP formulation in eq.(4.2.1.7) consist the local efficiency

scores δi h . These help identify how each unit is benchmarked against each frontier that is assumed to be a

different context. One may think of each frontier as a different level of competition around each unit, with closer

frontiers being the nearest level of competition and vice versa. Of course, on their own, local efficiencies do not

give us an aggregate picture of the overall performance of a unit. To this end, global efficiencies (smi ) take into

account the spatial information in the plane by aggregating the local efficiencies. These are computed for each

unit i as follows:

smi =
k∑

h=1
δi h . (4.2.1.8)

Essentially, smi is defined in the (−∞,+∞) space and illustrates the overall spatial dominance in the σ−µ plane. A

value of smi = 0 shows that unit i is equally dominated as it dominates the remaining units i ′. Of course, the larger

the value of smi the greater its overall dominance and vice versa. Greco et al. (2019b) suggest normalisation of smi

scores in the [0,1] space to resemble more the usual scale encountered in the literature of composite indicators.

Having provided the general definitions of dominance and the intuition behind each step in theσ−µ approach,

we now tailor them accordingly to the PROMETHEE I & II methods in the following subsections.

4.2.2 Sigma-Mu applied to PROMETHEE I

In this subsection, we detail two ways the PROMETHEE I outputs can be used in the σ−µ approach. For both

cases that we will forthwith discuss, we assume that matrices RW, RP and RQ, as well as matricesΦ+ andΦ− that

were discussed in Section 4.2.1 are already computed.

In the first case, σ−µ can be individually applied to the two flows computed with SMAA-PROMETHEE I

and collected inΦ+ andΦ−. In particular, for each alternative ai ∈ A, two pairs of coordinates can be obtained,

(σφ
+

i ,µφ
+

i ) and (σφ
−

i ,µφ
−

i ) accordingly, which summarize the distributions of the evaluations of each alternative in

the two matricesΦ+ andΦ− respectively. The case of the positive flow is straightforward in the sense that it is in

complete agreement with the LP formulation in eq. (4.2.1.7). That is, µφ
+

i should be maximised as it denotes the

overall score of dominance for alternative ai (with respect to the remaining n −1 alternatives) taking into account

all potential preferences declared in the SMAA evaluation, i.e. w, p and q. On the contrary, σφ
+

i shall be minimized,

as it denotes an inverse measure of robustness such that the larger it is, the more disperse the alternative’s

evaluations (φ+(ai ,wmc ,pmc ,qmc ),mc = 1, . . . , s). The underlying reason is that it relies on a particular set of

preferences to exhibit a great performance, with slight deviations from this set radically altering this alternative’s

score. That said, formulation (4.2.1.7) can be simply adjusted to the current mathematical notation written below,

with everything else (concept-wise) remaining the same.
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δ+i k = Max
α+,β+

δ+

s.t.
α+µφ

+

i −β+σφ
+

i ≥α+µφ
+

i ′ −β+σφ
+

i ′ +δ+,∀i ′ ∈ A \
⋃k−1

h=1 PK Fh

α+,β+ ≥ 0

α++β+ = 1

. (4.2.2.1)

Solutions to (3.2.2.1) provide the local efficiencies forΦ+ (i.e. δ+i k ) for every PK Fh ,h = 1, . . . ,k. Of course, these can

be then aggregated to compute the SMAA-PROMETHEE I global positive flow efficiencies, sm+
i , as in eq.4.2.1.8,

i.e.:

sm+
i =

k∑
h=1

δ+i k . (4.2.2.2)

These global positive flow efficiencies provide a more holistic score that encapsulates the SMAA-PROMETHEE I

positive flow scores, as well as the spatial information of the σ−µ plane into a single value. As they are defined in

the (−∞,+∞) space, one may re-scale them to vary in the [0,1] range (e.g. through ‘min-max’ normalization) to

better resemble the classic PROMETHEE I scale of outflows φ+.

Turning to the negative flow of PROMETHEE I, as discussed in Section 4.1.1, it is in line with the theory of

regret aversion (or anticipated regret). For instance, a score of φ−(a) = 1 means that an alternative is dominated by

all remaining ones and in all criteria, so this would certainly be a regretful decision over other, better alternatives.

In particular, defined in the [0,1] space, one may think of φ−(a) as a number, a high value of which means the

regret factor (by not choosing a different alternative with a lower φ−(a) value) is increasing. As σ−µ analysis

provides efficiency scores, its intuition in the case of the negative flow is that of a ‘regret’ measure. Thus, the LP

formulation as described in eq. (4.2.1.7) -adjusted for the notation of the inflow- is the following:

δ−i k = Max
α−,β−

δ−

s.t.
α−µφ

−

i −β−σφ
−

i ≥α−µφ
−

i ′ −β−σφ
−

i ′ +δ−,∀i ′ ∈ A \
⋃k−1

h=1 PK Fh

α−,β− ≥ 0

α−+β− = 1

, (4.2.2.3)

the solutions to which provide the PK Fh and the individual local efficiencies for every unit. We should note here

that higher local “efficiencies” mean higher regret and vice versa. That said, the global efficiencies are computed

accordingly as follows:

sm−
i =

k∑
h=1

δ−i k . (4.2.2.4)

Observe that, in this interpretation, we are considering the standard deviation σφ
−

(ai ) as a measure of

dispersion of the negative flow score φ−(a) that it is preferable to be increased, which is in agreement with

experimental evidence of prospect theory (Kahneman and Tversky, 1979, 1984; Tversky and Kahneman, 1981) for
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Figure 6. The σ−µ plane for each flow.

This figure shows how the G-10 countries are evaluated in the σ−µ plane based on their positive (left) and negative
(right) flows. Note: Efficiency in the negative flows means more regret. Both axes are standardized using the Z-scores.

which people are risk averse in case of gains and risk-seeking in case of losses. Indeed, φ+(ai ) can be considered

as a gain so that the greater σφ
+

i , the smaller the global score sm+
i which is undesirable. Whereas, φ−(ai ) can

be considered as a loss so that, the greater σφ
−

i , the smaller the global score sm−
i , which is desirable. Observe,

however, that while there is definitely a natural tendency to be risk averse for the gains and, consequently, in

our context, to reduce σφ
+

i ; this is not the case for the risk seeking in case of losses, because also to reduce the

variability (in our context σφ
−

i ) could be reasonable in line with limitation of greater losses, as it is the case in

finance when measures of risk are minimized (see, for example Jorion, 2000; Artzner et al., 1999). In this case, the

constraints comparing unit i with all other units i ′ should be reformulated as follows:

α−µφ
−

i +β−σφ
−

i ≥α−µφ
−

i ′ +β−σφ
−

i ′ +δ−,∀i ′ ∈ A \
k−1⋃
h=1

PK Fh .

We shall adopt the latter perspective in this section when we shall define of an overall efficiency index taking into

account both positive flows φ+
i and negative flows φ−

i .

In Fig. 6 we show a side-by-side evaluation of the G-10 countries as to their positive (φ+(a)) and negative

(φ−(a)) flows, the (normalised using ‘min-max’) global scores of which are given in Table 2. Essentially, these

two scores (sm+
i and sm−

i ) are the more holistic equivalent of the φ+(ai ) and φ−(ai ) outputs in the PROMETHEE

I method, in the sense that they encapsulate the whole space of preferences, as this is proxied by the defined

criteria weights and respective preference and indifference thresholds accounted for within SMAA.

According to the output in Fig. 6, there exist four PKF in the left plane (i.e. Sigma-Mu φ+), and five PKF in the

right one (i.e. φ−). Global efficiencies as to each flow are provided in Table 2. As previously discussed, the σ−µ
positive flow global score (i.e. sm+) is a mere measure of performance evaluation that takes into account three

key objectives: (i) the overall performance of a DMU (i.e. µ), (ii) how balanced its performance is to satisfy all

potential viewpoints taken into account in the evaluation phase (i.e. σ), as well as (iii) how (in)efficient it is with

respect to its inner (closer) and outer (further) competition (i.e. δi h , not reported in Table 2 to conserve space) as

proxied by the PKFs. In that regard, according to the sm+ metric, Switzerland is seemingly the best performing

21



Table 2: Global efficiencies for the G-10 countries.

Positive Flow (φ+) Negative Flow (φ−)

Country sm+ Rank Country sm+ Rank

Switzerland 1.000 1 Italy 1.000 1
France 0.403 2 United States 0.888 2
United Kingdom 0.399 3 Japan 0.855 3
Sweden 0.392 4 Switzerland 0.777 4
Canada 0.377 5 Netherlands 0.700 5
Netherlands 0.343 6 Canada 0.614 6
Italy 0.331 7 United Kingdom 0.597 7
United States 0.324 8 France 0.469 8
Germany 0.306 9 Belgium 0.409 9
Belgium 0.249 10 Germany 0.376 10
Japan 0.000 11 Sweden 0.000 11

G-10 Country, followed by France, UK and Sweden. Japan is placed last, and is preceded by Belgium and Germany.

What is noteworthy, global scores (sm+) show that top-performer (i.e. Switzerland) aside, most countries are very

close performance-wise. For instance, the difference between France and UK (ranked 2nd and 3rd accordingly)

is just a mere 1% (sm+
France = 0.403, sm+

UK = 0.399), with more or less similar score differences for the remaining

countries.

Turning to the negative flow evaluations, we are now seeing the opposite picture of performance, i.e. that

of regret. As discussed in this section, the σ−µ global score of the negative flow (sm−) differs from the above-

discussed output in two ways. First, its first component (µ) shows an evaluation of regret instead of performance,

which is essentially the other side of the coin in that an alternative is dominated by all remaining ones. Yet, its

second component (σ) shows the variability in how this regret changes taking into account all potential viewpoints

in the evaluation. In particular, how slight deviations in the preferences of a DM may vastly increase or decrease

the regret factor, proving this alternative as highly sensitive and imbalanced. Here, the scores (sm−, Table 2) show

a higher variability compared to the positive flow previously discussed. Seemingly, the most regretful alternative

from the G-10 countries seem to be Italy, followed by the US and Japan. On the other side of this ranking lies

Sweden, which is seemingly the least regretful country.

Although both above outputs are greatly informative on their own to obtain a better insight about the sheer

performance or regret of each alternative compared to the remaining ones; one thing worth noting is the following.

These two rankings or magnitudes presented in Table 2 closely follow the partial rankings denoted in (3.1.2). That

is, in order for an alternative to be preferred to another one, it has to dominate in at least one flow, and weakly

dominate in the other one. However, this means that a lot of inconsistencies could arise, making real-world

scenarios (involving a large number of alternatives) difficult to process. For this reason, a unipolar scoring taking

into account the two flows’ distributions simultaneously could be computed. This can be accomplished by

combining equations (4.2.2.1) and (4.2.2.3), forming a different LP formulation that could take into account both

previous formulations as follows:
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δPI
i h = Max

α−,α+,β−,β+
δPI

s.t.
α+µφ

+

i −α−µφ
−

i −β+σφ
+

i −β−σφ
−

i ≥α+µφ
+

i ′ −α−µφ
−

i ′ −β+σφ
+

i ′ −β−σφ
−

i ′ +δPI ,∀i ′ ∈ A \
⋃k−1

h=1 PK Fh

α−,α+,β+,β− ≥ 0

α−+β− = 1

α++β+ = 1

, (4.2.2.5)

where µφ
+

is the overall dominance score that is supposed to be maximised, whilst its dispersion, σφ
+

, should be

minimised as larger values denote instability due to the change of preferences. Likewise, µφ
−

shall be minimised

as it denotes the overall regret in the whole space of preferences and so does its dispersion, i.e. σφ
−

. The reason is

that, if one wants to minimize the regret factor of an alternative, both its average regret and its dispersion need to

be minimized to achieve a more balanced and non-regretful performance.

This LP formulation does indeed take into account both flows and allows some flexibility on the trade-offs

between each flow’s µ and σ parameters. The global scores (smPI
i ; arising from the summation of δPI

i h ) are a ‘loose’

global evaluation, in the sense that they permit some flexibility on how each flow is taken into account, as do

note that in the absence of further constraints, α or β of a particular flow could be zero. If one does not wish to

permit such a possibility, and in accordance to the ability to give a complete pre-order inherent in PROMETHEE II;

we provide a stricter, though more straightforward formulation in the following section, where we show how the

σ−µ−SMAA approach can be applied to PROMETHEE II directly, which takes both flows implicitly into account.

Let us note that we have hereby defined the global scores smPI
i in the perspective of risk aversion both for gains,

φ+(ai ), and for losses, φ−(ai ). Indeed, the greater σφ
+

i and σ
φ−

i , the smaller the global score smPI
i which is not

desirable. Of course, the same index could be computed (obtaining different results) in the perspective of the

prospect theory, with risk aversion in case of gains and risk-seeking in case of losses, so that, the greater σφ
+

i and

the smaller σφ
−

i , the smaller the global score smPI
i . In this case, the constraints comparing unit i with all other

units i ′ should be reformulated as follows:

α+µφ
+

i −α−µφ
−

i −β+σφ
+

i +β−σφ
−

i ≥α+µφ
+

i ′ −α−µφ
−

i ′ −β+σφ
+

i ′ +β−σφ
−

i ′ +δPI ,∀i ′ ∈ A \
k−1⋃
h=1

PK Fh .

4.2.3 Sigma-Mu applied to PROMETHEE II

Assuming all necessary steps to apply SMAA-PROMETHEE II to a dataset are accomplished -that is: matrices

RW, RP and RQ are constructed to compute matricesΦ+,Φ− and eventuallyΦ-, it is straightforward to compute

the two parameters of interest, µφ and σφ for every alternative ai ∈ A as in equations (4.2.1.6d) and (4.2.1.6e)

accordingly. These two parameters are based on the net flows, hence the regret factor is already taken into account

in the intrinsic values implicitly -φ(ai ,wmc ,pmc ,qmc ),∀i = 1, . . . ,n,mc = 1, . . . , s- and thus, in the parameters

proxying their distribution, i.e. µφi , σφi . This is the fundamental difference with LP formulation (4.2.2.5), which

includes all components and thus the possibility to a more ‘loose’ trade-off among the two flows. That said, the LP

formulation for the σ−µ−SMAA-PROMETHEE is the following:
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δPI I
i h = Max

α,β
δPI I

s.t.
αµ

φ

i −βσφi ≥αµ
φ

i ′ −βσ
φ

i ′ +δPI I ,∀i ′ ∈ A \
⋃k−1

h=1 PK Fh

α,β≥ 0

α+β= 1

. (4.2.3.1)

with the global net flow efficiencies (smPI I
i ) arising naturally as the sum of the local efficiencies (i.e. δPI I

i h ) for every

alternative i ∈ I .

Considering again the G-10 data presented up to this point as an illustrative example, five PKF were found

solving (4.2.3.1), which are illustrated in Fig. 7. Global efficiencies (smPI I ) are given in Table 3. A comparison with

the more ‘loose’ formulation (smPI , eq. 4.2.2.5) is provided, with both rankings being fairly similar. Furthermore,

for reasons of comparability, we provide two outputs of the SMAA-PROMETHEE II method (Corrente et al., 2014);

the expected rank (see ‘holistic acceptability index’ in Lahdelma and Salminen, 2001, p.449) and the rank with the

highest probability (i.e. highest ‘rank acceptability index’ - or modal rank). As far as the ranking of G-10 countries

is concerned, SMAA-PROMETHEE II provides a probabilistic one (as also visualised in Fig. 3), yet at this case it

is fairly inconclusive. The reason is that the highest ranking acceptability index is that of Switzerland attaining

the first rank with a 59.05% probability, with all the remaining alternatives achieving probabilistic ranking with a

certainty between 12.21% and 38.34% (Table 3). This is admittedly a very low probability to be acceptable evidence

of a country being ranked at that place.

However, this also highlights how the σ−µ efficiency analysis method complements the SMAA variant of

PROMETHEE by permitting encapsulation of the vagueness associated with a ranking (for ordinal outcomes)

or the magnitude (for cardinal outcomes) of an alternative into a single value. Of course, that is not to say that

uncertainty analysis should be neglected, rather the contrary. One might obtain the single estimators, but can

always go back to the SMAA-PROMETHEE II outputs to obtain more interesting insights of how this single value

was obtained, as well as comparative benchmarks (such as the pairwise winning index or ranking acceptability

indices) that give the DM a more evident overview of what lies underneath these values, as well as comparative

insights between the alternatives being evaluated; particularly when it comes to their visual exploration through

the SMAA-GAIA method that is introduced in the following section.

4.3 A cardinal version of SMAA-GAIA

In Section 3.3 we briefly discussed the concepts of GAIA and its SMAA variant as given in Arcidiacono et al.

(2018). In this section, we complement the latter study in two ways. First, we introduce an alternative visualisation

of GAIA for SMAA-PROMETHEE that displays cardinal information for a unit of interest on the plane. Second,

we embed the two inputs (µ and σ) and the global output (sm) of our above proposed approach in the plane, in

order to provide analytical insights of their relation to the rest of the criteria that formed them. Before we begin

introducing these concepts, let us briefly give a few necessary preliminaries.

Consider the following n ×m unicriterion flow matrix U :

24



Figure 7. The σ−µ plane for net flow.

This figure shows how the G-10 Countries are evaluated in the σ−µ plane based on
their net flows. Both axes are standardized using the Z-scores.

Table 3: Global efficiencies for the G-10 Countries

σ−µ PII σ−µ PI SMAA-PROMETHEE II

Country smPI I Rank smPI Rank
Expected

Rank

Rank with
Highest

Probability
Probability

Belgium 0.489 5 0.421 8 5 7 12.21%
Canada 0.512 4 0.516 4 5 6 17.04%
France 0.462 7 0.456 5 6 7 17.90%

Germany 0.441 8 0.442 7 6 4 28.18%
Italy 0.181 9 0.159 10 9 11 31.39%

Japan 0.000 11 0.000 11 8 11 31.63%
Netherlands 0.601 2 0.615 2 4 3 38.34%

Sweden 0.518 3 0.524 3 4 2 29.38%
Switzerland 1.000 1 1.000 1 2 1 59.05%

United Kingdom 0.467 6 0.455 6 8 9 24.75%
United States 0.128 10 0.172 9 8 11 31.29%

Note: σ−µ PII refers to the global efficiencies of LP formulation (4.2.3.1), whilst σ−µ PI refers to
the global efficiencies from LP formulation (4.2.2.5). Expected rank is the rank taking into account
all probabilistic outcomes (i.e. for each i = 1, . . . ,n: Expected Rank =∑n

r=1 p(i = r )× r ), rounded to
no decimals. Rank with the highest probability is, as its name suggests, the rank for which RAI is the
max for each Country, i.e. the modal rank a country achieves in the SMAA. For more details on the
outputs of this method, see the original paper by Corrente et al. (2014).
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U
n×m

=


ua1,g1 ua1,g12 · · · ua1,gm

ua2,g1 ua2,g12 · · · ua2,gm

...
... · · · ...

uan ,g1 uan ,g12 · · · uan ,gm

 , (4.3.1)

where: uai ,g j = 1
n−1

∑n
i=1

[
P j (ai ,ai ′)−P j (ai ′ ,ai )

]
, i ′ 6= i . GAIA is essentially an application of PCA on U, reducing the

m-dimensional space to just a two or three-dimensional plane that is visually clear to the keen eye. In particular,

consider that we want to construct a two-dimensional GAIA plane, with λ1, λ2 the two largest eigenvalues and

e1, e2 the corresponding eigenvectors, all obtained from applying PCA to (4.3.1). Considering that the explained

variance (i.e. δ= λ1+λ2∑m
r=1λr

) is at least 60% (Brans and Mareschal, 1995), the GAIA visual consists of a two-dimensional

plane on which:

• Each criterion g j is plotted with coordinates (e1( j ),e2( j )), with a line linking it to the origin of the plane, i.e. (0,0).

• Each alternative is plotted using its principal component scores as coordinates.

• The ‘decision stick’ is plotted using (wᵀe1,wᵀe2) as coordinate, with w the weight vector chosen. Again, a line

connects these coordinates to the origin of the plane, i.e. (0,0).

Arcidiacono et al. (2018) propose a SMAA variant of GAIA where instead of one ‘decision stick’ -as in regular

PROMETHEE methods-, we have one for each weight vector, all of which can be plotted on the plane (see upper

two plots of Fig. 5). This shows how the preferences taken into account in the SMAA are dispersed along the

criteria. Moreover, in line with the ranking acceptability indices, the authors propose highlighting those weight

vectors for which an alternative is ranked at a given place (e.g. 1st, 2nd and so on place) (see lower two plots of

Fig. 5) which showcases ordinal information on the plane. Building upon their contribution, we give cardinal

meaning to the SMAA-GAIA plane by highlighting each weight vector with a particular color corresponding to a

rich gradient that is linked to an alternative’s net flow (φ). We forthwith explain how this is attainable and give a

brief example with the G-10 countries’ evaluations discussed thus far.

Consider a SMAA-GAIA representation of an alternative say ai . The GAIA plane is defined exactly as mentioned

in the list above. Now, each weight vector w ∈W is plotted with coordinates (wᵀe1,wᵀe2) and a color in the RGB

gamut of preference that depends on the alternative’s net flow score for that particular vector. For instance,

consider that alternative ai takes net flow scores between 0.5 and 1 (in a normalized [0,1] scale for simplicity).

One could visualize this in a gradient of one’s choice, e.g. black color equals 0.5, white equals 1, and every value

in-between takes a linear combination of these RGB codes’ values9.

To give an example of our proposal, Fig. 8 delineates the SMAA-GAIA plane for the G-10 evaluation using

SMAA-PROMETHEE, depicting the space of weight vectors included in our analysis and, based on each vector,

the net flow scores that Switzerland achieves in this evaluation. According to the plot, Switzerland takes net flow

values (normalized in the [0,1] range) between just under 0.5 and up to 1, with the latter value being the norm.

Particularly, as it is clear from the plot, it is consistently achieving a unity (top) score (yellow areas) in a vast part of

the included weight vectors. Unless the preferences lean significantly more towards the ‘WG’, ‘NIG’ or ‘LP’ criteria

(blue-cyan areas), it achieves a top, or a near top performance compared to the rest of the G-10 countries. Of

course, in the software, one could use this figure in a more interactive way, e.g. by zooming in and exploring the

relationships accordingly. For instance, the right subplot of Fig. 8 shows a 40% zoomed frame of the original figure.

9For instance, consider a value of 0.5 would be linked to a pure black color with an RGB code of [0,0,0], whereas a value of 1 would
correspond to a pure white color, with a code of [255,255,255]. A value of 0.75 would be linearly interpolated to the RGB code of
[128,128,128] which is the grey color standing right in the middle of this grayscale chart. MATLAB automatically applies a color gradient of
preference (see e.g. ‘colormap’ function) easily implemented through its ‘scatter’ function.
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Figure 8. The SMAA-GAIA plane.

This figure shows how the G-10 countries are evaluated in the GAIA plane. The SMAA-PROMETHEE weight vectors
are plotted, colored according to the net flows Switzerland achieves based on these preferences. The right subplot is a
40% zoomed-in version of the left one.

Looking at it, its clear that no matter which linear combination of weights among ‘CI’, ‘PR’, ‘CR’, ‘MI’, ‘GDP’ or ‘PD’

criteria this country is weighted more in, it still achieves a top score (pure yellow highlighted area).

While not shown due to space constraints, other variants of Fig. 8 could provide further insights. For instance,

one could be interested in visualising e.g. which preference combinations would yield a score of between 0.80 and

1 for Switzerland. This would require plotting fewer weight vectors, whilst highlighting more important areas for

the DM. On a similar note, the DM could be interested in those preferences that put Switzerland’s score in at least

the top 10th percentile, or the other way around; that is, which preferences make Switzerland performing poorly,

putting its performance in the bottom 10%. Last, but not least, should the DM like to benchmark how changes in

preferences affect the scores between a unit of interest (say one country) and another (say a close-performing

peer of that country) this could be feasible as well (for an example see Fig. 13). What is more, it could be combined

with the classic outputs of the SMAA-PROMETHEE, such as the central weight vectors, permitting the DM to see

the typical preference for that space of interest.

A second interesting use of GAIA could involve visualising the relationships between the elementary criteria

and the inputs (σ,µ) and global output (sm) of our proposed method. In particular, one could be interested in

how the very basic ‘raw material’ forming the subsequent part of the analysis that we presented relate to it. Put

simply, we’re looking to delineate the relationships between these two sets. This does not involve any modification

of GAIA at all. In particular, we can do this by horizontally concatenating a matrix containing the unicriteria net

flows of the three measures (µ,σ, sm) with the matrix U (4.3.1). Then, as we are not interested in projecting any

cloud of weight vectors, the procedure described in the beginning of this section runs with the newly formed

n × (m +3) matrix being projected (through PCA) in a two-dimensional plane. In the case of the G-10 countries’

evaluation, this would produce Fig. 9.

There are a few key observations to be made from this figure. First, µ and sm seem to be driven towards

the same direction, whilst σ is located exactly opposite to sm. This is of course expected as µ is supposed to
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Figure 9. Sigma-Mu and the GAIA plane.

This figure shows how the sigma-mu analysis inputs (σ,µ) and global output (sm) can be embedded in the GAIA
plane, providing the DM with further insights on the relationships between elementary criteria that formed
those, as well as between them.

maximise an alternative’s score, and σ to penalize it. Second, with the exception of ‘LP’, ‘HLE’ and ‘WG’, which are

orthogonal to σ (thereby not relating to it), two criteria are completely in the opposite direction to σ (i.e. ‘PR’ and

‘NIG’). This implies that the former two criteria are reducing σ in the majority of alternatives, while there’s a mixed

case for the remaining ones not mentioned above. Of course, similar notes can be inferred from the relationship

between µ (or even sm) and the remaining criteria, though we avoid it to conserve space.

Last, but not least, embedding the three key measures outlined in this study into the GAIA plane lets us

directly observe the performance (though in terms of dominance as to the remaining alternatives) of the evaluated

alternatives as to both the inputs (σ,µ) of sigma-mu and the global output (sm). For instance, the further a

G-10 country is located towards the same direction of σ, the bigger its dispersion is compared to the other G-10

countries. An example is that of Japan (JAP), Italy (ITA) and USA (USA) having a noticeably higher dispersion to

other alternatives (e.g. the UK, CAN, FRA etc.), whilst at the same time, the Netherlands (NET) and Switzerland

(SWI) seem to dominate other G-10 countries both in terms of µ and of global scores (sm).

Essentially, one could think of the above outputs (i.e. Figs. 8 and 9) as a visual aid tool in the hands of the DM

in the following way. Consider that the DM is interested in evaluating the set of G10 countries, with her main

interest lying in the case of Switzerland (SWI). Fig. 9 straightforwardly gives the DM the information that SWI

is dominating the remaining alternatives by a great deal in terms of global output (sm). SWI has the highest µ

as well, whilst should the DM wants to see how this score is achieved (e.g. is it consistent with the majority of

preferences, or is it due to outliers - i.e. a good performance due to preferences concentrated in some criteria for

which a unit is performing very good), one may look at Fig. 8. Of course, the same could happen for a different

country, and with different variations of this plot. To give an example, Fig. 8 could be highlighting the net flow

scores of a different country, or the dimensions on which SWI performs poorly (e.g. maybe a cloud of points

corresponding to the bottom 10% of a country’s performance), so that the policy-maker could focus on improving
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those dimensions that have the greater effect lifting an alternative’s performance ceteris paribus.

5 Case Study: The Inclusive Development Index
The need against a solely economic-oriented measure of growth, such as the GDP, is well-advocated in the

literature (e.g. see, among other influential studies, Stiglitz et al., 2009; Costanza et al., 2009; Kubiszewski et al.,

2013). Their advocates do not protest the use of GDP to measure economic growth, rather its association with the

measurenent of a nation’s welfare; something that is noted even during its very conception by Simon Kuznets

(1934) dated in the far 1934. Several attempts have been made by global organizations and institutions to measure

welfare individually (e.g. UNDP’s ‘World Happiness’ report), or jointly with GDP in a more socio-economic

inclusive growth index (e.g. OECD’s ‘Better Life Index’ (BLI), WEF’s ‘Inclusive Development Index’ (IDI)). The

former is carried out in the form of surveys, while the latter two are presented as composite indicators that rank

the OECD and 108 economies respectively, on the basis of 12 and 3 dimensions accordingly. Being composites of

an additive type and no decisive judgement on a differential weighting, means both the BLI and IDI indicators bear

the issues discussed in the introduction of this study. Interestingly, while both start from equal weighting to form

their baseline results, they leave the choice of a different weight vector to the end user through their interactive

platforms on their official websites. The BLI has been extensively discussed before (for a comprehensive review of

the literature and a methodological proposal see Greco et al., 2017). Thus, in this study we are engrossed with

WEF’s IDI that we briefly describe in the following (for an extensive description, see the full report from Samans et

al., 2017).

The Inclusive Development Index is hierarchical in that it consists of three dimensions, each of which contains

four sub-indicators (see Table 4 for an outline). According to the report’s authors (Samans et al., 2017, p.9) this set

of indicators, namely ‘National Key Performance Indicators’ provides “[...] a more complete picture of national

economic performance than that provided by GDP alone, particularly if the ultimate objective of development is

understood to be sustained, broad-based advancement of living standards rather than increased production of

goods and services, per se”. They claim this index is overall useful for governments and stakeholders to determine

the effect of changes in policy and conditions within a typical political cycle. Taken into consideration with

the report’s policy framework and metrics consisting of seven pillars - and offering a relative demonstration of

institutional strength enabling environment conditions in fifteen of the most relevant policy domains for inclusive

growth (see Samans et al., 2017, Fig.1)-; one could monitor both the output (that is the inclusive growth index

hereby studied) and the input (that is the environment laying the foundations to inclusive growth as witnessed by

the seven pillars) of each of the 108 economies analysed in the report. Of course, in this study we are interested in

the analysis of the output measure, that is the inclusive development index (hereafter referred to as ‘IDI’).

The report’s ‘scoreboards’ are based on equal weighting, dimension and sub-indicators-wise, which means

that each dimension is given 33.3% of weight and each sub-indicator 8.25% weight accordingly. We originally

construct the IDI using the PROMETHEE II method with equal weights to be consistent with the report as to the

preferences on criteria importance10. This index will act as a comparative metric against which we will compare

the results of our proposed approach. We annotate the obtained index as IDIP .

Using the σ−µ SMAA-PROMETHEE methods discussed in section 4, we construct another version of IDI,

taking into account the whole space of weight vectors this time. This allows the developer to extend the analysis

above and beyond the issue of the representative agent inherent in the classic analysis of composite indicators

(see Greco et al., 2018, p.587 for a discussion), whilst it also encapsulates a basic form of uncertainty and sensitivity

analysis (see Saisana et al., 2005) that is frequently found to be missing from the development of composite

indicators, despite its importance (Burgass et al., 2017). Using 10,000 randomly (uniformly) simulated weight

10For reasons of simplicity, we use the linear function, and for each criterion we set a zero indifference threshold (q) and the max of the
differences among alternatives as the preference thresholds (pg j ) accordingly.
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Table 4: Inclusive Development Index (IDI)

Dimensions Sub-Indicators

GDP per capita (GDP)
Growth and

Development
Labor Productivity (LP)

Employment (E)
Healthy Life Expectancy (HL)

Net Income GINI (NIG)

Inclusion
Poverty Rate (PR)

Wealth GINI (WG)
Median Income (MI)

Adjusted Net Savings (ANS)
Intergenerational Equity

and Sustainability
Carbon Intensity (CI)

Public Debt (PD)
Dependency Ratio (DR)

For an extensive description of the sub-indicators and their sources, we refer the
reader to the original report (Samans et al., 2017), or the official website of the
WEF at: https://goo.gl/2wrF7K.

vectors as potential preferences in the SMAA-PROMETHEE approach, we apply theσ−µ PROMETHEE I (eq.4.2.2.5,

Section 4.2.2) and PROMETHEE II (eq. 4.2.3.1, Section 4.2.3) approaches to this set of data. We do remind that

these two approaches are similar, in the sense that they take into account incomparability in the evaluation,

though the former is more flexible than the latter, as it gives the benefit of the doubt to the unit being evaluated as

to the balance between performance and regret. Instead, the latter takes these aspects implicitly into account for

all units with the same rate (hence, no flexibility -e.g. through weights α+,β+ and α−, β−- in that regard).

Carrying out the above analysis, we find that the 108 countries are scattered in 27 PKF, visualised in Fig. 10.

The global scores obtained through the σ−µ PROMETHEE II (smPI I ) are delineated in a world heat-map in Fig.

11. Very similar results were obtained with the σ−µ PROMETHEE I approach (Spearman’s correlation: 99.7%,

Kendal’s Tau: 98.09%) thus we do not differentiate between the two approaches, but we only report and discuss the

former one. Given the fact that analysing and reporting table results for 108 countries would need a fair amount of

space, we only focus on those countries that made the top 15 list (Table 5), providing the full set of results in an

online supplementary appendix.

According to the results in Table 5, the rankings of the two variants of σ−µ applied to SMAA-PROMETHEE

(i.e. IDISMPI and IDISMPI I ) are identical (which is reasonably expected given their very high correlation). The

top country according to its socio-economic inclusive development is Norway, something that is confirmed

through all models, as well as probabilistic outcomes (i.e. SMAA-PROMETHEE II output - unreported here for

brevity). In fact, the countries making it to the Top-8 list are consistently ranked at that place even with equal

weights (i.e. IDIP ), while there’s a small reshuffle experienced in the remaining seven positions. Out of the top

fifteen countries, ten central and northern European countries made it to this list, another four countries from the

southern hemisphere (Asia, Australia & Oceania) and one from North America (Canada). Whilst unreported in

this list, United States was ranked 35th according to both variants of our proposed approach, and 30th according

to the WEF’s preferences (i.e. equal weights).

Understandably, providing a series of rankings as we do here raises the question of which one an interested

party needs to take into account. Admittedly, there is no such thing as a ‘correct’ or ‘false’ ranking, but rather a
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Figure 10. The Sigma-Mu plane.

This figure shows how the 108 countries in our sample are evaluated in the sigma-mu plane. 27 PKF are found.
Axes are normalized according to their Z-scores.

Figure 11. Inclusive Development - Global scores.

This figure shows how the 108 countries in our sample are evaluated according to their inclusive development. Both size and
colour delineated in the heatmap shows the global score a country achieves according to the 12 criteria (see Table 4) the WEF
provides as indicators to inclusive development.
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Table 5: Inclusive Development Index (IDI) for the Top 15

IDISMPI IDISMPI I IDIP

Country sm+ Ranking sm Ranking φ Ranking

Norway 1.00 1 1.00 1 1.00 1
Luxembourg 0.97 2 0.97 2 0.97 2
Switzerland 0.91 3 0.90 3 0.93 3

Iceland 0.75 4 0.75 4 0.83 4
Australia 0.74 5 0.73 5 0.81 5

Netherlands 0.73 6 0.72 6 0.81 6
Sweden 0.70 7 0.70 7 0.80 7

Singapore 0.66 8 0.66 8 0.78 8
Korea, Rep. 0.66 9 0.65 9 0.73 13

New Zealand 0.64 10 0.63 10 0.70 15
Denmark 0.63 11 0.63 11 0.76 9
Belgium 0.62 12 0.62 12 0.75 10
Austria 0.62 13 0.62 13 0.74 11
Canada 0.61 14 0.61 14 0.73 12

Germany 0.61 15 0.60 15 0.72 14

This table shows the estimators and the rankings of the Top-15 countries, achieved
with equal weights (IDIP ), and taking into account the whole space of weight
vectors using the σ−µ SMAA-PROMETHEE I (IDISMPI ), and II (i.e. IDISMPI ).

different underlying assumption inherent in it. We do believe that the one we provide here under the ‘IDISMPI I ’

label is more holistic in the sense that it implicitly takes a few important things into account: a multiplicity of

viewpoints in the evaluation exercise, and spatial information about the competition surrounding each alternative

in the σ−µ plane. Moreover, compared to a set of estimators obtained through a single weight vector, both

our estimators and the rankings based on these are ‘corrected’ for uncertainty, as imbalanced units are being

penalized more in their final global scores.

Turning to the utilization of the cardinal version of GAIA we provided in Section 4, Fig. 12 (left sub-plot) delin-

eates how consistently Norway (ranked 1st through all specifications in Table 5) obtains a top score (normalised

net flow figures in the [0,1] space) in the vast majority of the space W. It is apparent that almost no matter which

linear combination between ‘PR’, ‘HLE’, ‘NIG’, ‘LP’, ‘MI’, ‘GDP’ and ‘CI’ (a staggering seven out of twelve criteria) is

the choice of preferences, it achieves a top (unity) score. Its dominance over the ‘PD’ criterion is outstanding as

well, whilst crucial improvement could be made with respect to ‘E’ and ‘WG’, criteria in which it is considerably

dominated in by the remaining countries (where Norway’s net flow score could even reach a low score of around

the 40% mark).

An interesting insight that can be made from the cardinal information presented in the GAIA plane is that

delineated in Fig. 12 (right sub-plot). Consider that a policy-maker in Luxembourg (consistently ranked below

Norway in Table 5) would like to see areas of improvement having Norway as a benchmark. Of course, one could

argue that this could be made by looking directly at the elementary indicators. The difference is that these do

not provide any information about dominance, whereas a plotted preference (i.e. a weight vector) can show the

evaluation of a country of interest (e.g. by highlighting this preference in a given colour) taking into account

the underlying dominance (i.e. through the uni-criterion net flows). This can be done by highlighting a weight

vector with a colour according to the difference in the net flow scores of the two alternatives achieved with that
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Figure 12. The SMAA-GAIA plane: the case of Norway.

The left figure shows the space of weight vectors highlighted according to the evaluation of Norway’s net flows. The right
figure shows the plotted space of weights, constrained to only those for which Norway is at least 10% overall better than

Luxembourg.

weight vector (i.e. (φ(Nor)
φ(Lux) −1)×100). This would show the overall performance difference Norway attains against

Luxembourg (%) according to that preference. As we are not interested in all the differences but only in areas

of improvements for Luxembourg, we only show those vectors of preferences (i.e. clouds of points in the right

sub-plot of Fig. 12) for which Norway’s score is better than Luxembourg and for at least a 10% difference. As

it seems from that figure, Norway is between at least 10% and 25% better than Luxembourg in criteria plotted

towards the bottom half of the figure, with an extreme case scenario of the former being superior than the latter

by 50% when the weight of preferences is solely focused around employment (i.e. criterion ‘E’). Of course, the

threshold of 10% could be removed/adjusted according to what the DM considers a difference big enough to take

respective action to reduce the gap.

6 Conclusion
Composite indicators are still far from a perfect metric. The reason is that by involving a series of several

steps -the most important being weighting and aggregation- they are fairly prone to error judgements, mistakes,

uncertainty or even manipulation. Whilst it is a generally acceptable notion that no perfect aggregation will ever

exist (Arrow and Raynaud, 1986), these composite and often opaque scores are, at the moment, the best and most

popular metrics we may provide to summarise the multidimensionality of a phenomenon being evaluated.

An important issue in the construction of composite indicators is their compensatory nature for which

some serious deficiency on one or more elementary indicators is counterbalanced by the performances of other

elementary indicators, which can be questionable in several domains. In this perspective, we proposed a novel

definition of non-compensatory composite indicator as aggregation of non-compensatory preferences of the

considered units. In this context, we have seen that Borda count and its extensions, i.e. the PROMETHEE methods,

constitute a valuable basis for constructing non-compensatory composite indicators. In particular, the approach

we are proposing is characterized by:

• the basic ordinal nature of preferences on elementary indices (possibly mitigated by means of fuzzy preferences

to take into account inaccurate determination, uncertainty and imprecision of original data);
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• the basic cardinal nature of composite indicators, which is required to give the compared units an evaluation

on a numerical scale and not simply an ordinal ranking.

We defined our methodology, the ordinal input for cardinal output approach to non-compensatory composite

indicators, and we believe that it presents quite interesting properties and has a promising potential.

On this basis, we proposed a comprehensive methodology based on well-known operations research method-

ologies to construct non-compensatory composite indicators that offer the following advantages:

• Based on the SMAA methods, we enhance the transparency in an evaluation process. This is crucial as it shows

how prone an alternative could be to changes in the parameters used to evaluate it. Moreover, SMAA permits

going above and beyond the issue of the representative agent inherent in an evaluation exercise that concerns

a population which is often unknown and thus almost impossible to guess the preferences of.

• Based on the PROMETHEE methods, which are based on a generalization of the classic Borda score, we

construct our basic non-compensatory indices based on our approach of ordinal input for cardinal output.

Moreover, in the step of aggregation, we disentangle and take into account both the performance and the regret

factors of an alternative being evaluated. In this context of non-compensatory aggregation, normalization of

elementary indicators is not needed, and weights act now as ‘importance coefficients’ instead of ‘trade-offs’

between pairs of indicators.

• Based on the ‘Sigma-Mu efficiency analysis’ approach, we are able to consolidate the breadth of information

provided with the SMAA methods that, whilst greatly informative on its own, was not consolidating the output

into a single value that acts as a performance metric. This approach takes into account the distribution of

evaluations for each unit, essentially proxying for the whole population interested in the evaluation process.

Furthermore, it takes into account the spatial information on the ‘Sigma-Mu’ plane, which adjusts the classic

efficiency measurement to that of taking into account the distances from every single level of competition (as

proxied by the many Pareto-Koopmans frontiers in the plane).

• Last, but certainly not least, based on the GAIA visual aid, we provide another SMAA-variant of this important

tool in the hands of a decision-maker that is able to showcase cardinal information from the SMAA evaluation.

In particular, it shows how an alternative’s evaluation can change as a function of the preferences taken into

account in that evaluation. Moreover, as showcased in an illustrative example in this paper, it could display

areas of improvement for an alternative of interest compared to its closer competitive.

Closing this study, we would like to mention an important area of improvement in the construction of

composite indicators. That is interactions among criteria. In particular, in this process we assume no externalities

and interdependencies among criteria. In real world situations though, it is very probable that criteria (particularly

those within the same dimension) can be mutually strengthening (or conflicting) the final score (for the basic

theory on which this approach can be construct see Angilella et al. (2015) and Angilella et al. (2016) for the

compensatory approach and Arcidiacono et al. (2018) for the non-compensatory approach, while for some

first applications in this direction see Angilella et al. (2018) and Corrente et al. (2019)). This is, to our belief, an

important and fruitful area of improvement that needs to be treated with caution.
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